當(dāng)前位置:育文網(wǎng)>教學(xué)文檔>說課稿> 二次函數(shù)說課稿

二次函數(shù)說課稿

時間:2024-06-19 18:48:13 說課稿 我要投稿

二次函數(shù)說課稿

  作為一名教學(xué)工作者,常常要根據(jù)教學(xué)需要編寫說課稿,是說課取得成功的前提。那要怎么寫好說課稿呢?下面是小編精心整理的二次函數(shù)說課稿,歡迎閱讀與收藏。

二次函數(shù)說課稿

二次函數(shù)說課稿1

  數(shù)學(xué)課堂教學(xué)如何結(jié)合現(xiàn)代教育教學(xué)理論、結(jié)合學(xué)生的實際來實施素質(zhì)教育,優(yōu)化課堂教學(xué),提高教學(xué)效益呢?這是每個老師在今天的課改面前都有的困惑。那么我們應(yīng)如何從困惑面前走出來呢?我認(rèn)為首先我們要有這樣本教學(xué)觀念:“學(xué)生“學(xué)會求知”比較學(xué)生掌握知識本身更重要,在教學(xué)過程中我們要從人的固有特性出發(fā)發(fā)展學(xué)生的自主性、獨(dú)立性和創(chuàng)造性,教師的教要為學(xué)生的學(xué)服務(wù),數(shù)學(xué)教學(xué)要注重學(xué)生思維能力的培養(yǎng),聯(lián)系學(xué)生的生活實際,培養(yǎng)學(xué)生的數(shù)學(xué)思想和數(shù)學(xué)方法,提高學(xué)生應(yīng)用數(shù)學(xué)的意識和解決問題的能力。下面, 我來談?wù)勑炖蠋煹臄?shù)學(xué)課“二次函數(shù)復(fù)習(xí)”。

  整節(jié)課的學(xué)習(xí),看得出徐教師準(zhǔn)備的比較充分,清楚知道學(xué)生應(yīng)該,理解什么,掌握什么,學(xué)會什么。徐老師是學(xué)生學(xué)習(xí)活動的組織者、指導(dǎo)者和合作者,而學(xué)生是一個發(fā)現(xiàn)者、探索者,有效的發(fā)揮他們的學(xué)習(xí)主體作用。徐老師是讓學(xué)生“體會知識”,而不是“教學(xué)生知識”,學(xué)生成了學(xué)習(xí)的主人,突出學(xué)生的主體地位。以下是我的一些肯定與不同意見及一些不成熟建議。

  內(nèi)容1、(1)肯定意見: 徐老師在開始的時候并沒有講二次函數(shù)的有關(guān)性質(zhì)而是用幻燈片給出:

  “例1 請研究函數(shù)y=x2-5x+6的圖象與性質(zhì),盡可能寫出結(jié)論!

  讓學(xué)生自己去體會二次函數(shù)的有關(guān)性質(zhì),這樣的做法可以讓學(xué)生自己積極的`思考,使學(xué)生的思維變的更積極,更主動。體現(xiàn)出徐老師知道在教學(xué)過程中著重發(fā)展學(xué)生的自主性、獨(dú)立性和創(chuàng)造性,知道教師的教是為學(xué)生的學(xué)服務(wù)的。所以說從徐老師這點(diǎn)的想法、做法上看是成功的。

  (2)不同意見:但是,如果說這樣的做法徐老師已經(jīng)有這樣的觀念了的話,我認(rèn)為徐老師的做法不夠徹底,下面是徐老師操作過程的摘記:

  “師:(出示例題后不到1分鐘)想到3種以上的同學(xué)請舉手;

  師:(出示例題后不到1.5分鐘)想到5種以上的同學(xué)請舉手;”

  我說的不夠徹底就是讓學(xué)生思考的時間不夠,我們雖然知道讓學(xué)生思考的重要性,也這樣做了,我們就要收到一定的效果。所以我們要讓學(xué)生有充分的時間考慮,放手讓學(xué)生,促進(jìn)學(xué)生發(fā)展。我們要知道我們的對象應(yīng)該是大多數(shù)學(xué)生,使大多數(shù)的學(xué)生有充分的思考時間。

 。3)我的建議:給出題目時讓學(xué)生思考時間3—5分鐘。

  內(nèi)容2、(1)肯定意見:上課摘錄:

  “師:(叫一學(xué)生)說說你的得出的結(jié)果;

  生:(1)a﹥0,開口向上……;

 。2)Δ﹥0,在軸上有兩個交點(diǎn)……;

  …………”

  徐老師給出結(jié)論時是充分讓學(xué)生說出自己的答案,讓學(xué)生充分表達(dá)自己的意見,自己的想法,從而提高學(xué)生學(xué)習(xí)的積極性,這符合人的自然規(guī)律,要知道無論是誰都是對自己的東西最感興趣的,也就是對“我的”最感興趣,它的最里面一層是我的思想、我的愛好、我的健康、我所要表達(dá)的一切,接下去是我的父母、我的班級學(xué)校、我的國家……。一個具體的例子:“當(dāng)你看到一張有你集體照,你首先會看誰呢?這是不容質(zhì)疑的!币部梢杂靡粋圖去表示:

  所以說徐老師抓住了學(xué)生的人的固有特性,給學(xué)生一個自由的發(fā)揮的空間,讓學(xué)生表達(dá)出“我的答案、想法”,使學(xué)生的思維變的積極,使課堂氣氛變的積極,

  使學(xué)生的思維從中得到很好的鍛煉。從這點(diǎn)來說徐老師這節(jié)是成功的。

 。2)不同意見:個上面我們談到這樣做符合人固有的本性是很成功的,但我認(rèn)為在操作上可以改進(jìn)一下。徐老師開始的時候都是叫學(xué)生個人來完成,后面幾

  個問題干脆讓學(xué)生一起來回答, 這樣做的后果就是不能讓學(xué)生感覺到這是“我的答案”,感覺不到同學(xué)、老師那肯定的眼光,長此以往課堂的氣氛會低迷,學(xué)生的思維會變的懶惰。因為的思考的答案可能會得不到肯定,我思考也沒用。漸漸的學(xué)習(xí)的積極性、主動性就會削弱,與我們老師的初衷、教改的意圖相違背?梢赃@樣說,徐老師這節(jié)課有突出學(xué)生的“我的……”,但沒有完全突出最里面的一層“我的思想、別人對我的看法”。

  (3)我的建議:每次都讓學(xué)生站來回答問題,給予他及時的肯定與鼓勵,使學(xué)生在肯定中變的積極,在肯定中變的自信,在肯定中得到進(jìn)步。

  內(nèi)容3、我的一些不成熟看法:

  1、 或許徐老師在內(nèi)容上的量處理方面更能使學(xué)生容易接受一點(diǎn),我認(rèn)為可以分為兩節(jié)課來完成,內(nèi)容1:“二次函數(shù)的圖象及有關(guān)性質(zhì)”,內(nèi)容2:“怎樣求二次函數(shù)的解析式”。

  2、 或許徐老師在語言上可以簡練一些,使學(xué)生感到我們的老師的語言不是羅嗦。使我們的學(xué)生在我們的語言中感覺到學(xué)習(xí)的樂趣、領(lǐng)受知識、訓(xùn)練思維。

  3、 或許徐老師的站位可以更恰當(dāng)一點(diǎn),不要遮住給學(xué)生看的題目,要知道我們的給出的題目是為學(xué)生服務(wù)的,當(dāng)我們的學(xué)生看不到這些目標(biāo)——題目時他的思維活動就不能開展。

二次函數(shù)說課稿2

  一、教材分析

  1.地位和作用

  (1)二次函數(shù)是初中數(shù)學(xué)教學(xué)的重點(diǎn)和難點(diǎn)之一。二次函數(shù)在初中函數(shù)的教學(xué)中有重要地位,它不僅是初中代數(shù)內(nèi)容的引申,更為高中學(xué)習(xí)一元二次不等式和圓錐曲線奠定基礎(chǔ)。在歷屆上海市中考試題中,二次函數(shù)都是不可缺少的內(nèi)容。

  (2)二次函數(shù)的圖象和性質(zhì)體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想,對學(xué)生基本數(shù)學(xué)思想和素養(yǎng)的形成起推動作用。

  (3)二次函數(shù)與一元二次方程、不等式等知識的聯(lián)系,使學(xué)生能更好地將所學(xué)知識融會貫通。

  2.教學(xué)目標(biāo)

  知識目標(biāo)

  1、通過復(fù)習(xí),掌握各類形式的二次函數(shù)解析式的求解方法和思路,能夠一題多解,發(fā)散學(xué)生的思維,提高學(xué)生的創(chuàng)造思維能力;

  2、能運(yùn)用數(shù)學(xué)思想解決有關(guān)二次函數(shù)的綜合問題,幫助學(xué)生提高解決綜合題的能力。

  能力目標(biāo)

  提高學(xué)生對知識的整合能力和分析能力

  情感目標(biāo)

  用powerpoint制作動畫增加直觀效果,激發(fā)學(xué)生興趣,感受數(shù)學(xué)之美。在教學(xué)中滲透美的'教育,滲透數(shù)形結(jié)合的思想,讓學(xué)生在數(shù)學(xué)活動中學(xué)會與人相處,感受探索與創(chuàng)造,體驗成功的喜悅。

  3.教學(xué)重點(diǎn)與難點(diǎn)

  學(xué)習(xí)重點(diǎn):各類形式的二次函數(shù)解析式的求解方法和思路

  學(xué)習(xí)難點(diǎn):1、運(yùn)用數(shù)學(xué)思想解決有關(guān)二次函數(shù)的綜合問題

  2、運(yùn)用數(shù)形結(jié)合思想,選用恰當(dāng)?shù)臄?shù)學(xué)關(guān)系式解決幾何問題。

  二、教學(xué)方法

  1、師生互動探究式教學(xué),以教學(xué)大綱為依據(jù),滲透新的教育理念,遵循教師為主導(dǎo)、學(xué)生為主體的原則,結(jié)合初三學(xué)生的求知欲心理和已有的認(rèn)知水平開展教學(xué),形成學(xué)生自動、生生助動、師生互動,教師著眼于引導(dǎo),學(xué)生著眼于探索,側(cè)重于學(xué)生能力的提高、思維的訓(xùn)練。同時考慮到學(xué)生的個體差異,在教學(xué)的各個環(huán)節(jié)中進(jìn)行分層施教,讓每一個學(xué)生都能獲得知識,能力得到提高。

  2、采用表格形式,將知識點(diǎn)歸納,讓學(xué)生通過這個表格很容易看出二次函數(shù)與一元二次方程的聯(lián)系,讓學(xué)生形成以清晰、系統(tǒng)、完整的知識網(wǎng)絡(luò)。

  3、運(yùn)用多媒體進(jìn)行輔助教學(xué),既直觀、生動地反映圖形變換,增強(qiáng)教學(xué)的條理性和形象性,又豐富了課堂的內(nèi)容,有利于突出重點(diǎn)、分散難點(diǎn),更好地提高課堂效率。

  三、學(xué)法指導(dǎo)

  授人以魚,不如授人以漁。在教學(xué)過程中,不但要傳授學(xué)生基本知識,還要培養(yǎng)學(xué)生主動觀察、主動思考、親自動手、自我發(fā)現(xiàn)等學(xué)習(xí)能力,增強(qiáng)學(xué)生的綜合素質(zhì),從而達(dá)到教學(xué)的終極目標(biāo)。教學(xué)中,教師創(chuàng)設(shè)疑問,學(xué)生想辦法解決疑問,通過教師的啟發(fā)與點(diǎn)撥,在積極的雙邊活動中,學(xué)生找到了解決疑問的方法,找準(zhǔn)解決問題的關(guān)鍵。

二次函數(shù)說課稿3

  一、說課內(nèi)容:

  人教版九年級數(shù)學(xué)下冊的二次函數(shù)的概念及相關(guān)習(xí)題

  二、教材分析:

  1、教材的地位和作用

  這節(jié)課是在學(xué)生已經(jīng)學(xué)習(xí)了一次函數(shù)、正比例函數(shù)、反比例函數(shù)的基礎(chǔ)上,來學(xué)習(xí)二次函數(shù)的概念。二次函數(shù)是初中階段研究的最后一個具體的函數(shù),也是最重要的,在歷年來的中考題中占有較大比例。同時,二次函數(shù)和以前學(xué)過的一元二次方程、一元二次不等式有著密切的聯(lián)系。進(jìn)一步學(xué)習(xí)二次函數(shù)將為它們的解法提供新的方法和途徑,并使學(xué)生更為深刻的理解數(shù)形結(jié)合的重要思想。而本節(jié)課的二次函數(shù)的概念是學(xué)習(xí)二次函數(shù)的基礎(chǔ),是為后來學(xué)習(xí)二次函數(shù)的圖象做鋪墊。所以這節(jié)課在整個教材中具有承上啟下的重要作用。

  2、教學(xué)目標(biāo)和要求:

  (1)知識與技能:使學(xué)生理解二次函數(shù)的概念,掌握根據(jù)實際問題列出二次函數(shù)關(guān)系式的方法,并了解如何根據(jù)實際問題確定自變量的取值范圍。

  (2)過程與方法:復(fù)習(xí)舊知,通過實際問題的引入,經(jīng)歷二次函數(shù)概念的探索過程,提高學(xué)生解決問題的能力.

  (3)情感、態(tài)度與價值觀:通過觀察、操作、交流歸納等數(shù)學(xué)活動加深對二次函數(shù)概念的理解,發(fā)展學(xué)生的數(shù)學(xué)思維,增強(qiáng)學(xué)好數(shù)學(xué)的愿望與信心.

  3、教學(xué)重點(diǎn):對二次函數(shù)概念的'理解。

  4、教學(xué)難點(diǎn):由實際問題確定函數(shù)解析式和確定自變量的取值范圍。

  三、教法學(xué)法設(shè)計:

  1、從創(chuàng)設(shè)情境入手,通過知識再現(xiàn),孕伏教學(xué)過程

  2、從學(xué)生活動出發(fā),通過以舊引新,順勢教學(xué)過程

  3、利用探索、研究手段,通過思維深入,領(lǐng)悟教學(xué)過程

  四、教學(xué)過程:

  (一)復(fù)習(xí)提問

  1.什么叫函數(shù)?我們之前學(xué)過了那些函數(shù)?

  (一次函數(shù),正比例函數(shù),反比例函數(shù))

  2.它們的形式是怎樣的?

  (y=kx+b,ky=kx ,ky= , k0)

  3.一次函數(shù)(y=kx+b)的自變量是什么?函數(shù)是什么?常量是什么?為什么要有k0的條件? k值對函數(shù)性質(zhì)有什么影響?

  【設(shè)計意圖】復(fù)習(xí)這些問題是為了幫助學(xué)生弄清自變量、函數(shù)、常量等概念,加深對函數(shù)定義的理解.強(qiáng)調(diào)k0的條件,以備與二次函數(shù)中的a進(jìn)行比較.

  (二)引入新課

  函數(shù)是研究兩個變量在某變化過程中的相互關(guān)系,我們已學(xué)過正比例函數(shù),反比例函數(shù)和一次函數(shù)?聪旅嫒齻例子中兩個變量之間存在怎樣的關(guān)系。(電腦演示)

  例1、(1)圓的半徑是r(cm)時,面積s (cm2)與半徑之間的關(guān)系是什么?

  解:s=0)

  例2、用周長為20m的籬笆圍成矩形場地,場地面積y(m2)與矩形一邊長x(m)之間的關(guān)系是什么?

  解: y=x(20/2-x)=x(10-x)=-x2+10x (0

  例3、設(shè)人民幣一年定期儲蓄的年利率是x,一年到期后,銀行將本金和利息自動按一年定期儲蓄轉(zhuǎn)存。如果存款額是100元,那么請問兩年后的本息和y(元)與x之間的關(guān)系是什么(不考慮利息稅)?

  解: y=100(1+x)2

  =100(x2+2x+1)

  = 100x2+200x+100(0

  教師提問:以上三個例子所列出的函數(shù)與一次函數(shù)有何相同點(diǎn)與不同點(diǎn)?

  【設(shè)計意圖】通過具體事例,讓學(xué)生列出關(guān)系式,啟發(fā)學(xué)生觀察,思考,歸納出二次函數(shù)與一次函數(shù)的聯(lián)系: (1)函數(shù)解析式均為整式(這表明這種函數(shù)與一次函數(shù)有共同的特征)。(2)自變量的最高次數(shù)是2(這與一次函數(shù)不同)。

  (三)講解新課

  以上函數(shù)不同于我們所學(xué)過的一次函數(shù),正比例函數(shù),反比例函數(shù),我們就把這種函數(shù)稱為二次函數(shù)。

  二次函數(shù)的定義:形如y=ax2+bx+c (a0,a, b, c為常數(shù)) 的函數(shù)叫做二次函數(shù)。

  鞏固對二次函數(shù)概念的理解:

  1、強(qiáng)調(diào)形如,即由形來定義函數(shù)名稱。二次函數(shù)即y 是關(guān)于x的二次多項式(關(guān)于的x代數(shù)式一定要是整式)。

  2、在 y=ax2+bx+c 中自變量是x ,它的取值范圍是一切實數(shù)。但在實際問題中,自變量的取值范圍是使實際問題有意義的值。(如例1中要求r0)

  3、為什么二次函數(shù)定義中要求a?

  (若a=0,ax2+bx+c就不是關(guān)于x的二次多項式了)

  4、在例3中,二次函數(shù)y=100x2+200x+100中, a=100, b=200, c=100.

  5、b和c是否可以為零?

  由例1可知,b和c均可為零.

  若b=0,則y=ax2+c;

  若c=0,則y=ax2+bx;

  若b=c=0,則y=ax2.

  注明:以上三種形式都是二次函數(shù)的特殊形式,而y=ax2+bx+c是二次函數(shù)的一般形式.

  【設(shè)計意圖】這里強(qiáng)調(diào)對二次函數(shù)概念的理解,有助于學(xué)生更好地理解,掌握其特征,為接下來的判斷二次函數(shù)做好鋪墊。

  判斷:下列函數(shù)中哪些是二次函數(shù)?哪些不是二次函數(shù)?若是二次函數(shù),指出a、b、c.

  (1)y=3(x-1)2+1 (2)

  (3)s=3-2t2 (4)y=(x+3)2- x2

  (5) s=10r2 (6) y=22+2x

  (8)y=x4+2x2+1(可指出y是關(guān)于x2的二次函數(shù))

  【設(shè)計意圖】理論學(xué)習(xí)完二次函數(shù)的概念后,讓學(xué)生在實踐中感悟什么樣的函數(shù)是二次函數(shù),將理論知識應(yīng)用到實踐操作中。

  (四)鞏固練習(xí)

  1.已知一個直角三角形的兩條直角邊長的和是10cm。

  (1)當(dāng)它的一條直角邊的長為4.5cm時,求這個直角三角形的面積;

  (2)設(shè)這個直角三角形的面積為Scm2,其中一條直角邊為xcm,求S關(guān)

  于x的函數(shù)關(guān)系式。

  【設(shè)計意圖】此題由具體數(shù)據(jù)逐步過渡到用字母表示關(guān)系式,讓學(xué)生經(jīng)歷由具體到抽象的過程,從而降低學(xué)生學(xué)習(xí)的難度。

  2.已知正方體的棱長為xcm,它的表面積為Scm2,體積為Vcm3。

  (1)分別寫出S與x,V與x之間的函數(shù)關(guān)系式子;

  (2)這兩個函數(shù)中,那個是x的二次函數(shù)?

  【設(shè)計意圖】簡單的實際問題,學(xué)生會很容易列出函數(shù)關(guān)系式,也很容易分辨出哪個是二次函數(shù)。通過簡單題目的練習(xí),讓學(xué)生體驗到成功的歡愉,激發(fā)他們學(xué)習(xí)數(shù)學(xué)的興趣,建立學(xué)好數(shù)學(xué)的信心。

  3.設(shè)圓柱的高為h(cm)是常量,底面半徑為rcm,底面周長為Ccm,圓柱的體積為Vcm3

  (1)分別寫出C關(guān)于r;V關(guān)于r的函數(shù)關(guān)系式;

  (2)兩個函數(shù)中,都是二次函數(shù)嗎?

  【設(shè)計意圖】此題要求學(xué)生熟記圓柱體積和底面周長公式,在這兒相當(dāng)于做了一次復(fù)習(xí),并與今天所學(xué)知識聯(lián)系起來。

  4. 籬笆墻長30m,靠墻圍成一個矩形花壇,寫出花壇面積y(m2)與長x之間的函數(shù)關(guān)系式,并指出自變量的取值范圍.

  【設(shè)計意圖】此題較前面幾題稍微復(fù)雜些,旨在讓學(xué)生能夠開動腦筋,積極思考,讓學(xué)生能夠跳一跳,夠得到。

  (五)拓展延伸

  1. 已知二次函數(shù)y=ax2+bx+c,當(dāng) x=0時,y=0;x=1時,y=2;x= -1時,y=1.求a、b、c,并寫出函數(shù)解析式.

  【設(shè)計意圖】在此稍微滲透簡單的用待定系數(shù)法求二次函數(shù)解析式的問題,為下節(jié)課的教學(xué)做個鋪墊。

  2.確定下列函數(shù)中k的值

  (1)如果函數(shù)y= xk^2-3k+2 +kx+1是二次函數(shù),則k的值一定是______

  (2)如果函數(shù)y=(k-3)xk^2-3k+2+kx+1是二次函數(shù),則k的值一定是______

  【設(shè)計意圖】此題著重復(fù)習(xí)二次函數(shù)的特征:自變量的最高次數(shù)為2次,且二次項系數(shù)不為0.

  (六) 小結(jié)思考:

  本節(jié)課你有哪些收獲?還有什么不清楚的地方?

  【設(shè)計意圖】讓學(xué)生來談本節(jié)課的收獲,培養(yǎng)學(xué)生自我檢查、自我小結(jié)的良好習(xí)慣,將知識進(jìn)行整理并系統(tǒng)化。而且由此可了解到學(xué)生還有哪些不清楚的地方,以便在今后的教學(xué)中補(bǔ)充。

  (七) 作業(yè)布置:

  必做題:

  1. 正方形的邊長為4,如果邊長增加x,則面積增加y,求y關(guān)于x 的函數(shù)關(guān)系式。這個函數(shù)是二次函數(shù)嗎?

  2. 在長20cm,寬15cm的矩形木板的四角上各鋸掉一個邊長為xcm的正方形,寫出余下木板的面積y(cm2)與正方形邊長x(cm)之間的函數(shù)關(guān)系,并注明自變量的取值范圍。

  選做題:

  1.已知函數(shù) 是二次函數(shù),求m的值。

  2.試在平面直角坐標(biāo)系畫出二次函數(shù)y=x2和y=-x2圖象

  【設(shè)計意圖】作業(yè)中分為必做題與選做題,實施分層教學(xué),體現(xiàn)新課標(biāo)人人學(xué)有價值的數(shù)學(xué),不同的人得到不同的發(fā)展。另外補(bǔ)充第4題,旨在激發(fā)學(xué)生繼續(xù)學(xué)習(xí)二次函數(shù)圖象的興趣。

  五、教學(xué)設(shè)計思考

  以實現(xiàn)教學(xué)目標(biāo)為前提

  以現(xiàn)代教育理論為依據(jù)

  以現(xiàn)代信息技術(shù)為手段

  貫穿一個原則以學(xué)生為主體的原則

  突出一個特色充分鼓勵表揚(yáng)的特色

  滲透一個意識應(yīng)用數(shù)學(xué)的意識

二次函數(shù)說課稿4

  [本課知識要點(diǎn)]

  會畫出這類函數(shù)的圖象,通過比較,了解這類函數(shù)的性質(zhì)。

  [MM及創(chuàng)新思維]

  同學(xué)們還記得一次函數(shù)與的圖象的關(guān)系嗎?

  你能由此推測二次函數(shù)與的圖象之間的關(guān)系嗎?

  那么與的圖象之間又有何關(guān)系?

  [實踐與探索]

  例1.在同一直角坐標(biāo)系中,畫出函數(shù)與的圖象。

  解列表

  x…-x-x-xxxxx…

  …xxxxxxxx…

  …xxxxxxxxx…

  描點(diǎn)、連線,畫出這兩個函數(shù)的圖象,如圖26.2.3所示。

  回顧與反思當(dāng)自變量x取同一數(shù)值時,這兩個函數(shù)的函數(shù)值之間有什么關(guān)系?反映在圖象上,相應(yīng)的兩個點(diǎn)之間的位置又有什么關(guān)系?

  探索觀察這兩個函數(shù),它們的開口方向、對稱軸和頂點(diǎn)坐標(biāo)有那些是相同的?又有哪些不同?你能由此說出函數(shù)與的圖象之間的關(guān)系嗎?

  例2.在同一直角坐標(biāo)系中,畫出函數(shù)與的圖象,并說明,通過怎樣的平移,可以由拋物線得到拋物線。

  解列表

  x…-x-x-xxxxxx…

  x-x-xxxx-x-x…

  …-xx-x-x-x-x-x-xx…

  描點(diǎn)、連線,畫出這兩個函數(shù)的圖象,如圖26.2.4所示。

  可以看出,拋物線是由拋物線向下平移兩個單位得到的.。

  回顧與反思拋物線和拋物線分別是由拋物線向上、向下平移一個單位得到的。

  探索如果要得到拋物線,應(yīng)將拋物線作怎樣的平移?

  例3.一條拋物線的開口方向、對稱軸與相同,頂點(diǎn)縱坐標(biāo)是-2,且拋物線經(jīng)過點(diǎn)(1,1),求這條拋物線的函數(shù)關(guān)系式。

  解由題意可得,所求函數(shù)開口向上,對稱軸是y軸,頂點(diǎn)坐標(biāo)為(0,-2)。

  因此所求函數(shù)關(guān)系式可看作,又拋物線經(jīng)過點(diǎn)(1,1)。

  所以故所求函數(shù)關(guān)系式為xxx。

  回顧與反思(a、k是常數(shù),a≠0)的圖象的開口方向、對稱軸、頂點(diǎn)坐標(biāo)歸納如下:

  開口方向?qū)ΨQ軸頂點(diǎn)坐標(biāo)

  [當(dāng)堂課內(nèi)練習(xí)]

  1.在同一直角坐標(biāo)系中,畫出下列二次函數(shù)的圖象:觀察三條拋物線的相互關(guān)系,并分別指出它們的開口方向及對稱軸、頂點(diǎn)的位置.你能說出拋物線的開口方向及對稱軸、頂點(diǎn)的位置嗎?

  2.拋物線的開口,對稱軸是,頂點(diǎn)坐標(biāo)是,它可以看作是由拋物線向平移個單位得到的xxxx。

  3.函數(shù),當(dāng)x時,函數(shù)值y隨x的增大而減。(dāng)x時,函數(shù)取得最值,最值y=x。

  [本課課外作業(yè)]

  A組

  1.已知函數(shù)

 。1)分別畫出它們的圖象;

 。2)說出各個圖象的開口方向、對稱軸、頂點(diǎn)坐標(biāo);

 。3)試說出函數(shù)的圖象的開口方向、對稱軸、頂點(diǎn)坐標(biāo)。

  2.不畫圖象,說出函數(shù)的開口方向、對稱軸和頂點(diǎn)坐標(biāo),并說明它是由函數(shù)通過怎樣的平移得到的。

  3.若二次函數(shù)的圖象經(jīng)過點(diǎn)(-2,10),求a的值.這個函數(shù)有最大還是最小值?是多少?

  B組

  4.在同一直角坐標(biāo)系中與的圖象的大致位置是()

  5.已知二次函數(shù),當(dāng)k為何值時,此二次函數(shù)以y軸為對稱軸?寫出其函數(shù)關(guān)系式.

二次函數(shù)說課稿5

  老師們,今天我說課的內(nèi)容是人教版九年級《數(shù)學(xué)》下冊第22章第1節(jié)第7課時的內(nèi)容,本節(jié)課的教學(xué)內(nèi)容為待定系數(shù)法求二次函數(shù)解析式,下面我從教材分析、教學(xué)目標(biāo)、教學(xué)重難點(diǎn)、教法學(xué)法、教學(xué)過程五個方面,談?wù)勎覍@一節(jié)課教學(xué)的處理情況。

  一、教材分析

  用待定系數(shù)法求函數(shù)解析式在前面的一次函數(shù)、二次函數(shù)中已經(jīng)多次得以運(yùn)用,這些知

  識方法同學(xué)們已熟悉,本節(jié)課是對求函數(shù)解析式的一個總結(jié)。

  學(xué)情分析

  學(xué)生在初中已經(jīng)學(xué)習(xí)了一次函數(shù)、二次函數(shù)的圖像與性質(zhì),能利用函數(shù)知識去解決實際問題,求函數(shù)解析式是初中數(shù)學(xué)主要內(nèi)容之一,在求函數(shù)的解析式時,要正確的理解函數(shù)的本質(zhì),才能恰當(dāng)?shù)剡x用函數(shù)解析式的形式,從而解決問題,這正是同學(xué)們的一大難點(diǎn),沒有進(jìn)行獨(dú)立的復(fù)習(xí)總結(jié),造成了不能解決函數(shù)問題,這正是現(xiàn)在中考改革的一個方向,考查函數(shù)的本質(zhì)。

  二、學(xué)習(xí)目標(biāo):

  1.學(xué)會用待定系數(shù)法求二次函數(shù)解析式;

  2.體會一次函數(shù)的應(yīng)用價值.體驗并初步形成“數(shù)形結(jié)合”的思想方法。

  三、學(xué)習(xí)重、難點(diǎn)

  重點(diǎn):用待定系數(shù)法求二次函數(shù)解析式。

  難 點(diǎn):選設(shè)適當(dāng)形式的函數(shù)解析式并用待定系數(shù)法求出解析式

  四、教法與學(xué)法分析:

  本班學(xué)生基礎(chǔ)比較差,對函數(shù)理解起來比較困難,總感覺函數(shù)很抽象,學(xué)的也比較淺薄,所以,根據(jù)學(xué)生的認(rèn)知水平,本節(jié)課我將采用啟發(fā)式、討論式結(jié)合的教學(xué)方法,以問題的提出、問題的解決為主線,始終在學(xué)生知識的范圍內(nèi)設(shè)置問題,并且給學(xué)生流出足夠的思考時間和空間,讓學(xué)生去自主探索,此外,在教學(xué)過程降低一定的難度,對于例題的選取由淺入深,并且注重與實際問題聯(lián)系,這樣學(xué)生更容易接受,也能提高他們的學(xué)習(xí)興趣。

  從學(xué)生的認(rèn)知狀況來看,通過學(xué)生觀察,動手,動腦,自主探究,合作交流的學(xué)習(xí)方法,提高學(xué)生解決問題的能力。

  通過多媒體課件等手段讓學(xué)生去看圖解答問題,進(jìn)一步理解“從數(shù)到形”的形成過程.指導(dǎo)學(xué)生歸納總結(jié)出求一次函數(shù)解析式的四個基本步驟:“設(shè)、列、解、寫”,即“設(shè)出一般式,由題設(shè)中給定條件寫出關(guān)于a、b、c的方程(組),由方程(組)解出a、b、c,寫出二次函數(shù)式。

  五、教學(xué)過程

  (一)、創(chuàng)設(shè)情境導(dǎo)入激趣

  正比例函數(shù)的解析式為y=kx(k≠0),已知一個點(diǎn)的坐標(biāo),就可求出其解析式;一次函數(shù)的解析式為y=kx+b(k≠0),已知兩個點(diǎn)的坐標(biāo),也可求出其解析式,那么二次函數(shù)的解析式是什么,又需知幾個點(diǎn)的坐標(biāo),才可求出其解析式?

 。ǘ⒄n前自主探究

  求二次函數(shù)y=ax2+bx+c 的解析式

  關(guān)鍵是求出待定系數(shù)____________的值.

  (2)設(shè)解析式的三種形式:

 、僖话闶剑篲_______________________________,當(dāng)已知

  拋物線上三個點(diǎn)時,用一般式比較簡便;

  ②頂點(diǎn)式:________________________________,當(dāng)已知

  拋物線的頂點(diǎn)時,用頂點(diǎn)式較方便;

 、劢稽c(diǎn)式(兩根式):________________________,當(dāng)已知

  拋物線與x 軸的交點(diǎn)坐標(biāo)(x1,0),(x2,0)時,用交點(diǎn)式較方便.

  (三)、課堂互動

  例1:已知二次函數(shù)y=ax2+bx+c 中的x,y 滿足下表:

  x

  …

  -2

  -1

  0

  1

  2

  …

  y

  …

  4

  0

  -2

  -2

  0

  …

  求這個二次函數(shù)關(guān)系式。

  例2:已知拋物線的頂點(diǎn)為(-1,-4),與Y軸交點(diǎn)為(0,-5),求該拋物線的解析式.

  點(diǎn)撥:用二次函數(shù)的頂點(diǎn)式求。

  思考:1.用一般式怎么解?

  2.用頂點(diǎn)式怎么求解?

  讓學(xué)生分組練習(xí),再交流自己的解題體會,從而熟練地掌握用二種表達(dá)式求二次函數(shù)的解析式。

 。ㄋ模、總結(jié)反思,突破重點(diǎn)

  1、二次函數(shù)解析式常用的有三種形式:

 。1)一般式:_______________(a≠0)

 。2)頂點(diǎn)式:_______________(a≠0)

  2、本節(jié)課是用待定系數(shù)法求函數(shù)解析式,應(yīng)注意根據(jù)不同的條件選擇合適的解析式形式,要讓學(xué)生熟練掌握配方法,并由此確定二次函數(shù)的.頂點(diǎn)、對稱軸,并能結(jié)合圖象分析二次函數(shù)的有關(guān)性質(zhì)。(1)當(dāng)已知拋物線上任意三點(diǎn)時,通常設(shè)為一般式y(tǒng)=ax2+bx+c形式。(2)當(dāng)已知拋物線的頂點(diǎn)與拋物線上另一點(diǎn)時,通常設(shè)為頂點(diǎn)式y(tǒng)=a(x-h(huán))2+k形式。

  學(xué)生充分討論、交流后,再全班交流、歸納、總結(jié)。

 。ㄎ澹(yīng)用遷移,鞏固提高

  1.已知二次函數(shù)y=ax2+bx+c的最大值是3,圖 象頂點(diǎn)在直線y=x+1上,并且圖象經(jīng)過點(diǎn)(3,-6),求此二次函數(shù)的解析式。

  已知拋物線過兩點(diǎn)A(1,0),B(0,-3)且對稱軸是直線x=2,求這個拋物線的解析式。

  讓學(xué)生通過練習(xí),熟練地,靈活地選用2種表達(dá)式求二次函數(shù)的解析式。

  (六)、課堂總結(jié),反思提高

  求二次函數(shù)解析式的一般方法:

  已知圖象上三點(diǎn)或三對的對應(yīng)值,通常選擇一般式。

  已知圖象的頂點(diǎn)坐標(biāo)、對稱軸和最值,通常選擇頂點(diǎn)式。

  確定二次函數(shù)的解析式時,應(yīng)該根據(jù)條件的特點(diǎn),恰當(dāng)?shù)剡x用一種函數(shù)表達(dá)式。

  談?wù)劚竟?jié)課學(xué)習(xí)收獲與體會

  (七)、當(dāng)堂測評,反饋提升

  1.根據(jù)下列條件,求二次函數(shù)的解析式。

  (1)、圖象經(jīng)過(0,0), (1,-2) , (2,3) 三點(diǎn);

  (2)、圖象的頂點(diǎn)(2,3),且經(jīng)過點(diǎn)(3,2) ;

  (3)、圖象經(jīng)過(0,0), (8,0) ,且最高點(diǎn)的縱坐標(biāo)是3 。

  2.一個二次函數(shù),當(dāng)自變量x= -3時,函數(shù)值y=2當(dāng)自變量x= -1時,函數(shù)值y= -1,當(dāng)自變量x=1時,函數(shù)值y= 3,求這個二次函數(shù)的解析式?

二次函數(shù)說課稿6

  一、說課內(nèi)容:

  蘇教版九年級數(shù)學(xué)下冊第六章第一節(jié)的二次函數(shù)的概念及相關(guān)習(xí)題二、教材分析:

  1、教材的地位和作用這節(jié)課是在學(xué)生已經(jīng)學(xué)習(xí)了一次函數(shù)、正比例函數(shù)、反比例函數(shù)的基礎(chǔ)上,來學(xué)習(xí)二次函數(shù)的概念。二次函數(shù)是初中階段研究的最后一個具體的函數(shù),也是最重要的,在歷年來的中考題中占有較大比例。同時,二次函數(shù)和以前學(xué)過的一元二次方程、一元二次不等式有著密切的聯(lián)系。進(jìn)一步學(xué)習(xí)二次函數(shù)將為它們的解法提供新的方法和途徑,并使學(xué)生更為深刻的理解“數(shù)形結(jié)合”的重要思想。而本節(jié)課的二次函數(shù)的概念是學(xué)習(xí)二次函數(shù)的基礎(chǔ),是為后來學(xué)習(xí)二次函數(shù)的圖象做鋪墊。所以這節(jié)課在整個教材中具有承上啟下的重要作用。

  2、教學(xué)目標(biāo)和要求:

 。1)知識與技能:使學(xué)生理解二次函數(shù)的概念,掌握根據(jù)實際問題列出二次函數(shù)關(guān)系式的方法,并了解如何根據(jù)實際問題確定自變量的取值范圍。

  (2)過程與方法:復(fù)習(xí)舊知,通過實際問題的引入,經(jīng)歷二次函數(shù)概念的探索過程,提高學(xué)生解決問題的能力。

 。3)情感、態(tài)度與價值觀:通過觀察、操作、交流歸納等數(shù)學(xué)活動加深對二次函數(shù)概念的理解,發(fā)展學(xué)生的數(shù)學(xué)思維,增強(qiáng)學(xué)好數(shù)學(xué)的愿望與信心。

  3、教學(xué)重點(diǎn):對二次函數(shù)概念的理解。

  4、教學(xué)難點(diǎn):由實際問題確定函數(shù)解析式和確定自變量的取值范圍。

  二、教法學(xué)法設(shè)計:

  1、從創(chuàng)設(shè)情境入手,通過知識再現(xiàn),孕伏教學(xué)過程。

  2、從學(xué)生活動出發(fā),通過以舊引新,順勢教學(xué)過程。

  3、利用探索、研究手段,通過思維深入,領(lǐng)悟教學(xué)過程四。

  三、教學(xué)過程:

 。ㄒ唬⿵(fù)習(xí)提問

  1.什么叫函數(shù)?我們之前學(xué)過了那些函數(shù)?(一次函數(shù),正比例函數(shù),反比例函數(shù))

  2.它們的形式是怎樣的?(y=kx+b,k≠0;y=kx,k≠0;y=,k≠0)3.一次函數(shù)(y=kx+b)的自變量是什么?函數(shù)是什么?常量是什么?為什么要有k≠0的條件?k值對函數(shù)性質(zhì)有什么影響?

  (二)設(shè)計意圖

  復(fù)習(xí)這些問題是為了幫助學(xué)生弄清自變量、函數(shù)、常量等概念,加深對函數(shù)定義的理解.強(qiáng)調(diào)k≠0的條件,以備與二次函數(shù)中的'a進(jìn)行比較。

  引入新課函數(shù)是研究兩個變量在某變化過程中的相互關(guān)系,我們已學(xué)過正比例函數(shù),反比例函數(shù)和一次函數(shù)。

  看下面三個例子中兩個變量之間存在怎樣的關(guān)系:

  例1、(1)圓的半徑是r(cm)時,面積s(cm)與半徑之間的關(guān)系是什么?解:s=πr(r>0)。

  例2、用周長為20m的籬笆圍成矩形場地,場地面積y(m)與矩形一邊長x(m)之間的關(guān)系是什么?解:y=x(20/2-x)=x(10-x)=-x+10x(0

  例3、設(shè)人民幣一年定期儲蓄的年利率是x,一年到期后,銀行將本金和利息自動按一年定期儲蓄轉(zhuǎn)存。如果存款額是100元,那么請問兩年后的本息和y(元)與x之間的關(guān)系是什么(不考慮利息稅)?解:y=100(1+x)=100(x+2x+1)=100x+200x+100(0

  教師提問:以上三個例子所列出的函數(shù)與一次函數(shù)有何相同點(diǎn)與不同點(diǎn)?

  (三)講解新課以上函數(shù)不同于我們所學(xué)過的一次函數(shù),正比例函數(shù),反比例函數(shù),我們就把這種函數(shù)稱為二次函數(shù)。

  二次函數(shù)的定義:形如y=ax2+bx+c(a≠0,a,b,c為常數(shù))的函數(shù)叫做二次函數(shù)。

  鞏固對二次函數(shù)概念的理解:

  1、強(qiáng)調(diào)“形如”,即由形來定義函數(shù)名稱。二次函數(shù)即y是關(guān)于x的二次多項式(關(guān)于的x代數(shù)式一定要是整式)。

  2、在y=ax2+bx+c中自變量是x,它的取值范圍是一切實數(shù)。但在實際問題中,自變量的取值范圍是使實際問題有意義的值。(如例1中要求r>0)

  3、為什么二次函數(shù)定義中要求a≠0?(若a=0,ax2+bx+c就不是關(guān)于x的二次多項式了)

  4、在例3中,二次函數(shù)y=100x2+200x+100中,a=100,b=200,c=100.5、b和c是否可以為零?

  (四)鞏固練習(xí)

  已知一個直角三角形的兩條直角邊長的和是10cm。

 。1)當(dāng)它的一條直角邊的長為4.5cm時,求這個直角三角形的面積;

  (2)設(shè)這個直角三角形的面積為Scm2,其中一條直角邊為xcm,求S關(guān)于x的函數(shù)關(guān)系式。

  此題由具體數(shù)據(jù)逐步過渡到用字母表示關(guān)系式,讓學(xué)生經(jīng)歷由具體到抽象的過程,從而降低學(xué)生學(xué)習(xí)的難度。

 。ㄎ澹┬〗Y(jié)思考:本節(jié)課你有哪些收獲?還有什么不清楚的地方?

  讓學(xué)生來談本節(jié)課的收獲,培養(yǎng)學(xué)生自我檢查、自我小結(jié)的良好習(xí)慣,將知識進(jìn)行整理并系統(tǒng)化。而且由此可了解到學(xué)生還有哪些不清楚的地方,以便在今后的教學(xué)中補(bǔ)充。

 。┳鳂I(yè)布置

  必做題:

  正方形的邊長為4,如果邊長增加x,則面積增加y,求y關(guān)于x的函數(shù)關(guān)系式。這個函數(shù)是二次函數(shù)嗎?

  在長20cm,寬15cm的矩形木板的四角上各鋸掉一個邊長為xcm的正方形,寫出余下木板的面積y(cm2)與正方形邊長x(cm)之間的函數(shù)關(guān)系,并注明自變量的取值范圍?

  選做題:

  1.已知函數(shù)是二次函數(shù),求m的值?

  2.試在平面直角坐標(biāo)系畫出二次函數(shù)y=x2和y=-x2圖象?

  作業(yè)中分為必做題與選做題,實施分層教學(xué),體現(xiàn)新課標(biāo)人人學(xué)有價值的數(shù)學(xué),不同的人得到不同的發(fā)展。另外補(bǔ)充第4題,旨在激發(fā)學(xué)生繼續(xù)學(xué)習(xí)二次函數(shù)圖象的興趣。

二次函數(shù)說課稿7

  一、教學(xué)內(nèi)容的分析

  (一)地位與作用:

  二次函數(shù)的應(yīng)用本身是學(xué)習(xí)二次函數(shù)的圖象與性質(zhì)后,檢驗學(xué)生應(yīng)用所學(xué)知識解決實際問題能力的一個綜合考查。新課標(biāo)中要求學(xué)生能通過對實際問題的情境的分析確定二次函數(shù)的表達(dá)式,體會其意義,能根據(jù)圖象的性質(zhì)解決簡單的實際問題。而最值問題又是生活中利用二次函數(shù)知識解決最常見、最有實際應(yīng)用價值的問題之一,它生活背景豐富,學(xué)生比較感興趣,面積問題與最大利潤學(xué)生易于理解和接受,故而在這兒作專題講座。目的在于讓學(xué)生通過掌握求面積、利潤最大這一類題,學(xué)會用建模的思想去解決其它和函數(shù)有關(guān)應(yīng)用問題,此部分內(nèi)容既是學(xué)習(xí)一次函數(shù)及其應(yīng)用后的鞏固與延伸,又為高中乃至以后學(xué)習(xí)更多函數(shù)打下堅實的理論和思想方法基礎(chǔ)。例題和一部分習(xí)題,無論是例題還是習(xí)題都沒有歸類,不利于學(xué)生系統(tǒng)地掌握解決問題的方法,我設(shè)計時把它分為面積、利潤最大、運(yùn)動中的二次函數(shù)、綜合應(yīng)用三課時,本節(jié)是第一課時。

  (二)學(xué)情及學(xué)法分析

  對九年級學(xué)生來說,在學(xué)習(xí)了一次函數(shù)和二次函數(shù)圖象與性質(zhì)以后,對函數(shù)的思想已有初步認(rèn)識,對分析問題的方法已會初步模仿,能識別圖象的增減性和最值,但在變量超過兩個的實際問題中,還不能熟練地應(yīng)用知識解決問題,本節(jié)課正是為了彌補(bǔ)這一不足而設(shè)計的,目的是進(jìn)一步培養(yǎng)學(xué)生利用所學(xué)知識構(gòu)建數(shù)學(xué)模型,解決實際問題的能力,這也符合新課標(biāo)中知識與技能呈螺旋式上升的規(guī)律。

  二、教學(xué)目標(biāo)、重點(diǎn)、難點(diǎn)的確定

  對于函數(shù)知識來說它是從生活中廣泛的實際問題中抽象出來的數(shù)學(xué)知識,所以它是解決實際問題中被廣泛應(yīng)用的工具。這部分知識的學(xué)習(xí)無論對提高學(xué)生在生活中應(yīng)用函數(shù)知識的意識,還是對掌握運(yùn)用函數(shù)知識的方法,都具有重要意義。

  而二次函數(shù)的知識是九年級數(shù)學(xué)學(xué)習(xí)的重要內(nèi)容之一。同樣它也是從生活實際問題中抽象出的知識,又是在解決實際問題時廣泛應(yīng)用的數(shù)學(xué)工具。課程標(biāo)準(zhǔn)強(qiáng)調(diào)學(xué)生的應(yīng)用意識的培養(yǎng),讓學(xué)生面對實際問題時,能嘗試著從數(shù)學(xué)的角度運(yùn)用所學(xué)知識和方法尋求解決問題的策略。

  本節(jié)課是學(xué)生在學(xué)習(xí)了二次函數(shù)的概念、圖像和性質(zhì)后進(jìn)一步學(xué)習(xí)二次函數(shù)的應(yīng)用。學(xué)生有了一定的二次函數(shù)的知識,并且在前兩節(jié)課已經(jīng)接觸到運(yùn)用二次函數(shù)的知識解決函數(shù)的最值問題,而本節(jié)課需要利用建模的思想,將實際問題轉(zhuǎn)化為二次函數(shù)的問題,從而使問題得到解決。建立二次函數(shù)關(guān)系對學(xué)生而言比較困難,尤其是關(guān)注實際問題中自變量的取值范圍,需要學(xué)生經(jīng)歷分析、討論、對比等過程,進(jìn)而得出結(jié)論。本節(jié)課的問題均來自學(xué)生的日常生活,學(xué)生會感到很有興趣,愿意去探究。但學(xué)生基礎(chǔ)比較薄弱,對學(xué)習(xí)數(shù)學(xué)還是有一些畏難的情緒,因此需要教師進(jìn)行適當(dāng)引導(dǎo)、分散難點(diǎn)。

  根據(jù)上述教學(xué)背景分析,特制訂如下教學(xué)目標(biāo):

  1.知識與技能:學(xué)會將實際問轉(zhuǎn)化為數(shù)學(xué)問題;學(xué)會用二次函數(shù)的知識解決有關(guān)的實際問題.

  2.過程與方法:經(jīng)歷實際問題轉(zhuǎn)化成數(shù)學(xué)問題利用二次函數(shù)知識解決問題利用求解的結(jié)果解釋問題的過程體會數(shù)學(xué)建模的思想,體會到數(shù)學(xué)來源于生活,又服務(wù)于生活。

  3.情感態(tài)度、價值觀:培養(yǎng)學(xué)生的獨(dú)立思考的能力和合作學(xué)習(xí)的精神,在動手、交流過程中培養(yǎng)學(xué)生的交際能力和語言表達(dá)能力,促進(jìn)學(xué)生綜合素質(zhì)的養(yǎng)成。

  利用二次函數(shù)的知識對現(xiàn)實問題進(jìn)行數(shù)學(xué)地分析,即用數(shù)學(xué)的方式表示問題以及用數(shù)學(xué)的方法解決問題,就是本節(jié)課的教學(xué)重點(diǎn);由于學(xué)生理解問題的能力和知識儲備情況的不同,那么從現(xiàn)實問題中建立二次函數(shù)模型。就是本節(jié)課的一個難點(diǎn)。

  新課程標(biāo)準(zhǔn)強(qiáng)調(diào)動手實踐、自主探索與合作交流應(yīng)該是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式。教師應(yīng)該是學(xué)生數(shù)學(xué)學(xué)習(xí)的組織者、引導(dǎo)者、合作者。同時,我認(rèn)為教學(xué)方法與學(xué)習(xí)方法應(yīng)該是相輔相成的不應(yīng)該是割裂開來的,而且在一節(jié)課中教學(xué)方法和學(xué)習(xí)方法不可能是單一的而是多種方式方法并存的,因此根據(jù)本節(jié)課的'內(nèi)容和學(xué)生的實際情況,同時也為了突出本節(jié)課的重點(diǎn)并突破學(xué)習(xí)難點(diǎn)我確定本節(jié)課的教法與學(xué)法有啟發(fā)法、探究法、試驗法、課堂討論法、練習(xí)法等。

  三、教學(xué)方法與手段的選擇

  本節(jié)課我采用的是導(dǎo)學(xué)案的教法,

  創(chuàng)設(shè)情境、引入問題------二人小組、復(fù)習(xí)回顧------自主探究、小組合作-------板演展示、別組糾錯---------教師點(diǎn)評、總結(jié)歸納--------課堂測評

  四、教學(xué)設(shè)計分析

  首先創(chuàng)設(shè)問題情境,激發(fā)學(xué)生的學(xué)習(xí)興趣。數(shù)學(xué)課程的內(nèi)容應(yīng)當(dāng)是現(xiàn)實的、有意義的、富有挑戰(zhàn)性的,這些內(nèi)容要有利于學(xué)生主動地進(jìn)行觀察、實驗、猜想、驗證、推理與交流。而20世紀(jì)下半葉數(shù)學(xué)的一個最大進(jìn)展是它的廣泛應(yīng)用,數(shù)學(xué)的價值觀因此發(fā)生了深刻的變化。最直接的一個結(jié)論就是數(shù)學(xué)教育要重視應(yīng)用意識和應(yīng)用能力的培養(yǎng)。數(shù)學(xué)應(yīng)用意識的孕育數(shù)學(xué)建模能力的培養(yǎng)聯(lián)系學(xué)生的日常生活并解決相關(guān)的問題等方面的要求越來越處于突出的地位。所以我以養(yǎng)雞場問題、商品銷售利潤問題為例,提出問題,引起學(xué)生的興趣,同時也讓學(xué)生切實體會到數(shù)學(xué)來源于生活。針對學(xué)生基礎(chǔ)比較薄弱,解題能力較差的現(xiàn)狀,我緊接著先給出幾道關(guān)于二次函數(shù)的練習(xí)題,鞏固二次函數(shù)最值的求法,為后面解決實際問題掃清障礙。

  接下來就是解決最開始提出的商品何時利潤最大問題,在解決商品利潤問題時我先讓學(xué)生做了幾道關(guān)于利潤的計算題,回憶一下有關(guān)利潤的公式。

  由于有了前面例子的認(rèn)知基礎(chǔ),因此引導(dǎo)學(xué)生考慮能否利用二次函數(shù)的知識來解決,這時學(xué)生能想到要列出函數(shù)關(guān)系式。由于獲得最大利潤的方式有很兩種,因此采用小組合作探究的方式分組討論實施。這是為了給學(xué)生提供充分從事數(shù)學(xué)活動的機(jī)會,在自主探索和合作交流的過程中真正理解和掌握基本的數(shù)學(xué)知識與技能、數(shù)學(xué)思想和方法。由于學(xué)生的基礎(chǔ)比較薄弱,因此教師作為引導(dǎo)者與合作者參與到學(xué)生的討論中。這里要給學(xué)生充分的時間進(jìn)行探究。在各小組充分討論后進(jìn)行全班交流,歸納出全班哪種辦法求解起來最簡便,作出優(yōu)劣的判斷。接著由所得到的結(jié)論繼續(xù)提出新問題,再次體會數(shù)學(xué)來源于生活又服務(wù)于生活。

  最后是歸納總結(jié)、加深印象環(huán)節(jié)。在小結(jié)中,引導(dǎo)學(xué)生總結(jié)出從數(shù)學(xué)的角度解決實際問題的過程:有實際問題抽象轉(zhuǎn)化成數(shù)學(xué)問題,然后運(yùn)用所學(xué)的數(shù)學(xué)知識得到問題的解,再由結(jié)論反過來解釋或解決新的實際問題。

  最后是課堂測評。

  對于作業(yè)的處理,針對學(xué)生的實際情況,作業(yè)分為必做題與選做題。對于基礎(chǔ)比較薄弱的學(xué)生只需完成課堂中的鞏固練習(xí)即可;對于學(xué)有余力的學(xué)生補(bǔ)充兩道選做題。

  以上就是我對本節(jié)課的設(shè)計。提出的問題都是學(xué)生親身的經(jīng)歷的情境,學(xué)生能感受到數(shù)學(xué)來源于生活,又服務(wù)于生活。而且新課標(biāo)也提出為學(xué)生提供的素材應(yīng)該具有現(xiàn)實性和趣味性,要密切聯(lián)系生活實際,讓學(xué)生體會到數(shù)學(xué)在生活中的作用

二次函數(shù)說課稿8

尊敬的各位評委、各位老師:

  大家好!今天我說課的題目是《二次函數(shù)的圖像》,這是北師大版必修1第二章的第四節(jié)課。下面我將圍繞本節(jié)課“教什么?”、“怎樣教?”、“為什么這樣教?”三個問題,從教材內(nèi)容、教法學(xué)法、教學(xué)過程這三個方面逐一分析說明。

  一、教材內(nèi)容分析:

  1、本節(jié)課內(nèi)容在整個教材中的地位和作用。

  概括地講,二次函數(shù)的圖像在教材中起著承上啟下的作用,它的地位體現(xiàn)在它的思想的基礎(chǔ)性。一方面,本節(jié)課是對初中有關(guān)內(nèi)容的深化,為后面進(jìn)一步學(xué)習(xí)二次函數(shù)的性質(zhì)打下基礎(chǔ);另一方面,二次函數(shù)解析式中的系數(shù)由常數(shù)轉(zhuǎn)變?yōu)閰?shù),使學(xué)生對二次函數(shù)的圖像由感性認(rèn)識上升到理性認(rèn)識,能培養(yǎng)學(xué)生利用數(shù)形結(jié)合思想解決問題的能力。

  2、教學(xué)目標(biāo)定位。

  根據(jù)教學(xué)大綱要求、新課程標(biāo)準(zhǔn)精神和高一學(xué)生心理認(rèn)知特征,我確定了三個層面的教學(xué)目標(biāo)。第一個層面是基礎(chǔ)知識與能力目標(biāo):理解二次函數(shù)的圖像中a、b、c、k、h的作用,能熟練地對二次函數(shù)的一般式進(jìn)行配方,會對圖像進(jìn)行平移變換,領(lǐng)會研究二次函數(shù)圖像的方法,培養(yǎng)學(xué)生運(yùn)用數(shù)形結(jié)合與等價轉(zhuǎn)化等數(shù)學(xué)思想方法解決問題的能力,提高運(yùn)算和作圖能力;第二個層面是過程和方法:讓學(xué)生經(jīng)歷作圖、觀察、比較、歸納的學(xué)習(xí)過程,使學(xué)生掌握類比、化歸等數(shù)學(xué)思想方法,養(yǎng)成即能自主探索,又能合作探究的良好學(xué)習(xí)習(xí)慣;第三個層面是情感、態(tài)度和價值觀:在教學(xué)中滲透美的教育,滲透數(shù)形結(jié)合的思想,讓學(xué)生在數(shù)學(xué)活動中學(xué)會與人相處,感受探索與創(chuàng)造,體驗成功的喜悅。

  3、教學(xué)重難點(diǎn)。

  重點(diǎn)是二次函數(shù)各系數(shù)對圖像和形狀的影響,利用二次函數(shù)圖像平移的特例分析過程,培養(yǎng)學(xué)生數(shù)形結(jié)合的思想和劃歸思想。難點(diǎn)是圖像的平移變換,關(guān)鍵是二次函數(shù)頂點(diǎn)式中h、k的正負(fù)取值對函數(shù)圖像平移變換的影響。

  二、教法學(xué)法分析:

  數(shù)學(xué)是發(fā)展學(xué)生思維、培養(yǎng)學(xué)生良好意志品質(zhì)和美好情感的重要學(xué)科,在教學(xué)中,我們不僅要使學(xué)生獲得知識、提高解題能力,還要讓學(xué)生在教師的啟發(fā)引導(dǎo)下學(xué)會學(xué)習(xí)、樂于學(xué)習(xí),感受數(shù)學(xué)學(xué)科的人文思想,感受數(shù)學(xué)的自然美。為了更好地體現(xiàn)在課堂教學(xué)中“教師為主導(dǎo),學(xué)生為主體”的教學(xué)關(guān)系和“以人為本,以學(xué)定教”的教學(xué)理念,在本節(jié)課的教學(xué)過程中,我將緊緊圍繞教師組織——啟發(fā)引導(dǎo),學(xué)生探究——交流發(fā)現(xiàn),組織開展教學(xué)活動。為此,我設(shè)計了5個環(huán)節(jié):①創(chuàng)設(shè)情景——引入新課;②交流探究——發(fā)現(xiàn)規(guī)律;③啟發(fā)引導(dǎo)——形成結(jié)論;④訓(xùn)練小結(jié)——深化鞏固;⑤思維拓展——提高能力。這五個環(huán)節(jié)環(huán)環(huán)相扣、層層深入,注重關(guān)注整個過程和全體學(xué)生,充分調(diào)動了學(xué)生的參與性。

  三、教學(xué)過程分析:

  1、創(chuàng)設(shè)情景——引入新課。

  教學(xué)應(yīng)充分考慮學(xué)生的情感和需要,想方設(shè)法讓學(xué)生在學(xué)習(xí)中樹立信心,感受學(xué)習(xí)樂趣。根據(jù)教材內(nèi)容,我首先出示20xx年高考題第20題,以需要畫y=2x圖像為引子,讓學(xué)生畫y=x和y=2x圖像,進(jìn)而比較這兩個圖像的相同點(diǎn)和不同點(diǎn)為背景切入,一方面讓學(xué)生總結(jié)復(fù)習(xí)已有知識,為后面的學(xué)習(xí)做好鋪墊,另一方面,使學(xué)生在自己熟悉的問題中首先獲得解題成功的快樂體驗,最后引導(dǎo)學(xué)生總結(jié)出函數(shù)y=x與y=ax圖像的關(guān)系,得出本節(jié)課的第一個知識點(diǎn),即二次項系數(shù)a決定圖像的開口方向和開口大小。

  由淺入深,下面讓學(xué)生畫y=2x,y=2(x+1)與y=2(x+1)+3的圖像并尋找它們的聯(lián)系,再讓學(xué)生與多媒體課件展示出的圖像進(jìn)行對比,最后總結(jié)出圖像的變換規(guī)律:a決定開口方向、h決定左右平移、k決定上下平移。由于二次函數(shù)的重要性,本節(jié)課我以考題為背景引入新課,可以提高學(xué)生的學(xué)習(xí)興趣,吸引學(xué)生的課堂注意力,可以讓學(xué)生實實在在感受到高考題就在我們的課本中,就在我們平常的練習(xí)中。

  2、探究交流——發(fā)現(xiàn)規(guī)律。

  從特別到一般是我們發(fā)現(xiàn)問題、尋求規(guī)律、揭示本質(zhì)最常用的方法之一。讓學(xué)生做出y=2x與y=2x+4x-1的圖像,再與課件上的圖像對比并敘述二者之間的位置關(guān)系,得出結(jié)論:若二次函數(shù)的解析式為y=ax+bx+c,先將其化成y=a(x+h)+k的形式,從而判斷出y=ax+bx+c的圖像是如何由y=ax變換得到的。在課本第42頁例1(1)中要提醒學(xué)生注意,在含有參數(shù)的解析式y(tǒng)=a(x+h)+k中,頂點(diǎn)坐標(biāo)應(yīng)是(-h,k),而不是(h,k)。所以,例1(1)中二次函數(shù)f(x)頂點(diǎn)的橫坐標(biāo)是4,即-h=4,h=-4,括號里面就是x-4(這里容易出錯)。例1(2)中h、k的值是已知的,只需要確定a的值就可以了。

 。场l(fā)引導(dǎo)——形成結(jié)論。前面的練習(xí)和例題,基本涵蓋了二次函數(shù)圖像平移變換的各種情況,啟發(fā)并引導(dǎo)了學(xué)生將實例的結(jié)論進(jìn)行總結(jié),得出y=x到y(tǒng)=ax,y=ax到y(tǒng)=a(x+h)+k,y=ax到y(tǒng)=ax+bx+c(其中,a均不為0)的圖像變化過程,即a>0開口向上,a<0開口向下;h正左移,h負(fù)右移;k正上移,k負(fù)下移。

  4、練習(xí)小結(jié)——鞏固深化。為了鞏固和加深二次函數(shù)y=ax+bx+c中的a.b.c對圖像的影響,接下來組織學(xué)生進(jìn)行課題練習(xí),完成課本44頁練習(xí)1—3題。上課時間有限,為保證在完成教學(xué)任務(wù)的前提下,讓學(xué)生充分練習(xí)和討論,我一直堅持讓學(xué)生規(guī)范使用演草本。課堂上需要學(xué)生動手演練的地方不急于安排學(xué)生馬上討論,而是讓學(xué)生思考后將自己的答案整齊地寫在演草本上,然后小組內(nèi)四人相互交換進(jìn)行量分,因為是在課堂上,量分標(biāo)準(zhǔn)要簡單,我要求用30分的'整分制。用時較短10分,書寫整齊規(guī)范10分,解答正確10分。這個過程中會產(chǎn)生學(xué)生之間的三次競爭: ①看誰解的快、用時最短;②看誰書寫的整齊;③看誰做的對。這個自己做和批閱的過程,也是學(xué)生對題目加深理解的過程。量完分后組織學(xué)生對不同解法進(jìn)行探究,這又會產(chǎn)生學(xué)生之間的第四次競爭,看誰的方法簡便,思維更嚴(yán)密。當(dāng)然做題時有的學(xué)生會做的很快,可以讓他們判斷黑板上演示學(xué)生的解題得分情況,這也促進(jìn)在黑板上演示的學(xué)生同下面學(xué)生之間的競爭。這個充滿競爭的過程其實也是教師通過演草本無形引導(dǎo)學(xué)生解決問題、收獲新知的過程,也是一個培養(yǎng)學(xué)生探究精神和思考、比較、辨別能力的過程,使學(xué)生成為學(xué)習(xí)上的主人。這樣每節(jié)課都有競爭,能使學(xué)生發(fā)現(xiàn)自己在學(xué)習(xí)的長處,增強(qiáng)了自己的自信心,切實感受到了學(xué)習(xí)的樂趣,課堂才能真正的活起來?荚囍,成績必然會逐步提高,能避免現(xiàn)在我們教學(xué)中學(xué)生“考試什么都不會,考完后什么都會”以及閱卷中發(fā)現(xiàn)的學(xué)生書寫凌亂的通病,經(jīng)過長期這樣的練習(xí),每個學(xué)生練就了快思考、求準(zhǔn)確、寫整齊的能力。

  5、延伸拓廣——提高能力。課堂教學(xué)既要面對全體學(xué)生,又應(yīng)關(guān)注學(xué)生的個體差異,體現(xiàn)分類推進(jìn),分層教學(xué)原則。為此,我設(shè)計了一個提高練習(xí)題組,共兩道被選題目,以供學(xué)有余力的學(xué)生能夠更好的展示自己的解題能力,取得進(jìn)一步提高。

  以上是我對本節(jié)課的一些粗淺的熟悉和構(gòu)想,如有不妥之處,懇請各位專家、各位同仁批評指正。

  謝謝大家!

二次函數(shù)說課稿9

  尊敬的各位考官大家好,我是今天的X號考生,今天我說課的題目是《二次函數(shù)y=ax2+bx+c的圖象與性質(zhì)》。新課標(biāo)指出:數(shù)學(xué)課程要面向全體學(xué)生,適應(yīng)學(xué)生個性發(fā)展的需要,使得人人都能獲得良好的數(shù)學(xué)教育,不同的人在數(shù)學(xué)上都能得到不同的發(fā)展。今天我將貫徹這一理念從教材分析、學(xué)情分析、教學(xué)過程等幾個方面展開我的說課。

  一、說教材

  本節(jié)課選自華東師大版初中數(shù)學(xué)九年級下冊第26章26.2.2的內(nèi)容。《二次函數(shù)y=ax2+bx+c的圖象與性質(zhì)》是在學(xué)生已經(jīng)學(xué)習(xí)了一次函數(shù)、反比例函數(shù)的圖象與性質(zhì)以及會建立二次函數(shù)模型和理解二次函數(shù)的有關(guān)概念的基礎(chǔ)上進(jìn)行的,它既是前面所學(xué)知識的應(yīng)用、拓展,是對前面所學(xué)一次函數(shù)、反比例函數(shù)圖象與性質(zhì)的一次升華,也是高中階段數(shù)學(xué)學(xué)習(xí)的基礎(chǔ)知識,它在教材中起著非常重要的'作用。本節(jié)課重在結(jié)合圖象來分析二次函數(shù)的性質(zhì),從特殊到一般,從具體到抽象來探究二次函數(shù)的圖象及性質(zhì)。通過觀察具體數(shù)字系數(shù)的二次函數(shù)圖象的形狀與特征(拋物線的開口方向、對稱軸、曲線的升降等),引導(dǎo)學(xué)生利用數(shù)形結(jié)合的思想方法,認(rèn)識二次函數(shù)的相關(guān)性質(zhì)。

  二、說學(xué)情

  接下來談?wù)剬W(xué)生的實際情況。新課標(biāo)指出學(xué)生是教學(xué)的主體,所以要成為符合新課標(biāo)要求的教師,深入了解所面對的學(xué)生可以說是必修課。九年級學(xué)生的思維已逐步從直觀的形象思維向抽象的邏輯思維過渡,具備一定的數(shù)學(xué)思維。教學(xué)時應(yīng)重在培養(yǎng)學(xué)生自主探究的能力,讓學(xué)生自己動手畫圖,從直觀的看圖觀察、思考來激發(fā)學(xué)生的求知欲望,實現(xiàn)從“學(xué)會”到“會學(xué)”。

  三、說教學(xué)目標(biāo)

  根據(jù)以上對教材的分析以及對學(xué)情的把握,我制定了如下三維教學(xué)目標(biāo):

  五、說教法和學(xué)法

  現(xiàn)代教學(xué)理論認(rèn)為,在教學(xué)過程中,學(xué)生是學(xué)習(xí)的主體,教師是學(xué)習(xí)的組織者、引導(dǎo)者,教學(xué)的一切活動都必須以強(qiáng)調(diào)學(xué)生的主動性、積極性為出發(fā)點(diǎn)。根據(jù)這一教學(xué)理念,結(jié)合本節(jié)課的內(nèi)容特點(diǎn)和學(xué)生的年齡特征,本節(jié)課我采用講授法、練習(xí)法、自主探究等教學(xué)方法。

  六、說教學(xué)過程

  下面我將重點(diǎn)談?wù)勎覍虒W(xué)過程的設(shè)計。

 。ㄒ唬┬抡n導(dǎo)入

  從學(xué)情出發(fā),設(shè)計必要的教學(xué)活動,引導(dǎo)學(xué)生觀察、分析、概括歸納,實現(xiàn)對二次函數(shù)性質(zhì)的理解,滲透數(shù)形結(jié)合思想。

 。ㄈ┱n堂練習(xí)

  自主學(xué)習(xí)做一做。

  之所以這樣設(shè)計是因為練習(xí)是掌握知識、形成技能、發(fā)展思維的重要手段,針對本課的教學(xué)重點(diǎn)和難點(diǎn),有針對性地設(shè)計上述練習(xí),目的是讓學(xué)生進(jìn)一步鞏固新知的理解。在掌握基礎(chǔ)知識的前提下進(jìn)行拓展練習(xí),可以深化教學(xué)內(nèi)容,培養(yǎng)思維的靈活性。

 。ㄋ模┬〗Y(jié)作業(yè)

  在課程的最后我會提問:今天你學(xué)到了什么?

二次函數(shù)說課稿10

  一、說課內(nèi)容:

  蘇教版九年級數(shù)學(xué)下冊第六章第一節(jié)的二次函數(shù)的概念及相關(guān)習(xí)題。

  二、說教材分析:

  1、教材的地位和作用

  這節(jié)課是在學(xué)生已經(jīng)學(xué)習(xí)了一次函數(shù)、正比例函數(shù)、反比例函數(shù)的基礎(chǔ)上,來學(xué)習(xí)二次函數(shù)的概念。二次函數(shù)是初中階段研究的最后一個具體的函數(shù),也是最重要的,在歷年來的中考題中占有較大比例。同時,二次函數(shù)和以前學(xué)過的一元二次方程、一元二次不等式有著密切的聯(lián)系。進(jìn)一步學(xué)習(xí)二次函數(shù)將為它們的解法提供新的方法和途徑,并使學(xué)生更為深刻的理解“數(shù)形結(jié)合”的重要思想。而本節(jié)課的二次函數(shù)的概念是學(xué)習(xí)二次函數(shù)的基礎(chǔ),是為后來學(xué)習(xí)二次函數(shù)的圖象做鋪墊。所以這節(jié)課在整個教材中具有承上啟下的重要作用。

  2、教學(xué)目標(biāo)和要求:

 。1)知識與技能:使學(xué)生理解二次函數(shù)的概念,掌握根據(jù)實際問題列出二次函數(shù)關(guān)系式的方法,并了解如何根據(jù)實際問題確定自變量的取值范圍。

 。2)過程與方法:復(fù)習(xí)舊知,通過實際問題的引入,經(jīng)歷二次函數(shù)概念的探索過程,提高學(xué)生解決問題的能力。

 。3)情感、態(tài)度與價值觀:通過觀察、操作、交流歸納等數(shù)學(xué)活動加深對二次函數(shù)概念的理解,發(fā)展學(xué)生的數(shù)學(xué)思維,增強(qiáng)學(xué)好數(shù)學(xué)的愿望與信心。

  3、教學(xué)重點(diǎn):對二次函數(shù)概念的理解。

  4、教學(xué)難點(diǎn):由實際問題確定函數(shù)解析式和確定自變量的取值范圍。

  三、說教法學(xué)法設(shè)計:

  1、從創(chuàng)設(shè)情境入手,通過知識再現(xiàn),孕伏教學(xué)過程。

  2、從學(xué)生活動出發(fā),通過以舊引新,順勢教學(xué)過程。

  3、利用探索、研究手段,通過思維深入,領(lǐng)悟教學(xué)過程。

  四、說教學(xué)過程:

 。ㄒ唬⿵(fù)習(xí)提問

  1、什么叫函數(shù)?我們之前學(xué)過了那些函數(shù)?

 。ㄒ淮魏瘮(shù),正比例函數(shù),反比例函數(shù))

  2、它們的形式是怎樣的?

 。=x+b,≠0;=x,≠0;=,≠0)

  3、一次函數(shù)(=x+b)的自變量是什么?函數(shù)是什么?常量是什么?為什么要有≠0的條件?值對函數(shù)性質(zhì)有什么影響?

  設(shè)計意圖:復(fù)習(xí)這些問題是為了幫助學(xué)生弄清自變量、函數(shù)、常量等概念,加深對函數(shù)定義的理解。強(qiáng)調(diào)≠0的條件,以備與二次函數(shù)中的a進(jìn)行比較。

  (二)引入新課

  函數(shù)是研究兩個變量在某變化過程中的相互關(guān)系,我們已學(xué)過正比例函數(shù),反比例函數(shù)和一次函數(shù)?聪旅嫒齻例子中兩個變量之間存在怎樣的關(guān)系。(電腦演示)

  例1、(1)圓的半徑是r(c)時,面積s(c)與半徑之間的關(guān)系是什么?

  解:s=πr(r>0)

  例2、用周長為20的籬笆圍成矩形場地,場地面積()與矩形一邊長x()之間的關(guān)系是什么?

  解:=x(20/2—x)=x(10—x)=—x+10x(0

  例3、設(shè)人民幣一年定期儲蓄的年利率是x,一年到期后,銀行將本金和利息自動按一年定期儲蓄轉(zhuǎn)存。如果存款額是100元,那么請問兩年后的本息和(元)與x之間的關(guān)系是什么(不考慮利息稅)?

  解:=100(1+x)

  =100(x+2x+1)

  =100x+200x+100(0

  教師提問:以上三個例子所列出的'函數(shù)與一次函數(shù)有何相同點(diǎn)與不同點(diǎn)?

  設(shè)計意圖:通過具體事例,讓學(xué)生列出關(guān)系式,啟發(fā)學(xué)生觀察,思考,歸納出二次函數(shù)與一次函數(shù)的聯(lián)系:(1)函數(shù)解析式均為整式(這表明這種函數(shù)與一次函數(shù)有共同的特征)。(2)自變量的最高次數(shù)是2(這與一次函數(shù)不同)。

  (三)講解新課

  以上函數(shù)不同于我們所學(xué)過的一次函數(shù),正比例函數(shù),反比例函數(shù),我們就把這種函數(shù)稱為二次函數(shù)。

  二次函數(shù)的定義:形如=ax2+bx+c(a≠0,a,b,c為常數(shù))的函數(shù)叫做二次函數(shù)。

  鞏固對二次函數(shù)概念的理解:

  1、強(qiáng)調(diào)“形如”,即由形來定義函數(shù)名稱。二次函數(shù)即是關(guān)于x的二次多項式(關(guān)于的x代數(shù)式一定要是整式)。

  2、在=ax2+bx+c中自變量是x,它的取值范圍是一切實數(shù)。但在實際問題中,自變量的取值范圍是使實際問題有意義的值。(如例1中要求r>0)

  3、為什么二次函數(shù)定義中要求a≠0?

 。ㄈ鬭=0,ax2+bx+c就不是關(guān)于x的二次多項式了)

  4、在例3中,二次函數(shù)=100x2+200x+100中,a=100,b=200,c=100。

  5、b和c是否可以為零?

  由例1可知,b和c均可為零。

  若b=0,則=ax2+c;

  若c=0,則=ax2+bx;

  若b=c=0,則=ax2。

  注明:以上三種形式都是二次函數(shù)的特殊形式,而=ax2+bx+c是二次函數(shù)的一般形式。

  設(shè)計意圖:這里強(qiáng)調(diào)對二次函數(shù)概念的理解,有助于學(xué)生更好地理解,掌握其特征,為接下來的判斷二次函數(shù)做好鋪墊。

  判斷:下列函數(shù)中哪些是二次函數(shù)?哪些不是二次函數(shù)?若是二次函數(shù),指出a、b、c。

二次函數(shù)說課稿11

各位老師:

  大家好

  下面我將從教材分析、教學(xué)目標(biāo)分析、教學(xué)方法分析、學(xué)情分析、教學(xué)過程分析、教學(xué)反思六大方面來闡述我對這節(jié)課的分析和設(shè)計:

  一、教材分析

  1.教材所處的地位和作用

  本節(jié)課是在學(xué)習(xí)了二次函數(shù)的圖像和性質(zhì)的基礎(chǔ)上進(jìn)一步研究二次函數(shù)在閉區(qū)間上的最值問題,因為最值是函數(shù)非常重要的一個性質(zhì),尤其是含參二次函數(shù)的最值問題在歷年陜西高考中出現(xiàn),而這個知識既是學(xué)生學(xué)習(xí)的一個重點(diǎn)又是一個難點(diǎn),所以上好這節(jié)課顯得尤為重要。本節(jié)課使得學(xué)生能更深刻地理解函數(shù)的單調(diào)性、最值,并深刻體會分類討論思想與數(shù)形結(jié)合思想在解決數(shù)學(xué)問題中的重要作用,本節(jié)課中滲透的分類討論思想及數(shù)形結(jié)合思想,也為學(xué)生繼續(xù)學(xué)習(xí)高中數(shù)學(xué)打下堅實的基礎(chǔ)。

  2.教學(xué)的重點(diǎn)和難點(diǎn)

  教學(xué)重點(diǎn):尋求二次函數(shù)在閉區(qū)間上最值問題的一般解法和規(guī)律。

  教學(xué)難點(diǎn):含參二次函數(shù)在閉區(qū)間上的最值的求法以及分類討論思想的正確運(yùn)用。

  二、教學(xué)目標(biāo)分析

  1.知識目標(biāo):初步掌握解決二次函數(shù)在閉區(qū)間上最值問題的一般解法,總結(jié)歸納出二次函數(shù)在閉區(qū)間上最值的一般規(guī)律,學(xué)會運(yùn)用二次函數(shù)在閉區(qū)間上的圖像研究和理解相關(guān)問題。

  2.能力目標(biāo):通過圖像,觀察影響二次函數(shù)在閉區(qū)間上的最值的因素,在此基礎(chǔ)上討論探究出解決二次函數(shù)在閉區(qū)間上最值問題的一般解法和規(guī)律。

  3.情感目標(biāo):通過探究,讓學(xué)生體會分類討論思想與數(shù)形結(jié)合思想在解決數(shù)學(xué)問題中的重要作用,培養(yǎng)學(xué)生分析問題、解決問題的能力,同時培養(yǎng)學(xué)生合作與交流的能力。

  三、教學(xué)方法分析

  根據(jù)教學(xué)實際,我將本節(jié)課設(shè)計為數(shù)學(xué)探究課,所以我給自己定位的角色是教學(xué)的組織者、引導(dǎo)者、合作者、在教學(xué)過程中充分調(diào)動學(xué)生的積極性、主動性,讓學(xué)生成為課堂的主人。在教學(xué)過程中我主要采用以下教學(xué)方法:開放式探究法、啟發(fā)式引導(dǎo)法、小組合作討論法、學(xué)生展示等。

  在探究的過程中,借助多媒體教學(xué)手段,讓學(xué)生觀察幾何畫板中的動態(tài)演示,通過對二次函數(shù)圖像的“再認(rèn)識”,探究二次函數(shù)在閉區(qū)間上的最值。同時為了配合多媒體的教學(xué),準(zhǔn)備了學(xué)案讓學(xué)生配套使用。先讓學(xué)生提前預(yù)習(xí)相關(guān)內(nèi)容,對所要探究的問題有初步的了解,再在課堂上詳細(xì)的探究,課后在學(xué)案上有相應(yīng)的課后作業(yè)題讓學(xué)生鞏固所學(xué)知識。

  四、學(xué)情分析

  我所代班級的學(xué)生是高一新生,他們在初中已學(xué)過二次函數(shù)的簡單性質(zhì)與圖像,知道二次函數(shù)在《二次函數(shù)最值問題》說課稿時在頂點(diǎn)處取得最大值或最小值,在前幾節(jié)課又學(xué)習(xí)了函數(shù)的概念與表示、單調(diào)性與最值的相關(guān)知識,已經(jīng)具備了本節(jié)課學(xué)習(xí)必須的'基礎(chǔ)知識。

  俗話說“授人以魚,不如授人以漁”,在學(xué)習(xí)過程中的參與狀態(tài)和參與度是影響教學(xué)效果最重要的因素。在學(xué)法選擇上,我主要采用:自主探究法、觀察發(fā)現(xiàn)法、合作交流法、歸納總結(jié)法。讓學(xué)生真正成為課堂的主人。

  五、教學(xué)過程分析

 。ㄒ唬⿵(fù)習(xí)舊知

  回憶二次函數(shù)的圖像與性質(zhì):

  1.圖像:

  2.定義域:

  3.單調(diào)性:

  4.最值:

  【設(shè)計意圖】復(fù)習(xí)舊知,引入新課。

  (二)自主探究

  探究1:定軸定區(qū)間最值問題

  分別在下列范圍內(nèi)求函數(shù)f(x)=x2-2x-3的最值:

  《二次函數(shù)最值問題》說課稿《二次函數(shù)最值問題》說課稿

  《二次函數(shù)最值問題》說課稿

  規(guī)律總結(jié):作出二次函數(shù)的圖像,通過圖像確定函數(shù)在給定區(qū)間上的最值。

  【設(shè)計意圖】

  通過探究1,讓學(xué)生討論探究定函數(shù)在定區(qū)間上最值的求解方法,并通過二次函數(shù)在閉區(qū)間上圖像直觀形象地觀察、分析問題和解決問題。

 。ㄈ┖献魈骄浚ê瑓⒍魏瘮(shù)最值求解問題)

  探究2:動軸定區(qū)間最值問題

  求函數(shù)f(x)=x2-2tx-3,t∈R在x∈[-2,2]上的最小值。

  【設(shè)計意圖】

  通過探究2,讓學(xué)生討論探究動軸定區(qū)間上最小值的求解方法,并通過動態(tài)演示二次函數(shù)在閉區(qū)間上的圖像,讓學(xué)生直觀形象地觀察、分析問題和解決問題。

  變式訓(xùn)練:求函數(shù)f(x)=x2-2tx-3在x∈[-2,2],t∈R上的最大值。

  【設(shè)計意圖】

  通過變式訓(xùn)練,讓學(xué)生進(jìn)一步體會動軸定區(qū)間上最大值的求解方法,同時歸納出動軸定區(qū)間最值問題求解的一般規(guī)律。

  規(guī)律總結(jié):移動對稱軸,比較對稱軸和區(qū)間的位置關(guān)系,再結(jié)合圖像進(jìn)行進(jìn)行分類討論,

  注意做到“不重不漏”。

  探究3:定軸動區(qū)間最值問題

  求函數(shù)f(x)=x2-2x-3在x∈[t,t+2],t∈R的最小值。

  【設(shè)計意圖】讓學(xué)生分組討論探究3的求解方法,使學(xué)生體會運(yùn)動的相對性,從而類比探究2的過程與方法可以制定出解決問題3的方法。

  變式訓(xùn)練:求函數(shù)f(x)=-x2+2x-3在x∈[t,t+2],t∈R的最大值.

  【設(shè)計意圖】

  通過變式訓(xùn)練,讓學(xué)生進(jìn)一步體會定軸動區(qū)間上最大值的求解方法,同時歸納出定軸動區(qū)間最值問題求解的一般規(guī)律。

  規(guī)律總結(jié):移動區(qū)間,比較對稱軸和區(qū)間的位置關(guān)系,再結(jié)合圖像進(jìn)行分類討論,注意做到“不重不漏”。

 。ㄋ模┲R小結(jié)

  本節(jié)課研究了二次函數(shù)的三類最值問題:

  (1)定軸定區(qū)間最值問題;

  (2)動軸定區(qū)間最值問題;

  (3)定軸動區(qū)間最值問題.

  核心思想是判斷對稱軸與區(qū)間的相對位置,應(yīng)用數(shù)形結(jié)合、分類討論思想求出最值。

  【設(shè)計意圖】

  課堂小結(jié)是一堂課內(nèi)容的概括和總結(jié),有利于學(xué)生把握本節(jié)課的重點(diǎn),對所學(xué)知識有一個系統(tǒng)整體的認(rèn)識。

 。ㄎ澹┙Y(jié)束語

  數(shù)缺形時少直觀,形少數(shù)時難入微.數(shù)形結(jié)合百般好,割裂分家萬事休!

  ——華羅庚

  【設(shè)計意圖】

  借助名人名言再次強(qiáng)調(diào)數(shù)形結(jié)合思想的重要性。

  (六)課后作業(yè)

  《二次函數(shù)最值問題》說課稿《二次函數(shù)最值問題》說課稿1.分別在下列范圍內(nèi)求二次函數(shù)f(x)=x2+4x-6的最值。

  《二次函數(shù)最值問題》說課稿

  2.求函數(shù)f(x)=x2+2tx+2,t∈R在x∈[-5,5]上的最值。

  3.求函數(shù)f(x)=x2-2x+2在x∈[t,t+1],t∈R的最小值。

  【設(shè)計意圖】

  學(xué)生應(yīng)用探究所得知識解決相關(guān)問題,進(jìn)一步鞏固和提高二次函數(shù)在閉區(qū)間上最值的求解方法與規(guī)律。同時也是為了檢驗學(xué)生對本節(jié)課內(nèi)容的理解和運(yùn)用程度以及實際接受情況,并促使學(xué)生進(jìn)一步鞏固和掌握所學(xué)內(nèi)容。

  六、教學(xué)反思

  本節(jié)課是在學(xué)生已有知識的基礎(chǔ)上學(xué)習(xí)的,在教學(xué)過程中通過自主探究、合作交流,充分調(diào)動學(xué)生積極性和主動性,及是吸收反饋信息,并通過學(xué)生的自評、互評,促進(jìn)了同學(xué)們數(shù)學(xué)素養(yǎng)的不斷提高。但是這節(jié)課題目設(shè)計的難度有些大,題量又多,這使整堂課顯得緊緊張張、忙忙碌碌,學(xué)生知識掌握的也不是很扎實。另一方面硬件調(diào)試沒有到位,影響了上課的效果和速度。在以后的教學(xué)中我會吸取教訓(xùn),爭取做好每個環(huán)節(jié)的工作。

二次函數(shù)說課稿12

  各位老師,大家好!

  今天我說課的課題是二次函數(shù)圖像及其性質(zhì)。下面我將從以下幾個方面進(jìn)行闡述:

  首先,我對本節(jié)教材進(jìn)行簡要分析。

  1、說教材

  本節(jié)內(nèi)容是人民教育出版的九年級數(shù)學(xué)課程標(biāo)準(zhǔn)實驗教科書《數(shù)學(xué)》第二冊第二十七章第二節(jié)第三課時,屬于數(shù)與代數(shù)領(lǐng)域的知識。在此之前,學(xué)生已學(xué)習(xí)了二次函數(shù)的概念和二次函數(shù)的圖像及其性質(zhì)。本節(jié)內(nèi)容是對二次函數(shù)圖像及其性質(zhì)的相關(guān)知識的復(fù)習(xí)總結(jié)和綜合運(yùn)用,是后續(xù)研究二次函數(shù)圖像的變換的基礎(chǔ)。二次函數(shù)在初中函數(shù)的教學(xué)中有重要地位,它不僅是初中代數(shù)內(nèi)容的引申,也是初中數(shù)學(xué)教學(xué)的重點(diǎn)和難點(diǎn)之一,更為高中學(xué)習(xí)一元二次不等式和圓錐曲線奠定基礎(chǔ)。

  本節(jié)課中的教學(xué)重點(diǎn)是梳理所學(xué)過的二次函數(shù)及其性質(zhì)的相關(guān)內(nèi)容,建構(gòu)符合學(xué)生認(rèn)知結(jié)構(gòu)的知識體系,教學(xué)難點(diǎn)是運(yùn)用數(shù)形結(jié)合的思想,選用恰當(dāng)?shù)臄?shù)學(xué)關(guān)系式解決二次函數(shù)的問題,以及把實際問題轉(zhuǎn)化成二次函數(shù)問題并利用二次函數(shù)的性質(zhì)來解決。

  基于以上對教材的認(rèn)識,根據(jù)數(shù)學(xué)課程標(biāo)準(zhǔn),考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)與心理特征,制定如下的教學(xué)目標(biāo)。

  2、說目標(biāo)

  【知識與技能】:

  1、鞏固二次函數(shù)圖像及其性質(zhì)的相關(guān)知識:

  了解二次函數(shù)解析式的二種表示方法,會用配方法轉(zhuǎn)化二次函數(shù)的表示形式;

  會用描點(diǎn)法畫出二次函數(shù)的圖象,能從圖象上認(rèn)識二次函數(shù)的性質(zhì);

  會根據(jù)公式確定拋物線的頂點(diǎn)坐標(biāo)、開口方向、對稱軸以及拋物線與坐標(biāo)軸的交點(diǎn)坐標(biāo)。

  2、二次函數(shù)圖像及其性質(zhì)的相關(guān)知識解決實際問題。

  【過程與方法】:

  1、對二次函數(shù)圖像及其性質(zhì)的相關(guān)知識的復(fù)習(xí),掌握求解二次函數(shù)圖像及其性質(zhì)的題目的基本方法和思路,領(lǐng)悟數(shù)形結(jié)合的數(shù)學(xué)思想方法;

  2、運(yùn)用所學(xué)知識、方法去解決數(shù)學(xué)問題,培養(yǎng)學(xué)生提出、分析、解決、歸納問題的數(shù)學(xué)能力,改善學(xué)生的數(shù)學(xué)思維品質(zhì);

  3、數(shù)學(xué)的思想方法去觀察、研究和解決實際問題,體驗數(shù)學(xué)建模的思想。培養(yǎng)學(xué)生運(yùn)用二次函數(shù)圖像及其性質(zhì)的相關(guān)知識解決數(shù)學(xué)綜合題和實際問題的能力。

  【情感與態(tài)度目標(biāo)】:

  在數(shù)學(xué)教學(xué)中滲透美的教育,讓學(xué)生感受二次函數(shù)圖像的對稱之美,激發(fā)學(xué)生的學(xué)習(xí)興趣。運(yùn)用二次函數(shù)解決實際問題,使學(xué)生進(jìn)一步認(rèn)識到數(shù)學(xué)源于生活,用于生活的辯證觀點(diǎn)。

  為突出重點(diǎn)、突破難點(diǎn)、抓住關(guān)鍵,使學(xué)生能達(dá)到本節(jié)設(shè)定的教學(xué)目標(biāo),我再從教法和學(xué)法上談?wù)勗O(shè)計思路。

  3、說教學(xué)方法

  教法選擇與教學(xué)手段:基于本節(jié)課的特點(diǎn)是復(fù)習(xí)總結(jié)所學(xué)過的知識及其綜合運(yùn)用,應(yīng)著重采用復(fù)習(xí)與總結(jié)的教學(xué)方法與手段,即利用任務(wù)驅(qū)動進(jìn)行復(fù)習(xí)總結(jié),構(gòu)建二次函數(shù)圖像及其性質(zhì)的綜合化、網(wǎng)絡(luò)化、結(jié)構(gòu)化。通過提問思考、歸納總結(jié)、綜合運(yùn)用等形式對二次函數(shù)圖像及其性質(zhì)的相關(guān)知識和基本解題方法進(jìn)行有針對性的、系統(tǒng)性的、綜合性的教學(xué)。復(fù)習(xí)課例題教學(xué)的模式為學(xué)生思考,教師分析,解題小結(jié)三個環(huán)節(jié)。

  學(xué)法指導(dǎo):讓學(xué)生從問題中質(zhì)疑、嘗試、歸納、總結(jié)、運(yùn)用,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、研究問題和解決問題的能力。

  最后,我來具體談一談本節(jié)課的教學(xué)過程。

  4、說教學(xué)過程

  在分析教材、確定教學(xué)目標(biāo)、合理選擇教法與學(xué)法的基礎(chǔ)上,我預(yù)設(shè)的教學(xué)過程是:信息提取→思考重構(gòu)→綜合運(yùn)用→反思提高

  (一)由任務(wù)導(dǎo)引相關(guān)回憶

  為對二次函數(shù)圖像及其性質(zhì)的相關(guān)知識進(jìn)行重構(gòu)做準(zhǔn)備。通過兩題練習(xí)回憶復(fù)習(xí)二次函數(shù)圖像及其性質(zhì)的相關(guān)知識。第一題用配方法把二次函數(shù)的一般式化為頂點(diǎn)式的形式,并指出開口方向,對稱軸和頂點(diǎn)坐標(biāo),引導(dǎo)學(xué)生復(fù)習(xí)回憶,了解二次函數(shù)解析式的`二種表示方法,掌握用配方法轉(zhuǎn)化二次函數(shù)的表示形式,會根據(jù)公式確定拋物線的頂點(diǎn)坐標(biāo)、開口方向、對稱軸。第二題用描點(diǎn)法畫出二次函數(shù)的圖象,并說出為何值時隨增大而增大,為何值時,隨增大而減小,引導(dǎo)學(xué)生掌握用描點(diǎn)法畫出二次函數(shù)的圖象,能從圖象上認(rèn)識二次函數(shù)的性質(zhì)。

 。ǘ┩ㄟ^回憶對二次函數(shù)圖像及其性質(zhì)的相關(guān)知識進(jìn)行重構(gòu)

  運(yùn)用聯(lián)想、概括方法對二次函數(shù)圖像及其性質(zhì)的相關(guān)知識進(jìn)行梳理,由以上練習(xí)引導(dǎo)學(xué)生回憶、理解二次函數(shù)圖像及其性質(zhì)的相關(guān)知識,并形成相關(guān)的知識結(jié)構(gòu)體系。通過知識回顧幫助學(xué)生梳理有關(guān)知識點(diǎn),二次函數(shù)的定義、解析式的形式、圖像畫法、圖像及其性質(zhì)。

 。ㄈ┚C合運(yùn)用二次函數(shù)圖像及其性質(zhì)的相關(guān)知識和方法解題

  通過對二次函數(shù)圖像及其性質(zhì)的相關(guān)知識的復(fù)習(xí),讓學(xué)生運(yùn)用相關(guān)概念、性質(zhì)進(jìn)行解題,采用學(xué)生思考,教師分析,解題小結(jié)三個環(huán)節(jié)構(gòu)成的練習(xí)題講解模式,鞏固求解二次函數(shù)圖像及其性質(zhì)的基本題目的一般解題方法,并進(jìn)一步研究二次函數(shù)圖像及其性質(zhì)的應(yīng)用。第五題及第六題是運(yùn)用二次函數(shù)圖像及其性質(zhì)的相關(guān)知識解決實際問題,領(lǐng)悟數(shù)形結(jié)合的思想方法,發(fā)展學(xué)生的化歸遷移的數(shù)學(xué)思維,培養(yǎng)學(xué)生的轉(zhuǎn)化能力。

  (四)反思概括,方法總結(jié)

  總結(jié)本節(jié)課的知識點(diǎn)、重點(diǎn)和難點(diǎn),著重理解二次函數(shù)圖像及其性質(zhì)的相關(guān)知識和基本解題方法,領(lǐng)悟數(shù)形結(jié)合的數(shù)學(xué)思想方法,學(xué)會用化歸思想,解決實際問題。培養(yǎng)學(xué)生由題及法,由法及類的數(shù)學(xué)總結(jié)歸納方法。

 。ㄎ澹┳鳂I(yè)

  課后通過練習(xí)來鞏固本節(jié)課所復(fù)習(xí)的知識點(diǎn)、重點(diǎn)和難點(diǎn),強(qiáng)化教學(xué)目標(biāo)。

  各位老師,以上所說只是我預(yù)設(shè)的一種方案,但課堂上是千變?nèi)f化的,會隨著學(xué)生和教師的靈性發(fā)揮而隨機(jī)生成的,預(yù)設(shè)效果如何,最終還有待于課堂教學(xué)實踐的檢驗。

  本說課一定存在諸多不足,懇請各位老師提出寶貴意見,謝謝!

二次函數(shù)說課稿13

  一、教材及學(xué)情分析

  《二次函數(shù)的圖像與性質(zhì)》是北師大版九年級下冊第二章第二節(jié)的內(nèi)容,在學(xué)生已經(jīng)學(xué)習(xí)過一次函數(shù)(包括正比例函數(shù))、反比例函數(shù)的圖像與性質(zhì),以及會建立二次函數(shù)模型和理解二次函數(shù)的有關(guān)概念的基礎(chǔ)上進(jìn)行的,它既是前面所學(xué)知識的應(yīng)用、拓展,是對前面所學(xué)一次函數(shù)、反比例函數(shù)圖像與性質(zhì)的一次升華,又是今后學(xué)習(xí)《確定二次函數(shù)的表達(dá)式》《二次函數(shù)的應(yīng)用》、《二次函數(shù)與一元二次方程》的預(yù)備知識,又是學(xué)生高中階段數(shù)學(xué)學(xué)習(xí)的基礎(chǔ)知識,它在教材中起著非常重要的作用。另外,本節(jié)課最大特點(diǎn),是結(jié)合圖形來研究二次函數(shù)的性質(zhì),這充分體現(xiàn)了一個很重要的數(shù)學(xué)思想——數(shù)形結(jié)合數(shù)學(xué)思想。因此,這一節(jié)課,無論是在知識上,還是對學(xué)生動手能力培養(yǎng)上都有著十分重要的作用。

  二、教學(xué)目標(biāo)及重、難點(diǎn)分析

  通過分析,我們知道,《二次函數(shù)的圖像與性質(zhì)》在整個教材體系中,起著承上啟下的作用,有著廣泛的應(yīng)用。我認(rèn)為這節(jié)課的重點(diǎn)是:作出函數(shù)=ax2+c的圖象,比較函數(shù)=ax2和函數(shù)=ax2+c的異同,了解它們的性質(zhì);函數(shù)=ax2+c的`圖象與性質(zhì)的理解,掌握拋物線的上下平移規(guī)律是本節(jié)課的難點(diǎn)。

  知識與技能目標(biāo)

 。1) 會做函數(shù)=ax2和=ax2+c的圖象,并能比較它們的異同;理解a,c對二次函數(shù)圖象的影響,能正確說出兩函數(shù)的開口方向,對稱軸和頂點(diǎn)坐標(biāo);

  (2) 了解拋物線=ax2上下平移規(guī)律。

  過程與方法目標(biāo)

  本節(jié)課,過程是由抽象到直觀,再由直觀到抽象(既二次函數(shù)=ax2+c的關(guān)系式——作出圖像——說出二次函數(shù)=ax2+c的圖像與性質(zhì)),培養(yǎng)學(xué)生分析問題、解決問題的能力,培養(yǎng)學(xué)生觀察、探討、分析、分類討論的能力。

  情感、態(tài)度與價值觀

  引導(dǎo)學(xué)生養(yǎng)成全面看問題、分類討論的學(xué)習(xí)習(xí)慣,通過直觀多媒體演示和學(xué)生動手作圖、分析,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性。

  三、教學(xué)結(jié)構(gòu)設(shè)計

  建立以“實施主體性教學(xué),培養(yǎng)學(xué)生自主探究的能力”為主的課堂教學(xué)結(jié)構(gòu)模式——學(xué)教結(jié)合式。讓學(xué)生先自己動手畫圖,然后由老師來演示,這樣從直觀的看圖觀察,思考,提問,容易激發(fā)學(xué)生的求知欲望,調(diào)動學(xué)生學(xué)習(xí)的興趣。以“學(xué)教結(jié)合”為模式的課堂結(jié)構(gòu)設(shè)計為“三個階段”:

 、贉(zhǔn)備階段 教師先從回憶函數(shù)=ax2圖象與性質(zhì),從而導(dǎo)入二次函數(shù)=ax2+c的圖像與性質(zhì),進(jìn)而帶出本節(jié)課的學(xué)習(xí)目標(biāo)。

 、趨⑴c階段 學(xué)生圍繞目標(biāo)自我表現(xiàn),相互交流,啟發(fā)理解。

  ③應(yīng)用與升華階段 這一階段是讓學(xué)生從“學(xué)會”到“會學(xué)”的升華。延伸階段要做到“三化”,一是知識的深化,二是知識向能力、技能的轉(zhuǎn)化,三是學(xué)習(xí)方法的固化,即演練鞏固,牢固掌握其方法。

二次函數(shù)說課稿14

各位領(lǐng)導(dǎo)、老師:

  大家好,我說課的題目選自人教版九年級數(shù)學(xué)下冊第26章第一節(jié)《二次函數(shù)及其圖象》第2課時。本節(jié)內(nèi)容有兩個方面,首先是作函數(shù)y=ax2的圖象,然后通過觀察圖象研究它的開口方向,對稱軸,頂點(diǎn)坐標(biāo)等性質(zhì)。下面我就從教材的地位作用、教學(xué)目標(biāo)及重難點(diǎn)、教學(xué)方法、教學(xué)過程4個方面對本節(jié)課進(jìn)行說課。

  一、教材的地位與作用

  《二次函數(shù)及其圖象》是在學(xué)生已經(jīng)學(xué)習(xí)過一次函數(shù)(包括正比例函數(shù))、反比例函數(shù)圖象與性質(zhì),以及會建立函數(shù)模型和理解二次函數(shù)的有關(guān)概念的基礎(chǔ)上進(jìn)行的,它既是前面所學(xué)知識的應(yīng)用、拓展,是對前面所學(xué)一次函數(shù)、反比例函數(shù)圖象與性質(zhì)的一次升華,又是后續(xù)學(xué)習(xí)二次函數(shù)y=a(x-h)2+k、y=ax2+bx+c的圖象、《用函數(shù)觀點(diǎn)看一元二次方程》、《實際問題與二次函數(shù)》的預(yù)備知識,也是學(xué)生高中階段數(shù)學(xué)學(xué)習(xí)的基礎(chǔ)知識。它在教材中起著非常重要的作用。另外,本節(jié)課,最大特點(diǎn),是結(jié)合圖形來研究二次函數(shù)的性質(zhì),這充分體現(xiàn)了一個很重要的數(shù)學(xué)思想——數(shù)形結(jié)合數(shù)學(xué)思想。因此,這一節(jié)課,無論是在知識上,還是對學(xué)生動手能力培養(yǎng)上都有著十分重要的作用。

  二、教學(xué)目標(biāo)及重難點(diǎn)

  學(xué)習(xí)目標(biāo):1、知道二次函數(shù)的圖象是一條拋物線;2、會畫二次函數(shù)y=ax2的圖象;3、掌握二次函數(shù)y=ax2的性質(zhì),并會靈活應(yīng)用。

  重難點(diǎn):能在直角坐標(biāo)系中,畫出二次函數(shù)y=ax2的圖象,并能說出二次函數(shù)y=ax2的圖象的性質(zhì)是本節(jié)課的重點(diǎn)。在作二次函數(shù)y=ax2的圖象時,要注意,選取適當(dāng)?shù)狞c(diǎn),選適當(dāng)數(shù)目的'點(diǎn);在動手作圖的時候,要根據(jù)少量的點(diǎn)連出光滑的拋物線,作圖不會很理想,這是一個難點(diǎn)。

  三、教學(xué)方法分析

  本節(jié)課我選擇了學(xué)教互動教學(xué)模式,讓學(xué)生在自己動手作圖的基礎(chǔ)上老師再予以引導(dǎo),讓學(xué)生發(fā)現(xiàn)自己在作圖上的小缺點(diǎn)并予以糾正。在找規(guī)律的部分充分發(fā)揮學(xué)生自主探究的能力,讓學(xué)生自我表現(xiàn),相互質(zhì)疑,相互交流,啟發(fā)理解,在學(xué)生探究的基礎(chǔ)上,教師加以點(diǎn)撥,讓學(xué)生心領(lǐng)神會,豁然貫通。

  四、教學(xué)過程設(shè)計

  本節(jié)課我首先讓學(xué)生回憶描點(diǎn)法畫函數(shù)圖象的一般步驟,然后提出問題讓學(xué)生利用描點(diǎn)法畫y=x2的圖象,教師加以引導(dǎo),更好地回顧了畫函數(shù)圖象的一般步驟及及畫圖象時應(yīng)注意的問題。在此基礎(chǔ)上讓學(xué)生看書自學(xué),了解二次函數(shù)圖象名稱,結(jié)合書本內(nèi)容和所畫圖象發(fā)現(xiàn)y=x2的性質(zhì)。然后,例1讓同學(xué)們自己動手在同一坐標(biāo)系中畫出函數(shù)y=x2,y=2x2的圖象,通過觀察、小組討論交流歸納出三個函數(shù)圖象的共同點(diǎn)和不同點(diǎn),之后例2學(xué)生也就很容易完成了,兩個例題完成之后,讓學(xué)生及時歸納出函數(shù)y=ax2圖象的性質(zhì)。性質(zhì)歸納出來后,我設(shè)計了一組拓展練習(xí)讓學(xué)生對所歸納的性質(zhì)加以運(yùn)用,從而達(dá)成了學(xué)習(xí)目標(biāo)。最后,通過小結(jié)和作業(yè)使學(xué)生對所學(xué)知識進(jìn)一步鞏固,融會貫通。

  整節(jié)課,我合理、充分利用了多媒體教學(xué)的手段,讓抽象思維不強(qiáng)的學(xué)生,更加形象的結(jié)合圖形,分析說出二次函數(shù)y=ax2的有關(guān)性質(zhì),充分體現(xiàn)了“數(shù)形結(jié)合”的數(shù)學(xué)思想。為了突出重點(diǎn),攻破難點(diǎn),我要求學(xué)生“先觀察后思考”、“先做后說”、“先討論后總結(jié)”,“師生共做”充分體現(xiàn)了教學(xué)過程中以學(xué)生為主體,老師起主導(dǎo)作用的教學(xué)原則。但教學(xué)中還存在很多不足,希望各位領(lǐng)導(dǎo),各位同仁多多給予批評、指證。

二次函數(shù)說課稿15

  一、教材分析

  1 說地位:二次函數(shù)是在一次函數(shù),反比例函數(shù)的基礎(chǔ)上,對函數(shù)的認(rèn)識的完善與提高;也是對方程的理解的補(bǔ)充。而本節(jié)課的內(nèi)容,是對二次函數(shù)y=ax2+bx+c中系數(shù),a,b,c功能的探究,意在深化學(xué)生對二次函數(shù)圖象及其性質(zhì)的進(jìn)一步理解,在每年中考中,此內(nèi)容都占有一定的分量,不可小視。

  2 說聯(lián)系:通過對y=ax2+bx+c中a,b,c功能的探究,進(jìn)一步鞏固前面所學(xué)的圖象及其性質(zhì),為后面學(xué)習(xí)二次函數(shù)的應(yīng)用作基礎(chǔ),激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情。

  3 說課標(biāo):結(jié)合前后知識,我把這節(jié)課的教學(xué)目標(biāo)定為兩點(diǎn),一是熟練掌握y=ax2+bx+c中系數(shù)a,b,c的作用,二是進(jìn)一步體會函數(shù)里數(shù)形結(jié)合的思想。

  4 說內(nèi)容:本節(jié)課首先通過學(xué)生對前面所學(xué)知識的掌握,歸納總結(jié)出y=ax2+bx+c中a,b,c不同的取值對其圖象位置的影響,然后通過4個例題,從不同角度,刻畫出a,b,c的取值對函數(shù)圖象位置的影響,每種例題都配有1-2個練習(xí),供鞏固提高,最后小結(jié)。

  二、教材處理

  本節(jié)課書上沒有獨(dú)立成節(jié),是我根據(jù)多年教學(xué)經(jīng)驗,積累沉淀下來的。本節(jié)課的例題是我在前幾年的中考試題中撿拾出來,有些題目還做過刪減,或者改動,最終還剩下4個例題6個配套練習(xí)。學(xué)習(xí)內(nèi)容基本上按先易后難的`原則,螺旋上升,循序漸進(jìn)。

  說教學(xué)目標(biāo):根據(jù)課標(biāo)要求,結(jié)合各地中考試題類型,以及學(xué)生認(rèn)知特點(diǎn),我把這節(jié)課的教學(xué)目標(biāo)定為(1)認(rèn)知目標(biāo):根據(jù)a,b,c不同的取值范圍,確定拋物線的大致位置,反過來,根據(jù)拋物線的大致位置,確定a,b,c的取值范圍。(2)通過探究,培養(yǎng)學(xué)生數(shù)形結(jié)合的數(shù)學(xué)思想,掌握學(xué)函數(shù)的基本方法。

  說重、難點(diǎn):根據(jù)這節(jié)課的內(nèi)容,結(jié)合學(xué)生特點(diǎn),我把這節(jié)課的教學(xué)重點(diǎn)定為:弄清y=ax2+bx+c中a,b,c的取值對函數(shù)圖象的影響。教學(xué)難點(diǎn)定為:體會函數(shù)中數(shù)形結(jié)合的思想。通過圖象求取值,根據(jù)取值找大致的圖象。

  二、教法,學(xué)法

  1 說教法:本節(jié)課通過師生互動探究式教學(xué),以課標(biāo)為依據(jù),滲透新的教學(xué)理念,遵循教師為主導(dǎo),學(xué)生為主體的原則,結(jié)合九年級學(xué)生的求知心理和已有的認(rèn)知水平開展教學(xué),形成學(xué)生自動,生生互助,師生互動。教師著眼于引導(dǎo),學(xué)生著眼于探索,側(cè)重于學(xué)生能力的提高,思維的訓(xùn)練。同時考慮到學(xué)生的個體差異,在教學(xué)的各個環(huán)節(jié)中進(jìn)行分層施教,讓每一個學(xué)生都能獲得知識,能力得到提高。

  2 說學(xué)法:就課標(biāo)明確提出要培養(yǎng)可持續(xù)發(fā)展的學(xué)生,因此教師有組織,有目的,有針對性的引導(dǎo)學(xué)生并參入到學(xué)習(xí)活動中,鼓勵學(xué)生采用自主學(xué)習(xí),合作交流的研討式學(xué)習(xí)方法。培養(yǎng)學(xué)生動手,動腦,動口的習(xí)慣與能力,使學(xué)生真正成為學(xué)習(xí)的主人。

  四、教學(xué)程序

  本節(jié)課我設(shè)為四個模塊,第一塊是溫故引標(biāo),先復(fù)習(xí)拋物線在不同位置情形下時,它的一般解析式,然后引出這節(jié)課的內(nèi)容,探討二次函數(shù)中a,b,c的功能。第二塊是合作交流,歸納總結(jié)。分組活動,歸納總結(jié)出a,b,c的作用。第三塊是例題剖析,鞏固提高,第一個例題配套1-2個練習(xí),增強(qiáng)學(xué)生的解題能力。第四塊是小結(jié),反思。讓學(xué)生對本節(jié)課所學(xué)內(nèi)容有一個清晰的認(rèn)知。

  五、說板書設(shè)計,課后反思

  1 說板書設(shè)計:根據(jù)學(xué)生的認(rèn)知規(guī)律,我把這節(jié)課的內(nèi)容設(shè)為兩大塊,第一塊歸納總結(jié),第二塊分4個例題。中間2個,右邊2個,相互銜接,渾然一體。

  2 說反思:本節(jié)課既可以說是上新課,也可以說是一節(jié)復(fù)習(xí)課,因而所教內(nèi)容,一部分同學(xué)都有能力獨(dú)自完成,還有一部分同學(xué)需要老師引導(dǎo)才能完成。設(shè)計的內(nèi)容比較單一,訓(xùn)練的題目能否多一點(diǎn),力爭大容量,快節(jié)奏,高效益。

【二次函數(shù)說課稿】相關(guān)文章:

二次函數(shù)概念說課稿12-29

數(shù)學(xué)二次函數(shù)說課稿02-27

二次函數(shù)教案07-28

二次函數(shù)的教學(xué)反思04-22

二次函數(shù)教學(xué)反思05-27

二次函數(shù)教學(xué)反思02-13

二次函數(shù)的教學(xué)反思05-21

《函數(shù)概念》說課稿07-07

函數(shù)概念說課稿11-28

《函數(shù)的概念》說課稿07-26