當(dāng)前位置:育文網(wǎng)>教學(xué)文檔>說課稿> 《平面動點軌跡》說課稿

《平面動點軌跡》說課稿

時間:2022-03-11 05:48:15 說課稿 我要投稿

《平面動點軌跡》說課稿

  作為一名老師,就不得不需要編寫說課稿,編寫說課稿助于積累教學(xué)經(jīng)驗,不斷提高教學(xué)質(zhì)量。那么說課稿應(yīng)該怎么寫才合適呢?以下是小編收集整理的《平面動點軌跡》說課稿,歡迎大家分享。

《平面動點軌跡》說課稿

《平面動點軌跡》說課稿1

  一、教學(xué)目標(biāo)

 。ㄒ唬┲R與技能

 。薄⑦M一步熟練掌握求動點軌跡方程的基本方法。

 。、體會數(shù)學(xué)實驗的直觀性、有效性,提高幾何畫板的操作能力。

 。ǘ┻^程與方法

 。薄⑴囵B(yǎng)學(xué)生觀察能力、抽象概括能力及創(chuàng)新能力。

 。病Ⅲw會感性到理性、形象到抽象的思維過程。

 。、強化類比、聯(lián)想的方法,領(lǐng)會方程、數(shù)形結(jié)合等思想。

 。ㄈ┣楦袘B(tài)度價值觀

 。、感受動點軌跡的動態(tài)美、和諧美、對稱美

 。、樹立競爭意識與合作精神,感受合作交流帶來的成功感,樹立自信心,激發(fā)提出問題和解決問題的勇氣

  二、教學(xué)重點與難點

  教學(xué)重點:運用類比、聯(lián)想的方法探究不同條件下的'軌跡

  教學(xué)難點:圖形、文字、符號三種語言之間的過渡

  三、、教學(xué)方法和手段

  【教學(xué)方法】觀察發(fā)現(xiàn)、啟發(fā)引導(dǎo)、合作探究相結(jié)合的教學(xué)方法。啟發(fā)引導(dǎo)學(xué)生積極思考并對學(xué)生的思維進行調(diào)控,幫助學(xué)生優(yōu)化思維過程,在此基礎(chǔ)上,提供給學(xué)生交流的機會,幫助學(xué)生對自己的思維進行組織和澄清,并能清楚地、準(zhǔn)確地表達自己的數(shù)學(xué)思維。

  【教學(xué)手段】利用網(wǎng)絡(luò)教室,四人一機,多媒體教學(xué)手段。通過上述教學(xué)手段,一方面:再現(xiàn)知識產(chǎn)生的過程,通過多媒體動態(tài)演示,突破學(xué)生在舊知和新知形成過程中的障礙(靜態(tài)到動態(tài));另一方面:節(jié)省了時間,提高了課堂教學(xué)的效率,激發(fā)了學(xué)生學(xué)習(xí)的興趣。

  【教學(xué)模式】重點中學(xué)實施素質(zhì)教育的課堂模式“創(chuàng)設(shè)情境、激發(fā)情感、主動發(fā)現(xiàn)、主動發(fā)展”。

  四、教學(xué)過程

  生活中我們四處可見軌跡曲線的影子

  【演示】這是美麗的城市夜景圖

  【演示】許多人認為天體運行的軌跡都是圓錐曲線,

  研究表明,天體數(shù)目越多,軌跡種類也越多

  【演示】建筑中也有許多美麗的軌跡曲線

  設(shè)計意圖:讓學(xué)生感受數(shù)學(xué)就在我們身邊,感受軌跡

  曲線的動態(tài)美、和諧美、對稱美,激發(fā)學(xué)習(xí)興趣。

《平面動點軌跡》說課稿2

  本節(jié)課是高中數(shù)學(xué)第二冊第七章《曲線和圓的方程》第五節(jié)《曲線和方程》,這是一節(jié)教學(xué)研討課,是在大力提倡改革課堂教學(xué)模式、提高課堂效益、開發(fā)學(xué)生智力等多方面能力的前提下開設(shè)的,目的是努力尋求一種全新的課堂教學(xué)模式,能夠讓信息技術(shù)和數(shù)學(xué)課本知識有效的融合在一起,讓學(xué)生知道,學(xué)習(xí)數(shù)學(xué),不僅僅是做題目,而且是研究題目,提高了學(xué)生的學(xué)習(xí)數(shù)學(xué)的興趣。

  一、教材分析

  《平面動點的軌跡》這部分內(nèi)容從理論上揭示了幾何中的“形”與代數(shù)中的“數(shù)”相統(tǒng)一的關(guān)系,為“作形判數(shù)”與“就數(shù)論形”的相互轉(zhuǎn)化開辟了途徑,同時也體現(xiàn)解析幾何的基本思想。軌跡問題具有深厚的生活背景,求平面動點的軌跡方程涉及集合、方程、三角平面幾何等基礎(chǔ)知識,其中滲透著運動與變化、數(shù)形結(jié)合的等思想,是中學(xué)數(shù)學(xué)的重要內(nèi)容,也是歷年高考數(shù)學(xué)考查的重點之一。

  二、對數(shù)學(xué)目標(biāo)的闡述

  “以知識為載體,注重學(xué)生的能力、良好的意志品質(zhì)及合作學(xué)習(xí)精神的培養(yǎng)”是本教學(xué)設(shè)計中貫穿始終的一個重要教學(xué)理念。為此本課的知識目標(biāo)設(shè)定為三條:

 。1)了解解析幾何的基本思想、明確它所研究的基本問題

 。2)了解用坐標(biāo)法研究幾何問題的有關(guān)知識和觀點

 。3)初步掌握根據(jù)已知條件求曲線方程的方法,同時進一步加深理解“曲線的方程、方程的曲線”的概念。

  三、對學(xué)生能力目標(biāo)的培養(yǎng)

  本節(jié)課的設(shè)計著眼點是讓學(xué)生集體參與、主動參與,培養(yǎng)學(xué)生動手、動腦的能力,鼓勵多向思維、積極活動、勇于探索。知識的學(xué)習(xí)和能力的提高是同步的,從本課的設(shè)計不難看出對學(xué)生能力目標(biāo)是:通過自我思考、同桌交流、師生互議、實際探究等課堂活動,獲取知識。同時,培養(yǎng)學(xué)生探究學(xué)習(xí)、合作學(xué)習(xí)的.意識,強化數(shù)形結(jié)合、化歸與轉(zhuǎn)化等數(shù)學(xué)思想,提高分析問題、解決問題的能力。

  四、對學(xué)生個性品質(zhì)和情感教育的培養(yǎng)

  設(shè)計者試圖利用動畫演示軌跡的形成過程,使課堂氣氛活躍,讓學(xué)生感受動點軌跡的動態(tài)美,使課堂教學(xué)內(nèi)容形象化,從而激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和學(xué)好教學(xué)的信心。而鼓勵學(xué)生積極思考、勇于探索,培養(yǎng)學(xué)生良好的意志品質(zhì),樹立競爭意識與合作精神,感受合作交流帶來的成功感,樹立自信心,激發(fā)提出問題和解決問題的勇氣則是本節(jié)課要達成的個性品質(zhì)和情感目標(biāo)。

  五、關(guān)于教學(xué)方法與教學(xué)法手段的選用

  新課程強調(diào)教師要調(diào)整自己的角色,改變傳統(tǒng)的教育方式,教師要由傳統(tǒng)意義上知識的傳授者和學(xué)生的管理者,改變成為以學(xué)生為中心,讓學(xué)生真正成為學(xué)習(xí)的主人而不是知識的奴隸,基于此,根據(jù)本節(jié)課的教學(xué)內(nèi)容和學(xué)生的實際水平,采用的是引導(dǎo)發(fā)現(xiàn)法和計算機軟件——《幾何畫板》實驗輔助教學(xué)。

  六、、關(guān)于教學(xué)程序的設(shè)計

  1、創(chuàng)設(shè)情景,引入課題

  平面解析幾何的核心是“坐標(biāo)法”,用代數(shù)的方法研究幾何圖的性質(zhì)。主要包括兩個部分:求曲線的方程;通過研究方程研究曲線的性質(zhì)。在傳統(tǒng)的教學(xué)中,動點并不動!稁缀萎嫲濉返奶攸c是“動”?梢栽趧討B(tài)中觀察數(shù)學(xué)現(xiàn)象,探究幾何圖形的性質(zhì)。在《幾何畫板》支持下,“動點”真的動起來了。在動態(tài)中觀察,觀察變動中不變的規(guī)律觸及到問題的本質(zhì),可以更好地讓學(xué)生參與到教學(xué)過程中來。讓學(xué)生動手操作,發(fā)現(xiàn)數(shù)學(xué)規(guī)律。

  例 1、已知點P是圓上的一個動點,點A是X軸上的定點,坐標(biāo)是(12、0)當(dāng)點P在圓上運動時,線段PA的中點M的軌跡是什么?

  第一步:讓學(xué)生借助畫板動手探究軌跡

  第二步:要求學(xué)生求出軌跡方程、驗證軌跡

  解法一:設(shè)M(x,y)則,由點p是圓上的點得,,化簡得:

  2、問題提出,引入新課

  例2、已知B是定圓A內(nèi)一定點,C是圓上的動點,L是線段BC的垂直平分線。交點為P,M為L與直徑CD的交點,當(dāng)點C在圓上運動時,探索直線L上哪個點的運行時橢圓?

  設(shè)計意圖:借助數(shù)學(xué)實驗,把原本屬于教師行為的設(shè)疑激趣還原于學(xué)生,讓學(xué)生自己在實踐過程中發(fā)現(xiàn)疑問,更容易激發(fā)學(xué)生學(xué)習(xí)的熱情,促使他們主動發(fā)現(xiàn)、主動學(xué)習(xí)。

  第一步:分解動作,向?qū)W生提出幾個問題:

  問題1:當(dāng)點C在圓上運動時,直線 圍成一個橢圓,上哪個點在這個橢圓上?(為什么)注意觀察點P與點M

  問題2:CD是圓A的直徑,直線L與CD交于M,求M的軌跡方程。

  問題3、改變點B的位置,當(dāng)點B在圓外時,你的結(jié)論該做怎樣的修改呢?

  學(xué)生活動:第一步:利用網(wǎng)絡(luò)平臺展示學(xué)生得到的軌跡(教師有意識的整合在一起)

  第二步:課堂完成學(xué)生歸納出來的問題1,問題2和3課后完成。

  整個教學(xué)過程,體現(xiàn)了四個統(tǒng)一:既學(xué)習(xí)書本知識與投身實踐的統(tǒng)一、書本學(xué)習(xí)與現(xiàn)代信息技術(shù)學(xué)習(xí)的統(tǒng)一、書本知識與資源拓展的統(tǒng)一、課堂學(xué)習(xí)與課外實踐的統(tǒng)一。本節(jié)課學(xué)生精神飽滿、興趣濃厚、合作積極,與教師保持良好的互動,還不時產(chǎn)生一些爭執(zhí),給我提出了一些新的問題,折射出我不足的方面,促進了我的進步與提高,師生間的教與學(xué)就像一面鏡子,互相折射,共同進步。

  通過本節(jié)課的學(xué)習(xí),學(xué)生不僅掌握了動點軌跡的求法,而且通過作圖掌握了《幾何畫板》這個軟件,通過方程的推導(dǎo),更加熟悉了動點軌跡的求法,而且通過作圖掌握了幾何的基本思想“以數(shù)論形,數(shù)形結(jié)合”,提高了運用數(shù)形結(jié)合、等價轉(zhuǎn)化等數(shù)學(xué)思想方法解決問題的能力,通過思路的探索和軌跡方程的推導(dǎo),學(xué)生的思維品質(zhì)得以優(yōu)化,學(xué)會辯證地看待問題,享受了數(shù)學(xué)的美。

《平面動點軌跡》說課稿3

  一、教學(xué)目標(biāo)

  (一)知識與技能

  1、進一步熟練掌握求動點軌跡方程的基本方法。

  2、體會數(shù)學(xué)實驗的直觀性、有效性,提高幾何畫板的操作能力。

  (二)過程與方法

  1、培養(yǎng)學(xué)生觀察能力、抽象概括能力及創(chuàng)新能力。

  2、體會感性到理性、形象到抽象的思維過程。

  3、強化類比、聯(lián)想的方法,領(lǐng)會方程、數(shù)形結(jié)合等思想。

  (三)情感態(tài)度價值觀

  1、感受動點軌跡的`動態(tài)美、和諧美、對稱美

  2、樹立競爭意識與合作精神,感受合作交流帶來的成功感,樹立自信心,激發(fā)提出問題和解決問題的勇氣

  二、教學(xué)重點與難點

  教學(xué)重點:運用類比、聯(lián)想的方法探究不同條件下的軌跡

  教學(xué)難點:圖形、文字、符號三種語言之間的過渡

  三、、教學(xué)方法和手段

  【教學(xué)方法】觀察發(fā)現(xiàn)、啟發(fā)引導(dǎo)、合作探究相結(jié)合的教學(xué)方法。啟發(fā)引導(dǎo)學(xué)生積極思考并對學(xué)生的思維進行調(diào)控,幫助學(xué)生優(yōu)化思維過程,在此基礎(chǔ)上,提供給學(xué)生交流的機會,幫助學(xué)生對自己的思維進行組織和澄清,并能清楚地、準(zhǔn)確地表達自己的數(shù)學(xué)思維。

  【教學(xué)手段】利用網(wǎng)絡(luò)教室,四人一機,多媒體教學(xué)手段。通過上述教學(xué)手段,一方面:再現(xiàn)知識產(chǎn)生的過程,通過多媒體動態(tài)演示,突破學(xué)生在舊知和新知形成過程中的障礙(靜態(tài)到動態(tài));另一方面:節(jié)省了時間,提高了課堂教學(xué)的效率,激發(fā)了學(xué)生學(xué)習(xí)的興趣。

  【教學(xué)模式】重點中學(xué)實施素質(zhì)教育的課堂模式“創(chuàng)設(shè)情境、激發(fā)情感、主動發(fā)現(xiàn)、主動發(fā)展”。

  四、教學(xué)過程

  1、創(chuàng)設(shè)情景,引入課題

  生活中我們四處可見軌跡曲線的影子

  【演示】這是美麗的城市夜景圖

  【演示】許多人認為天體運行的軌跡都是圓錐曲線,

  研究表明,天體數(shù)目越多,軌跡種類也越多

  【演示】建筑中也有許多美麗的軌跡曲線

  設(shè)計意圖:讓學(xué)生感受數(shù)學(xué)就在我們身邊,感受軌跡

  曲線的動態(tài)美、和諧美、對稱美,激發(fā)學(xué)習(xí)興趣。

  2、激發(fā)情感,引導(dǎo)探索

  靠在墻角的梯子滑落了,如果梯子上站著一個人,我們不禁會想,這個人是直直的摔下去呢?還是劃了一條優(yōu)美的曲線飛出去呢?我們把這個問題轉(zhuǎn)化為數(shù)學(xué)問題就是新教材高二上冊88頁20題,也就是這里的例題1;

【《平面動點軌跡》說課稿】相關(guān)文章:

《平面動點軌跡》說課稿3篇06-10

動與靜說課稿11-03

《動與靜》說課稿01-18

平面圖形說課稿07-07

平面鏡說課稿11-08

《平面向量》說課稿07-19

《平面鏡成像》說課稿02-09

平面向量數(shù)量積說課稿03-14

平面圖形的拼組說課稿05-26