- 余弦定理說課稿 推薦度:
- 余弦定理說課稿 推薦度:
- 余弦定理說課稿 推薦度:
- 相關(guān)推薦
余弦定理說課稿四篇
作為一名教職工,常常要根據(jù)教學(xué)需要編寫說課稿,編寫說課稿助于積累教學(xué)經(jīng)驗,不斷提高教學(xué)質(zhì)量。優(yōu)秀的說課稿都具備一些什么特點(diǎn)呢?下面是小編收集整理的余弦定理說課稿4篇,歡迎大家分享。
余弦定理說課稿 篇1
一、教材分析:(說教材)
《余弦定理》是全日制中等教育國家規(guī)劃教材(人教版)數(shù)學(xué)第一冊中第六章平面向量第六部分。余弦定理是歐氏空間度量幾何的最重要定理,是解斜三角形的重要定理,是整個測量學(xué)的基礎(chǔ)。余弦定理是勾股定理的推廣,可用解析法、向量法等方法證明。余弦定理主要能解決有關(guān)三角形的三類問題:1)、已知兩邊及其夾角,求第三邊和其他兩個角。2)、已知三邊求三個內(nèi)角;3)、判斷三角形的形狀。以及相關(guān)的證明題。
二、說教學(xué)思路
本著數(shù)學(xué)與專業(yè)有機(jī)結(jié)合的指導(dǎo)思想,讓數(shù)學(xué)服務(wù)于專業(yè)的需要。以及最大限度的提高學(xué)生的學(xué)習(xí)興趣,在本節(jié)課,我不是將余弦定理簡單呈現(xiàn)給學(xué)生,而是創(chuàng)造設(shè)情境,設(shè)計了與機(jī)械相關(guān)聯(lián)并具有愛國主題的二個任務(wù),通過任務(wù)驅(qū)動法教學(xué),極大提高了學(xué)生的學(xué)習(xí)興趣,激發(fā)學(xué)生探索新知識的強(qiáng)烈求知欲望,在完成數(shù)學(xué)教學(xué)任務(wù)的同時,強(qiáng)化了數(shù)學(xué)與專業(yè)的有機(jī)結(jié)合,培養(yǎng)了學(xué)生將數(shù)學(xué)知識運(yùn)用于自身專業(yè)中的能力。同時通過任務(wù)驅(qū)動,培養(yǎng)了學(xué)生自主探究式學(xué)習(xí)的能力;提升解決實(shí)際實(shí)際問題的能力。因為所設(shè)計的兩個任務(wù)具有愛國主義題材,學(xué)生在完成知識學(xué)習(xí)的同時,也極大的激發(fā)了愛國主義精神。
三、說教法
在確定教學(xué)方法前,首先要求教師吃透教材,選擇恰當(dāng)?shù)慕虒W(xué)方法和教學(xué)手段把知識傳授給學(xué)生。本節(jié)課主要采用任務(wù)驅(qū)動法、引導(dǎo)發(fā)現(xiàn)法、觀察法、歸納總結(jié)法、講練結(jié)合法。并采用電教手段使用多媒體輔助教學(xué)。 1. 任務(wù)驅(qū)動法
教師精心設(shè)計與機(jī)械專業(yè)相關(guān)聯(lián)的'二個任務(wù),作為貫穿整節(jié)課的主線,通過具體任務(wù)的完成,提高學(xué)生學(xué)習(xí)的興趣,激發(fā)求知欲,啟發(fā)學(xué)生對問題進(jìn)行思考。在研究過程中,激發(fā)學(xué)生探索新知識的強(qiáng)烈欲望。提升解決實(shí)際總是的能力,并極大的激發(fā)了愛國主義精神。
2. 引導(dǎo)發(fā)現(xiàn)法、觀察法
通過對勾股定理的觀察和三角形直角的相關(guān)變形,學(xué)生從中受啟發(fā),發(fā)現(xiàn)余弦定理,并證明它。
3. 歸納總結(jié)法
學(xué)生通過前期的探索研究,自主歸納總結(jié)出余弦定理及其推論及判斷三角形形狀的相關(guān)規(guī)律。
4. 講練結(jié)合法
講授充分發(fā)揮教師主導(dǎo)作用,引導(dǎo)學(xué)生自主學(xué)習(xí)。練習(xí)讓學(xué)生從多角度對所學(xué)定理進(jìn)行認(rèn)知,及時鞏固所學(xué)的知識,鍛煉了解決實(shí)際問題的能力,發(fā)揮出學(xué)生的主觀能動性,成為學(xué)習(xí)的主體。
四、說學(xué)法
學(xué)生學(xué)法主要有觀察、分析、發(fā)現(xiàn)、自主探究、小組協(xié)作等方法。經(jīng)教師啟發(fā)、誘導(dǎo),學(xué)生通過觀察與分析去發(fā)現(xiàn)并證明余弦定理,培養(yǎng)歸納與猜想、抽象與概括等邏輯思維能力,訓(xùn)練思維品質(zhì)。
五、教學(xué)目標(biāo)
。ㄒ唬┲R目標(biāo)
1、使學(xué)生掌握余弦定理及其證明。
2、使學(xué)生初步掌握應(yīng)用余弦定理解斜三角形。
1
。ǘ┠芰δ繕(biāo)
1、培養(yǎng)學(xué)生在本專業(yè)范圍內(nèi)熟練運(yùn)用余弦定理解決實(shí)際問題的能力。
2、通過啟發(fā)、誘導(dǎo)學(xué)生發(fā)現(xiàn)和證明余弦定理的過程,培養(yǎng)學(xué)生觀察、分析、歸納、猜想、抽象、概括等邏輯思維能力。
3、通過對余弦定理的推導(dǎo),培養(yǎng)學(xué)生的知識遷移能力和建模意識,及合作學(xué)習(xí)的意識。
。ㄈ┑掠繕(biāo)
1、培養(yǎng)學(xué)生的愛國主義精神、及團(tuán)結(jié)、協(xié)作精神。
2、通過三角函數(shù)、余弦定理、向量的數(shù)量積等知識的聯(lián)系理解事物之間普遍聯(lián)系與辯證統(tǒng)一。
六、教學(xué)重點(diǎn)
教學(xué)重點(diǎn)是余弦定理及應(yīng)用余弦定理解斜三角形;
七、教學(xué)難點(diǎn)
分析勾股定理的結(jié)構(gòu)特征,從而突破發(fā)現(xiàn)余弦定理,應(yīng)用余弦定理解斜三角形。 八、教學(xué)過程
教學(xué)中注重突出重點(diǎn)、突破難點(diǎn),從五個層次進(jìn)行教學(xué)。
創(chuàng)設(shè)情境、任務(wù)驅(qū)動;
引導(dǎo)探究、發(fā)現(xiàn)定理;
完成任務(wù)、應(yīng)用遷移;
拓展升華、交流反思;
小結(jié)歸納、布置作業(yè)。
。ㄒ唬、導(dǎo)入
1、教師創(chuàng)設(shè)情境設(shè)置二個任務(wù),做為貫穿本課的主線和數(shù)學(xué)與專業(yè)有機(jī)結(jié)合的鈕帶,通過完成這二個任務(wù),達(dá)到掌握余弦定理并學(xué)會應(yīng)用的目標(biāo)。
2、通過與直角三角形勾股定理引出余弦定理(快樂起點(diǎn)) 經(jīng)教師啟發(fā)、誘導(dǎo),學(xué)生通過探索研究,合理猜想來發(fā)現(xiàn)余弦定理。
。ǘ⑿抡n
3.證明猜想,導(dǎo)出余弦定理及余弦定理的變形
經(jīng)過嚴(yán)密邏輯推理證明得出余弦定理,這一過程中,鍛煉了學(xué)生觀察、分析、歸納、猜想、抽象、概括等邏輯思維能力。
4. 解決二個任務(wù)
5. 操作演練,鞏固提高。
6.小結(jié):
通過學(xué)生口答方式小結(jié),讓學(xué)生強(qiáng)化記憶,分清重點(diǎn),深化對余弦定理的理解。
7.作業(yè):
分層布置作業(yè),根據(jù)不同層次學(xué)生將作業(yè)分為必做題和選做題。使不同程度的學(xué)生都有所提高
九、板書設(shè)計
板書是課堂教學(xué)重要部分,為再現(xiàn)知識體系,突出重點(diǎn),將余弦定理知識體系展示在板書中,利于學(xué)生加深印象,理清思路。
十、課后反思
在教學(xué)設(shè)計上,采用任務(wù)驅(qū)動,教師精心設(shè)計與機(jī)械專業(yè)相關(guān)聯(lián)的二個任務(wù),作為貫穿整節(jié)課的主線,通過具體任務(wù)的完成,即提高學(xué)生學(xué)習(xí)的興趣,又激發(fā)求知欲;知識點(diǎn)學(xué)習(xí)則循序漸進(jìn),符合學(xué)生的認(rèn)知特點(diǎn)。經(jīng)教師啟發(fā)、誘導(dǎo),學(xué)生通過觀察、分析、發(fā)現(xiàn)、自主探究、小組協(xié)作等方法在獲取新知的同時,培養(yǎng)了歸納與猜想、抽象與概括等邏輯思維能力。
余弦定理說課稿 篇2
大家好,今天我向大家說課的題目是《余弦定理》。下面我將從以下幾個方面介紹我這堂課的教學(xué)設(shè)計。
一、教材分析
本節(jié)知識是職業(yè)高中數(shù)學(xué)教材第五章第九節(jié)《解三角形》的內(nèi)容,與初中學(xué)習(xí)的勾股定理有密切的聯(lián)系,在日常生活和工業(yè)生產(chǎn)中也時常有解三角形的問題,在實(shí)際測量問題及航海問題中都有著廣泛的用,而且解三角形和三角函數(shù)聯(lián)系在高考當(dāng)中也時?家恍┙獯痤}。并且在探索建立余弦定理時還用到向量法,坐標(biāo)法等數(shù)學(xué)方法,同時還用到了數(shù)形結(jié)合,方程等數(shù)學(xué)思想。因此,余弦定理的知識非常重要。特別是在三角形中的求角問題中作用更大。做為職業(yè)高中的學(xué)生必須學(xué)好學(xué)透這節(jié)知識
根據(jù)上述教材內(nèi)容分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征及原有知識水平,制定如下教學(xué)目標(biāo):
①理解掌握余弦定理,能正確使用定理
②培養(yǎng)學(xué)生教形結(jié)合分析問題的能力
、叟囵B(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)耐评硭季S和良好的審美能力。
教學(xué)重點(diǎn):定理的探究及應(yīng)用
教學(xué)難點(diǎn):定理的探究及理解
二、學(xué)情分析
對于職業(yè)高中的高一學(xué)生,雖然知識經(jīng)驗并不豐富,但他們的智利發(fā)展已到了形式運(yùn)演階段,具備了較強(qiáng)的`抽象思維能力和演繹推理能力,所以我在授課時注重引導(dǎo)、啟發(fā)和探討以符合這類學(xué)生的心理發(fā)展特點(diǎn),從而促進(jìn)思維能力的進(jìn)一步發(fā)展。
三、教法分析
根據(jù)教材的內(nèi)容和編排的特點(diǎn),為更有效地突出重點(diǎn),突破難點(diǎn),以學(xué)生的發(fā)展為本,遵照學(xué)生的認(rèn)識規(guī)律,本講遵照以教師為主導(dǎo),以學(xué)生為主體,訓(xùn)練為主線的指導(dǎo)思想,采用探究式課堂教學(xué)模式,即在教學(xué)過程中,在教師的啟發(fā)引導(dǎo)下,以學(xué)生獨(dú)立自主和合作交流為前提,以“余弦定理的發(fā)現(xiàn)”為基本探究內(nèi)容,讓學(xué)生的思維由問題開始,到發(fā)想、探究,定理的推導(dǎo),并逐步得到深化。突破重點(diǎn)的手段:抓住學(xué)生情感的興奮點(diǎn),激發(fā)他們的興趣,鼓勵學(xué)生大膽猜想,積極探索,以及及時地鼓勵,使他們知難而進(jìn)。另外,抓知識選擇的切入點(diǎn),從學(xué)生原有的認(rèn)知水平和所需的知識特點(diǎn)入手,教師在學(xué)生主體下給以適當(dāng)?shù)奶崾竞椭笇?dǎo)。突破難點(diǎn)的方法:抓住學(xué)生的能力線,聯(lián)系方法與技能使學(xué)生較易證明余弦定理,另外通過例題和練習(xí)來突破難點(diǎn),注重知識的形成過程,突出教學(xué)理念的創(chuàng)新。
四、學(xué)法指導(dǎo):
指導(dǎo)學(xué)生掌握“觀察——猜想——證明——應(yīng)用”這一思維方法,采取個人、小組、集體等多種解難釋疑的嘗試活動,將自己所學(xué)知識應(yīng)用于對任意三角形性質(zhì)的探究。讓學(xué)生在問題情景中學(xué)習(xí),觀察,類比,思考,探究,概括,動手嘗試相結(jié)合,體現(xiàn)學(xué)生的主體地位,增強(qiáng)學(xué)生由特殊到一般的數(shù)學(xué)思維能力,形成了實(shí)事求是的科學(xué)態(tài)度,增強(qiáng)了鍥而不舍的求學(xué)精神。
五、教學(xué)過程
第一:創(chuàng)設(shè)情景,大概用2分鐘
第二:實(shí)踐探究,形成定理,大約用25分鐘
第三:應(yīng)用定理,拓展反思,大約用13分鐘
。ㄒ唬﹦(chuàng)設(shè)情境,布疑激趣
“興趣是最好的老師”,如果一節(jié)課有個好的開頭,那就意味著成功了一半,從用正弦定理可解的兩類三角形出發(fā),揭示勾股定理特點(diǎn),說明正弦定理解三角形不完備,還有用正弦定理不能直接求解的三角形,應(yīng)怎樣解決呢?需要我們繼續(xù)探究,引出課題。
。ǘ┻壿嬐评恚C明猜想
提出問題,探究問題,形成定理,回顧分析,形成結(jié)論,再認(rèn)識結(jié)論,總結(jié)用途。變形延伸,培養(yǎng)發(fā)散,對比特殊,認(rèn)知推廣。落實(shí)定理,構(gòu)建定理應(yīng)用體系。
。ㄈw納總結(jié),簡單應(yīng)用
1.讓學(xué)生用文字?jǐn)⑹鲇嘞叶ɡ,引?dǎo)學(xué)生發(fā)現(xiàn)定理具有對稱和諧美,提升對數(shù)學(xué)美的享受。
2.回顧余弦定理的內(nèi)容,討論可以解決哪幾類有關(guān)三角形的問題。
(四)講解例題,鞏固定理
1、審題確定條件。
2、明確求解任務(wù)。
3、確定使用公式。
4、科學(xué)求解過程。
。ㄎ澹┱n堂練習(xí),提高鞏固
1.在△ABC中,已知下列條件,解三角形.
(1)A=45°,C=30°,c=10cm
(2)A=60°,B=45°,c=20cm
2.在△ABC中,已知下列條件,解三角形.
(1)a=20cm,b=11cm,B=30°
(2)c=54cm,b=39cm,C=115°
學(xué)生板演,老師巡視,及時發(fā)現(xiàn)問題,并解答。
。┬〗Y(jié)反思,提高認(rèn)識
通過以上的研究過程,同學(xué)們主要學(xué)到了那些知識和方法?你對此有何體會?
1.用向量證明了余弦定理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。
2.兩種表達(dá)。
3.兩類問題。
(七)思維拓展,自主探究
利用余弦定理判斷三角形形狀,即余弦定理的推論。
余弦定理說課稿 篇3
一、教材分析
1.地位及作用
"余弦定理"是人教A版數(shù)學(xué)必修5主要內(nèi)容之一,是解決有關(guān)斜三角形問題的兩個重要定理之一,也是初中"勾股定理"內(nèi)容的直接延拓,它是三角函數(shù)一般知識和平面向量知識在三角形中的具體運(yùn)用,是解可轉(zhuǎn)化為三角形計算問題的其它數(shù)學(xué)問題及生產(chǎn)、生活實(shí)際問題的重要工具具有廣泛的應(yīng)用價值,起到承上啟下的作用。
2.教學(xué)重、難點(diǎn)
重點(diǎn):余弦定理的證明過程和定理的簡單應(yīng)用。
難點(diǎn):利用向量的數(shù)量積證余弦定理的思路。
二、 教學(xué)目標(biāo)
知識目標(biāo):能推導(dǎo)余弦定理及其推論,能運(yùn)用余弦定理解已知"邊,角,邊"和"邊,邊,邊"兩類三角形。
能力目標(biāo):培養(yǎng)學(xué)生知識的遷移能力;歸納總結(jié)的能力;運(yùn)用所學(xué)知識解決實(shí)際問題的能力。
情感目標(biāo):從實(shí)際問題出發(fā)運(yùn)用數(shù)學(xué)知識解決問題這個過程體驗數(shù)學(xué)在實(shí)際生活中的運(yùn)用,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。通過主動探索,合作交流,感受探索的樂趣和成功的體驗,體會數(shù)學(xué)的理性和嚴(yán)謹(jǐn)。
三。 教學(xué)方法
數(shù)學(xué)課堂上首先要重視知識的發(fā)生過程,既能展現(xiàn)知識的獲取,又能暴露解決問題的思維。在本節(jié)教學(xué)中,我將遵循"提出問題、分析問題、解決問題 "的步驟逐步推進(jìn),以課堂教學(xué)的組織者、引導(dǎo)者、合作者的身份,組織學(xué)生探究、歸納、推導(dǎo),引導(dǎo)學(xué)生逐個突破難點(diǎn),師生共同解決問題,使學(xué)生在各種數(shù)學(xué)活動中掌握各種數(shù)學(xué)基本技能,初步學(xué)會從數(shù)學(xué)角度去觀察事物和思考問題,產(chǎn)生學(xué)習(xí)數(shù)學(xué)的愿望和興趣。
四、 教學(xué)過程
本節(jié)教學(xué)中通過創(chuàng)設(shè)情境,充分調(diào)動學(xué)生已有的學(xué)習(xí)經(jīng)驗,讓學(xué)生經(jīng)歷"現(xiàn)實(shí)問題轉(zhuǎn)化為數(shù)學(xué)問題"的過程,發(fā)現(xiàn)新的知識,把學(xué)生的`潛意識狀態(tài)的好奇心變?yōu)樽杂X求知的創(chuàng)新意識。又通過實(shí)際操作,使剛產(chǎn)生的數(shù)學(xué)知識得到完善,提高了學(xué)生動手動腦的能力和增強(qiáng)了研究探索的綜合素質(zhì)。
幫助學(xué)生從平面幾何、三角函數(shù)、向量知識等方面進(jìn)行分析討論,選擇簡潔的處理工具,引發(fā)學(xué)生的積極討論。你能夠有更好的具體的量化方法嗎?問題可轉(zhuǎn)化為已知三角形兩邊長和夾角求第三邊的問題,即:在 中已知AC=b,AB=c和A,求a.
學(xué)生對向量知識可能遺忘,注意復(fù)習(xí);在利用數(shù)量積時,角度可能出現(xiàn)錯誤,出現(xiàn)不同的表示形式,讓學(xué)生從錯誤中發(fā)現(xiàn)問題,鞏固向量知識,明確向量工具的作用。同時,讓學(xué)生明確數(shù)學(xué)中的轉(zhuǎn)化思想:化未知為已知。將實(shí)際問題轉(zhuǎn)化成數(shù)學(xué)問題,引導(dǎo)學(xué)生分析問題。在 中已知a=5,b=7,c=8,求B.
學(xué)生思考或者討論,若有同學(xué)答則順勢引出推論,若不能作答則由老師引導(dǎo)推出推論,然后返回解決該問題。
讓學(xué)生觀察推論的特征,討論該推論有什么用。
余弦定理說課稿 篇4
各位評委老師,下午好!今天我說課的題目是余弦定理,說課的內(nèi)容為余弦定理第二課時,下面我將從說教材、說學(xué)情、說教法和學(xué)法、說教學(xué)過程、說板書設(shè)計這四個方面來對本課進(jìn)行詳細(xì)說明:
一、說教材
。ㄒ唬┙滩牡匚慌c作用
《余弦定理》是必修5第一章《解三角形》的第一節(jié)內(nèi)容,前面已經(jīng)學(xué)習(xí)了正弦定理以及必修4中的任意角、誘導(dǎo)公式以及恒等變換,為后面學(xué)習(xí)三角函數(shù)奠定了基礎(chǔ),因此本節(jié)課有承上啟下的作用。本節(jié)課是解決有關(guān)斜三角形問題以及應(yīng)用問題的一個重要定理,它將三角形的邊和角有機(jī)地聯(lián)系起來,實(shí)現(xiàn)了"邊"與"角"的互化,從而使"三角"與"幾何"產(chǎn)生聯(lián)系,為求與三角形有關(guān)的量提供了理論依據(jù),同時也為判斷三角形形狀,證明三角形中的有關(guān)等式提供了重要依據(jù)。
。ǘ┙虒W(xué)目標(biāo)
根據(jù)上述教材內(nèi)容分析以及新課程標(biāo)準(zhǔn),考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu),心理特征及原有知識水平,我將本課的教學(xué)目標(biāo)定為:
⒈知識與技能:
掌握余弦定理的內(nèi)容及公式;能初步運(yùn)用余弦定理解決一些斜三角形
、策^程與方法:
在探究學(xué)習(xí)的過程中,認(rèn)識到余弦定理可以解決某些與測量和幾何計算有關(guān)的實(shí)際問題,幫助學(xué)生提高運(yùn)用有關(guān)知識解決實(shí)際問題的能力。
、城楦、態(tài)度與價值觀:
培養(yǎng)學(xué)生的探索精神和創(chuàng)新意識;在運(yùn)用余弦定理的過程中,讓學(xué)生逐步養(yǎng)成實(shí)事求是,扎實(shí)嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度,學(xué)習(xí)用數(shù)學(xué)的思維方式解決問題,認(rèn)識世界;通過本節(jié)的運(yùn)用實(shí)踐,體會數(shù)學(xué)的科學(xué)價值,應(yīng)用價值;
(三)本節(jié)課的.重難點(diǎn)
教學(xué)重點(diǎn)是:運(yùn)用余弦定理探求任意三角形的邊角關(guān)系,解決與之有關(guān)的計算問題,運(yùn)用余弦定理解決一些與測量以及幾何計算有關(guān)的實(shí)際問題。
教學(xué)難點(diǎn)是:靈活運(yùn)用余弦定理解決相關(guān)的實(shí)際問題。
教學(xué)關(guān)鍵是:熟練掌握并靈活應(yīng)用余弦定理解決相關(guān)的實(shí)際問題。
下面為了講清重點(diǎn)、難點(diǎn),使學(xué)生能達(dá)到本節(jié)設(shè)定的教學(xué)目標(biāo),我再從教法和學(xué)法上談?wù)劊?/p>
二、說學(xué)情
從知識層面上看,高中學(xué)生通過前一節(jié)課的學(xué)習(xí)已經(jīng)掌握了余弦定理及其推導(dǎo)過程;從能力層面上看,學(xué)生初步掌握運(yùn)用余弦定理解決一些簡單的斜三角形問題的技能;從情感層面上看,學(xué)生對教學(xué)新內(nèi)容的學(xué)習(xí)有相當(dāng)?shù)呐d趣和積極性,但在探究問題的能力以及合作交流等方面的發(fā)展不夠均衡。
三、說教法和學(xué)法
貫徹的指導(dǎo)思想是把"學(xué)習(xí)的主動權(quán)還給學(xué)生",倡導(dǎo)"自主、合作、探究"的學(xué)習(xí)方式。讓學(xué)生自主探索學(xué)會分析問題,解決問題。
四、說教學(xué)過程
下面為了完成教學(xué)目標(biāo),解決教學(xué)重點(diǎn),突破教學(xué)難點(diǎn),課堂教學(xué)我準(zhǔn)備按以下五個環(huán)節(jié)展開:
環(huán)節(jié)⒈復(fù)習(xí)引入
由于本節(jié)課是余弦定理的第一課時,因此先領(lǐng)著學(xué)生回顧復(fù)習(xí)上節(jié)課所學(xué)的內(nèi)容,采用提問的方式,找同學(xué)回答余弦定理的內(nèi)容及公式,并且讓學(xué)生回想公式推導(dǎo)的思路和方法,這樣一來可以檢驗學(xué)生對所學(xué)知識的掌握情況,二來也為新課作準(zhǔn)備。
環(huán)節(jié)⒉應(yīng)用舉例
在本環(huán)節(jié)中,我將給出兩道典型例題
△ABC的頂點(diǎn)為A(6,5),B(-2,8)和C(4,1),求(精確到)。
已知三點(diǎn)A(1,3),B(-2,2),C(0,-3),求△ABC各內(nèi)角的大小。
通過利用余弦定理解斜三角形的思想,來對這兩道例題進(jìn)行分析和講解;本環(huán)節(jié)的目的在于通過典型例題的解答,鞏固學(xué)生所學(xué)的知識,進(jìn)一步深化對于余弦定理的認(rèn)識和理解,提高學(xué)生的理解能力和解題計算能力。
環(huán)節(jié)⒊練習(xí)反饋
練習(xí)B組題,1、2、3;習(xí)題1-1A組,1、2、3
在本環(huán)節(jié)中,我將找學(xué)生到黑板做題,期間巡視下面同學(xué)的做題情況,加以糾正和講解;通過解決書后練習(xí)題,鞏固學(xué)生當(dāng)堂所學(xué)知識,同時教師也可以及時了解學(xué)生的掌握情況,以便及時調(diào)整自己的教學(xué)步調(diào)。
環(huán)節(jié)⒋歸納小結(jié)
在本環(huán)節(jié)中,我將采用師生共同總結(jié)-交流-完善的方式,首先讓學(xué)生自己總結(jié)出余弦定理可以解決哪些類型的問題,再由師生共同完善,總結(jié)出余弦定理可以解決的兩類問題:⑴已知三邊,求各角;⑵已知兩邊和它們的夾角,求第三邊和其他兩個角。本環(huán)節(jié)的目的在于引導(dǎo)學(xué)生學(xué)會自己總結(jié);讓學(xué)生進(jìn)一步體會知識的形成、發(fā)展、完善的過程。
環(huán)節(jié)⒌課后作業(yè)
必做題:習(xí)題1-1A組,6、7;習(xí)題1-1B組,2、3、4、5
選做題:習(xí)題1-1B組7,8,9.
基于因材施教的原則,在根據(jù)不同層次的學(xué)生情況,把作業(yè)分為必做題和選做題,必做題要求所有學(xué)生全部完成,選做題要求學(xué)有余力的學(xué)生完成,使不同程度的學(xué)生都有所提高。本環(huán)節(jié)的目的是讓學(xué)生進(jìn)一步鞏固和深化所學(xué)的知識,培養(yǎng)學(xué)生的自主探究能力。
五、說板書
在本節(jié)課中我將采用提綱式的板書設(shè)計,因為提綱式-條理清楚、從屬關(guān)系分明,給人以清晰完整的印象,便于學(xué)生對教材內(nèi)容和知識體系的理解和記憶。
【余弦定理說課稿】相關(guān)文章:
余弦定理說課稿07-06
余弦定理說課稿04-07
精選余弦定理說課稿三篇02-11
精選余弦定理說課稿3篇01-27
精選余弦定理說課稿四篇01-27
余弦定理說課稿6篇11-16
余弦定理說課稿7篇11-16
余弦定理說課稿(6篇)11-12
余弦定理說課稿4篇01-10