- 相關推薦
中職數(shù)學等差數(shù)列說課稿(精選5篇)
作為一位優(yōu)秀的人民教師,很有必要精心設計一份說課稿,借助說課稿可以更好地組織教學活動。那么問題來了,說課稿應該怎么寫?以下是小編為大家收集的中職數(shù)學等差數(shù)列說課稿(精選5篇),歡迎大家分享。
中職數(shù)學等差數(shù)列說課稿1
[教學目標]
1.知識與技能目標:掌握等差數(shù)列的概念;理解等差數(shù)列的通項公式的推導過程;了解等差數(shù)列的函數(shù)特征;能用等差數(shù)列的通項公式解決相應的一些問題。
2.過程與方法目標:讓學生親身經(jīng)歷“從特殊入手,研究對象的性質(zhì),再逐步擴大到一般”這一研究過程,培養(yǎng)他們觀察、分析、歸納、推理的能力。通過階梯性的強化練習,培養(yǎng)學生分析問題解決問題的能力。
3.情感態(tài)度與價值觀目標:通過對等差數(shù)列的研究,培養(yǎng)學生主動探索、勇于發(fā)現(xiàn)的求索精神;使學生逐步養(yǎng)成細心觀察、認真分析、及時總結(jié)的好習慣。
[教學重難點]
1.教學重點:等差數(shù)列的概念的'理解,通項公式的推導及應用。
2.教學難點:
(1)對等差數(shù)列中“等差”兩字的把握;
(2)等差數(shù)列通項公式的推導。
[教學過程]
一.課題引入
創(chuàng)設情境引入課題:(這節(jié)課我們將學習一類特殊的數(shù)列,下面我們看這樣一些例子)
二、新課探究
(一)等差數(shù)列的定義
1、等差數(shù)列的定義
如果一個數(shù)列從第二項起,每一項與前一項的差等于同一個常數(shù),那么這個數(shù)列就叫等差數(shù)列。這個常數(shù)叫做等差數(shù)列的公差,通常用字母d來表示。
(1)定義中的關健詞有哪些?
(2)公差d是哪兩個數(shù)的差?
(二)等差數(shù)列的通項公式
探究1:等差數(shù)列的通項公式(求法一)
如果等差數(shù)列首項是,公差是,那么這個等差數(shù)列如何表示?呢?
根據(jù)等差數(shù)列的定義可得:
因此等差數(shù)列的通項公式就是:,
探究2:等差數(shù)列的通項公式(求法二)
根據(jù)等差數(shù)列的定義可得:
將以上-1個式子相加得等差數(shù)列的通項公式就是:,
三、應用與探索
例1、(1)求等差數(shù)列8,5,2,…,的第20項。
(2)等差數(shù)列-5,-9,-13,…,的第幾項是–401?
(2)、分析:要判斷-401是不是數(shù)列的項,關鍵是求出通項公式,并判斷是否存在正整數(shù)n,使得成立,實質(zhì)上是要求方程的正整數(shù)解。
例2、在等差數(shù)列中,已知=10,=31,求首項與公差d.
解:由,得。
在應用等差數(shù)列的通項公式an=a1+(n-1)d過程中,對an,a1,n,d這四個變量,知道其中三個量就可以求余下的一個量,這是一種方程的思想。
鞏固練習
1.等差數(shù)列{an}的前三項依次為a-6,-3a-5,-10a-1,則a=()。
2.一張?zhí)葑幼罡咭患墝?3cm,最低一級寬110cm,中間還有10級,各級的寬度成等差數(shù)列。求公差d。
四、小結(jié)
1.等差數(shù)列的通項公式:
公差;
2.等差數(shù)列的計算問題,通常知道其中三個量就可以利用通項公式an=a1+(n-1)d,求余下的一個量;
3.判斷一個數(shù)列是否為等差數(shù)列只需看是否為常數(shù)即可;
4.利用從特殊到一般的思維去發(fā)現(xiàn)數(shù)學系規(guī)律或解決數(shù)學問題.
五、作業(yè):
1、必做題:課本第40頁習題2.2第1,3,5題
2、選做題:如何以最快的速度求:1+2+3+???+100=
中職數(shù)學等差數(shù)列說課稿2
一、教材分析。
1、教學目標:
。1)理解并掌握等差數(shù)列的概念;了解等差數(shù)列的通項公式的推導過程及思想;
。2)培養(yǎng)學生觀察、分析、歸納、推理的能力;在領會函數(shù)與數(shù)列關系的前提下,把研究函數(shù)的方法遷移來研究數(shù)列,培養(yǎng)學生的知識、方法遷移能力;通過階梯性練習,提高學生分析問題和解決問題的能力。
。3)通過對等差數(shù)列的研究,培養(yǎng)學生主動探索、勇于發(fā)現(xiàn)的求知精神;養(yǎng)成細心觀察、認真分析、善于總結(jié)的良好思維習慣。
2、教學重點和難點:
。1)等差數(shù)列的概念。
。2)等差數(shù)列的通項公式的推導過程及應用。用不完全歸納法推導等差數(shù)列的通項公式。
二、教法分析。
采用啟發(fā)式、討論式以及講練結(jié)合的教學方法,通過問題激發(fā)學生求知欲,使學生主動參與數(shù)學實踐活動,以獨立思考和相互交流的形式,在教師的指導下發(fā)現(xiàn)、分析和解決問題。
三、教學程序。
本節(jié)課的教學過程由:(一)復習引入;(二)新課探究;(三)應用例解;(四)反饋練習;(五)歸納小結(jié);(六)布置作業(yè),六個教學環(huán)節(jié)構成。
(一)復習引入:
1、全國統(tǒng)一鞋號中成年女鞋的各種尺碼(表示鞋底長,單位是cm)分別是21,22,23,24,25。
2、某劇場前10排的座位數(shù)分別是:38,40,42,44,46,48,50,52,54,56。
3、某長跑運動員7天里每天的訓練量(單位:m)是:7500,8000,8500,9000,9500,10000,10500。
共同特點:從第2項起,每一項與前一項的差都等于同一個常數(shù)。
。ǘ 新課探究。
1、給出等差數(shù)列的概念:
如果一個數(shù)列,從第二項開始它的每一項與前一項之差都等于同一常數(shù),這個數(shù)列就叫等差數(shù)列, 這個常數(shù)叫做等差數(shù)列的公差,通常用字母d來表示。強調(diào):
(1)“從第二項起”滿足條件;
(2)公差d一定是由后項減前項所得;
。3)公差可以是正數(shù)、負數(shù),也可以是0。
2、推導等差數(shù)列的`通項公式:若等差數(shù)列{an }的首項是 ,公差是d, 則據(jù)其定義可得:— =d 即: = +d;– =d 即: = +d = +2d;– =d 即: = +d = +3d……進而歸納出等差數(shù)列的通項公式:= +(n—1)d
此時指出: 這種求通項公式的辦法叫不完全歸納法,這種導出公式的方法不夠嚴密,為了培養(yǎng)學生嚴謹?shù)膶W習態(tài)度,在這里向?qū)W生介紹另外一種求數(shù)列通項公式的辦法——————迭加法:– =d;– =d;– =d……– =d。
將這(n—1)個等式左右兩邊分別相加,就可以得到 – = (n—1) d即 = +(n—1) d
當n=1時,上面等式兩邊均為 ,即等式也是成立的,這表明當n∈ 時上面公式都成立,因此它就是等差數(shù)列{an }的通項公式。
接著舉例說明:若一個等差數(shù)列{ }的首項是1,公差是2,得出這個數(shù)列的通項公式是: =1+(n—1)×2 , 即 =2n—1 以此來鞏固等差數(shù)列通項公式運用
(三)應用舉例。
這一環(huán)節(jié)是使學生通過例題和練習,增強對通項公式含義的理解以及對通項公式的運用,提高解決實際問題的能力。通過例1和例2向?qū)W生表明:要用運動變化的觀點看等差數(shù)列通項公式中的 、d、n、 這4個量之間的關系。當其中的部分量已知時,可根據(jù)該公式求出另一部分量。
例1 :
(1)求等差數(shù)列8,5,2,…的第20項;
。2)—401是不是等差數(shù)列—5,—9,—13,…的項?如果是,是第幾項?
第二問實際上是求正整數(shù)解的問題,而關鍵是求出數(shù)列的通項公式。
例2:
在等差數(shù)列{an}中,已知 =10, =31,求首項 與公差d。
在前面例1的基礎上將例2當作練習作為對通項公式的鞏固。
例3:
梯子的最高一級寬33cm,最低一級寬110cm,中間還有10級,各級的寬度成等差數(shù)列。計算中間各級的寬度。
。ㄋ模┓答伨毩暋
1、小節(jié)后的練習中的第1題和第2題(要求學生在規(guī)定時間內(nèi)完成)。目的:使學生熟悉通項公式,對學生進行基本技能訓練。
2、若數(shù)列{ } 是等差數(shù)列,若 = k ,(k為常數(shù))試證明:數(shù)列{ }是等差數(shù)列。
此題是對學生進行數(shù)列問題提高訓練,學習如何用定義證明數(shù)列問題同時強化了等差數(shù)列的概念。
。ㄎ澹w納小結(jié) 。(由學生總結(jié)這節(jié)課的收獲)
1、等差數(shù)列的概念及數(shù)學表達式。
強調(diào)關鍵字:從第二項開始它的每一項與前一項之差都等于同一常數(shù)
2、等差數(shù)列的通項公式 = +(n—1) d會知三求一
。 布置作業(yè)。
1、必做題:課本P114 習題3.2第2,6 題。
2、選做題:已知等差數(shù)列{ }的首項 = —24,從第10項開始為正數(shù),求公差d的取值范圍。(目的:通過分層作業(yè),提高同學們的求知欲和滿足不同層次的學生需求)
四、板書設計。
在板書中突出本節(jié)重點,將強調(diào)的地方如定義中,“從第二項起”及“同一常數(shù)”等幾個字用紅色粉筆標注,同時給學生留有作題的地方,整個板書充分體現(xiàn)了精講多練的教學方法。
中職數(shù)學等差數(shù)列說課稿3
【內(nèi)容分析】
本節(jié)課是《普通高中課程標準實驗教科書·數(shù)學5》(人教A版)第二章數(shù)列第二節(jié)等差數(shù)列第一課時。數(shù)列是高中數(shù)學重要內(nèi)容之一,它不僅有著廣泛的實際應用,而且起著承前啟后的作用。等差數(shù)列是在學生學習了數(shù)列的有關概念和給出數(shù)列的兩種方法——通項公式和遞推公式的基礎上,對數(shù)列的知識進一步深入和拓廣。同時等差數(shù)列也為今后學習等比數(shù)列提供了“聯(lián)想”、“類比”的思想方法。
【教學目標】
1.知識目標:理解等差數(shù)列定義,掌握等差數(shù)列的通項公式。
2.能力目標:培養(yǎng)學生觀察、歸納能力,在學習過程中,體會歸納思想和化歸思想并加深認識;通過概念的引入與通項公式的推導,培養(yǎng)學生分析探索能力,增強運用公式解決實際問題的能力。
3.情感目標:通過對等差數(shù)列的研究,使學生明確等差數(shù)列與一般數(shù)列的內(nèi)在聯(lián)系,滲透特殊與一般的辯證唯物主義觀點,加強理論聯(lián)系實際,激發(fā)學生的學習興趣。
【教學重點】
、俚炔顢(shù)列的概念;②等差數(shù)列的通項公式的推導過程及應用。
【教學難點】
、倮斫獾炔顢(shù)列“等差”的特點及通項公式的含義;②等差數(shù)列的通項公式的推導過程。
【學情分析】
我所教學的學生是我校高一(10)班的學生(平行班學生),經(jīng)過快一年的高中數(shù)學學習,大部分學生知識經(jīng)驗已較為豐富,他們的智力發(fā)展已到了形式運演階段,具備了較強的抽象思維能力和演繹推理能力,但也有一部分學生的基礎較弱,學習數(shù)學的興趣還不是很濃,所以我在授課時注重從具體的生活實例出發(fā),注重引導、啟發(fā)、研究和探討以符合這類學生的心理發(fā)展特點,從而促進思維能力的進一步發(fā)展。
【設計思路】
1.教法
①誘導思維法:這種方法有利于學生對知識進行主動建構;有利于突出重點,突破難點;有利于調(diào)動學生的主動性和積極性,發(fā)揮其創(chuàng)造性。
②分組討論法:有利于學生進行交流,及時發(fā)現(xiàn)問題,解決問題,調(diào)動學生的積極性。
、壑v練結(jié)合法:可以及時鞏固所學內(nèi)容,抓住重點,突破難點。
2.學法
引導學生首先從三個現(xiàn)實問題(數(shù)數(shù)問題、水庫水位問題、儲蓄問題)概括出數(shù)組特點并抽象出等差數(shù)列的概念;接著就等差數(shù)列概念的特點,推導出等差數(shù)列的通項公式;可以對各種能力的同學引導認識多元的推導思維方法。
用多種方法對等差數(shù)列的通項公式進行推導。
在引導分析時,留出“空白”,讓學生去聯(lián)想、探索,同時鼓勵學生大膽質(zhì)疑,圍繞中心各抒己見,把思路方法和需要解決的問題弄清。
【教學過程】
教學內(nèi)容問題預設師生互動預設意圖
創(chuàng)設情景,提出問題
問題提出:
1、從0開始,將5的倍數(shù)按從小到大的順序排列,得到的數(shù)列是什么?
2、水庫管理人員為了保證優(yōu)質(zhì)魚類有良好的生活環(huán)境,用定期放水清庫的辦法清理水庫中的雜魚。如果一個水庫的水位為18m,自然放水每天水位降低2.5m,最低降至5m。那么從開始放水算起,到可以進行清理工作的那天,水庫每天的水位(單位:m)組成一個什么數(shù)列?
3、我國現(xiàn)行儲蓄制度規(guī)定銀行支付存款利息的方式為單利,即不把利息加入本息計算下一期的利息。按照單利計算本利和的公式是:本利和=本金×(1+利率×存期)。按活期存入10 000元錢,年利率是0.72%,那么按照單利,5年內(nèi)各年末的本利和(單位:元)組成一個什么數(shù)列?
教師:以上三個問題中的數(shù)蘊涵著三列數(shù)。
學生:
1:0,5,10,15,20,25,…。
2:18,15.5,13,10.5,8,5.5。
3:10072,10144,10216,10288,10360。
從實例引入,實質(zhì)是給出了等差數(shù)列的現(xiàn)實背景,目的是讓學生感受到等差數(shù)列是現(xiàn)實生活中大量存在的數(shù)學模型。通過分析,由特殊到一般,激發(fā)學生學習探究知識的自主性,培養(yǎng)學生的歸納能力。
觀察歸納,形成定義
①0,5,10,15,20,25,…。
、18,15.5,13,10.5,8,5.5。
③10072,10144,10216,10288,10360。
思考1上述數(shù)列有什么共同特點?
思考2根據(jù)上數(shù)列的共同特點,你能給出等差數(shù)列的一般定義嗎?
思考3你能將上述的文字語言轉(zhuǎn)換成數(shù)學符號語言嗎?
教師:引導學生思考這三列數(shù)具有的共同特征,然后讓學生抓住數(shù)列的'特征,歸納得出等差數(shù)列概念。
學生:分組討論,可能會有不同的答案:前數(shù)和后數(shù)的差符合一定規(guī)律;這些數(shù)都是按照一定順序排列的…只要合理教師就要給予肯定。
教師引導歸納出:等差數(shù)列的定義;另外,教師引導學生從數(shù)學符號角度理解等差數(shù)列的定義。
通過對一定數(shù)量感性材料的觀察、分析,提煉出感性材料的本質(zhì)屬性;使學生體會到等差數(shù)列的規(guī)律和共同特點;一開始抓住:“從第二項起,每一項與它的前一項的差為同一常數(shù)”,落實對等差數(shù)列概念的準確表達。
舉一反三,理解定義
練一練:判定下列數(shù)列是否為等差數(shù)列?若是,指出公差d。
。1)1,1,1,1,1;
(2)1,0,1,0,1;
。3)2,1,0,—1,—2;
(4)4,7,10,13,16。
思考4設數(shù)列{an}的通項公式為an=3n+1,該數(shù)列是等差數(shù)列嗎?為什么?
教師出示題目,學生思考回答。教師訂正并強調(diào)求公差應注意的問題。
注意:公差d是每一項(第2項起)與它的前一項的差,防止把被減數(shù)與減數(shù)弄顛倒,而且公差可以是正數(shù),負數(shù),也可以為0 。
強化學生對等差數(shù)列“等差”特征的理解和應用。
思考5已知等差數(shù)列:
8,5,2,…,求第200項?
思考6已知一個等差數(shù)列{an}的首項是a1,公差是d,如何求出它的任意項an呢?
教師出示問題,放手讓學生探究,然后選擇列式具有代表性的上去板演或投影展示。根據(jù)學生在課堂上的具體情況進行具體評價、引導,總結(jié)推導方法,體會遞推思想;讓學生初步嘗試處理數(shù)列問題的常用方法。
引導學生觀察、歸納、猜想,培養(yǎng)學生合理的推理能力。學生在分組合作探究過程中,可能會找到多種不同的解決辦法,教師要逐一點評,并及時肯定、贊揚學生善于動腦、勇于創(chuàng)新的品質(zhì),激發(fā)學生的創(chuàng)造意識。鼓勵學生自主解答,培養(yǎng)學生運算能力。
理解通項,簡單應用
變1判斷—401是不是等差數(shù)列—5,—9,—13,…的項?如果是,是第幾項?
變2在等差數(shù)列{an}中,已知a5=10,a12=31, 求a1,d和an。
變3某市出租車的計價標準為1.2元/km,起步價為10元,即最初的4km(不含4千米)計費10元。如果某人乘坐該市的出租車去往14km處的目的地,且一路暢通,等候時間為0,需要支付多少車費?
教師:給出問題,讓學生自己操練,教師巡視學生答題情況。
學生:教師叫學生代表總結(jié)此類題型的解題思路,教師補充:已知等差數(shù)列的首項和公差就可以求出其通項公式。
主要是熟悉公式,使學生從中體會公式與方程之間的聯(lián)系。初步認識“基本量法”求解等差數(shù)列問題。
課堂小結(jié),課外作業(yè)
1、一個定義:
等差數(shù)列的定義
2、一個公式:
等差數(shù)列的通項公式
3、二個應用:
定義和通項公式的應用
教師:讓學生思考整理,找?guī)讉代表發(fā)言,最后教師給出小結(jié)內(nèi)容,并適當解析。
教師展示作業(yè):
P39練習:2,3。
P40習題2.2A組:1,4。
引導學生去聯(lián)想這一概念所涉及到的各個方面,溝通它們之間的聯(lián)系,使學生能在新的高度上去重新認識和掌握基本概念,并靈活運用基本概念。
【設計反思】
1、本設計從生活中的數(shù)列模型導入,有助于發(fā)揮學生學習的主動性,增強學生學習數(shù)列的興趣。在探索的過程中,學生通過分析、觀察,歸納出等差數(shù)列定義,然后由定義導出通項公式,強化了由具體到抽象,由特殊到一般的思維過程,有助于提高學生分析問題和解決問題的能力。
2、本課各環(huán)節(jié)的設計環(huán)環(huán)相扣、簡潔明了、重點突出,引導分析細致、到位、適度。如:判斷某數(shù)列是否成等差數(shù)列,這是促進概念理解的好素材;此外,用方程的思想指導等差數(shù)列基本量的運算等等。學生在經(jīng)歷過程中,加深了對概念的理解和鞏固。
3、本節(jié)課教學體現(xiàn)了課堂教學從“灌輸式”到“引導發(fā)現(xiàn)式”的轉(zhuǎn)變,以教師提出問題、學生探討解決問題為途徑,以相互補充展開教學,總結(jié)科學合理的知識體系,形成師生之間的良性互動,提高課堂教學效率。
4、本人認為在概念教學中多花一些時間是值得的,因為只有理解掌握了概念,才能更好地幫助學生落實“雙基”,更好地幫助學生認識數(shù)學,認識數(shù)學的思想和本質(zhì),進一步地發(fā)展學生的思維,提高學生的解題能力。
中職數(shù)學等差數(shù)列說課稿4
一、預習問題:
1、等差數(shù)列的定義:一般地,如果一個數(shù)列從 起,每一項與它的前一項的差等于同一個 ,那么這個數(shù)列就叫等差數(shù)列,這個常數(shù)叫做等差數(shù)列的` , 通常用字母 表示。
2、等差中項:若三個數(shù) 組成等差數(shù)列,那么A叫做 與 的 ,
即 或 。
3、等差數(shù)列的單調(diào)性:等差數(shù)列的公差 時,數(shù)列為遞增數(shù)列; 時,數(shù)列為遞減數(shù)列; 時,數(shù)列為常數(shù)列;等差數(shù)列不可能是 。
4、等差數(shù)列的通項公式: 。
5、判斷正誤:
、1,2,3,4,5是等差數(shù)列; ( )
②1,1,2,3,4,5是等差數(shù)列; ( )
③數(shù)列6,4,2,0是公差為2的等差數(shù)列; ( )
、軘(shù)列 是公差為 的等差數(shù)列; ( )
、輸(shù)列 是等差數(shù)列; ( )
⑥若 ,則 成等差數(shù)列; ( )
、呷 ,則數(shù)列 成等差數(shù)列; ( )
、嗟炔顢(shù)列是相鄰兩項中后項與前項之差等于非零常數(shù)的數(shù)列; ( )
、岬炔顢(shù)列的公差是該數(shù)列中任何相鄰兩項的差。 ( )
6、思考:如何證明一個數(shù)列是等差數(shù)列。
二、實戰(zhàn)操作:
例1、(1)求等差數(shù)列8,5,2,的第20項。
。2) 是不是等差數(shù)列 中的項?如果是,是第幾項?
(3)已知數(shù)列 的公差 則
例2、已知數(shù)列 的通項公式為 ,其中 為常數(shù),那么這個數(shù)列一定是等差數(shù)列嗎?
例3、已知5個數(shù)成等差數(shù)列,它們的和為5,平方和為 求這5個數(shù)。
中職數(shù)學等差數(shù)列說課稿5
教學目標:
1.知識與技能目標:理解等差數(shù)列的概念,了解等差數(shù)列的通項公式的推導過程及思想,掌握并會用等差數(shù)列的通項公式,初步引入“數(shù)學建模”的思想方法并能運用。
2.過程與方法目標:培養(yǎng)學生觀察分析、猜想歸納、應用公式的能力;在領會函數(shù)與數(shù)列關系的前提下,滲透函數(shù)、方程的思想。
3.情感態(tài)度與價值觀目標:通過對等差數(shù)列的研究培養(yǎng)學生主動探索、勇于發(fā)現(xiàn)的求知的精神;養(yǎng)成細心觀察、認真分析、善于總結(jié)的良好思維習慣。
教學重點:
等差數(shù)列的概念及通項公式。
教學難點:
(1)理解等差數(shù)列“等差”的特點及通項公式的含義。
(2)等差數(shù)列的通項公式的推導過程及應用。
教具:多媒體、實物投影儀
教學過程:
一、復習引入:
1.回憶上一節(jié)課學習數(shù)列的定義,請舉出一個具體的例子。表示數(shù)列有哪幾種方法——列舉法、通項公式、遞推公式。我們這節(jié)課接著學習一類特殊的數(shù)列——等差數(shù)列。
2.由生活中具體的數(shù)列實例引入
(1).國際奧運會早期,撐桿跳高的記錄近似的由下表給出:
你能看出這4次撐桿條跳世界記錄組成的數(shù)列,它的各項之間有什么關系嗎?
(2)某劇場前10排的座位數(shù)分別是:
48、46、44、42、40、38、36、34、32、30
引導學生觀察:數(shù)列①、②有何規(guī)律?
引導學生發(fā)現(xiàn)這些數(shù)字相鄰兩個數(shù)字的差總是一個常數(shù),數(shù)列①先左到右相差0.2,數(shù)列②從左到右相差-2。
二.新課探究,推導公式
1.等差數(shù)列的概念
如果一個數(shù)列,從第二項開始它的每一項與前一項之差都等于同一常數(shù),這個數(shù)列就叫等差數(shù)列,這個常數(shù)叫做等差數(shù)列的公差,通常用字母d來表示。
強調(diào)以下幾點:
、 “從第二項起”滿足條件;
②公差d一定是由后項減前項所得;
、勖恳豁椗c它的.前一項的差必須是同一個常數(shù)(強調(diào)“同一個常數(shù)” );
所以上面的2、3都是等差數(shù)列,他們的公差分別為0.20,-2。
在學生對等差數(shù)列有了直觀認識的基礎上,我將給出練習題,以鞏固知識的學習。
[練習一]判斷下列各組數(shù)列中哪些是等差數(shù)列,哪些不是?如果是,寫出首項a1和公差d,如果不是,說明理由。
1.3,5,7,…… √ d=2
2.9,6,3,0,-3,…… √ d=-3
3. 0,0,0,0,0,0,…….; √ d=0
4. 1,2,3,2,3,4,……;×
5. 1,0,1,0,1,……×
在這個過程中我將采用邊引導邊提問的方法,以充分調(diào)動學生學習的積極性。
2.等差數(shù)列通項公式
如果等差數(shù)列{an}首項是a1,公差是d,那么根據(jù)等差數(shù)列的定義可得:
a2 - a1 =d即:a2 =a1 +d
a3 – a2 =d即:a3 =a2 +d = a1 +2d
a4 – a3 =d即:a4 =a3 +d = a1 +3d
……
猜想: a40 = a1 +39d
進而歸納出等差數(shù)列的通項公式:an=a1+(n-1)d
此時指出:這種求通項公式的辦法叫不完全歸納法,這種導出公式的方法不夠嚴密,為了培養(yǎng)學生嚴謹?shù)膶W習態(tài)度,在這里向?qū)W生介紹另外一種求數(shù)列通項公式的辦法------迭加法:
n=a1+(n-1)d
a2-a1=d
a3-a2=d
a4-a3 =d
……
an –a(n-1) =d
將這(n-1)個等式左右兩邊分別相加,就可以得到
an-a1=(n-1)d
即an=a1+(n-1)d (Ⅰ)
當n=1時,(Ⅰ)也成立,所以對一切n∈N﹡,上面的公式(Ⅰ)都成立,因此它就是等差數(shù)列{an}的通項公式。
三.應用舉例
例1求等差數(shù)列,12,8,4,0,…的第10項;20項;第30項;
例2 -401是不是等差數(shù)列-5,-9,-13,…的項?如果是,是第幾項?
四.反饋練習
1.P293練習A組第1題和第2題(要求學生在規(guī)定時間內(nèi)做完上述題目,教師提問)。目的:使學生熟悉通項公式對學生進行基本技能訓練。
五.歸納小結(jié)提煉精華
(由學生總結(jié)這節(jié)課的收獲)
1.等差數(shù)列的概念及數(shù)學表達式.
強調(diào)關鍵字:從第二項開始它的每一項與前一項之差都等于同一常數(shù)
2.等差數(shù)列的通項公式an= a1+(n-1) d會知三求一
六.課后作業(yè)運用鞏固
必做題:課本P284習題A組第3,4,5題
【中職數(shù)學等差數(shù)列說課稿】相關文章:
《等差數(shù)列》說課稿11-03
等差數(shù)列說課稿08-01
中職說課稿02-03
《等差數(shù)列》說課稿14篇06-12
《等差數(shù)列》說課稿(11篇)12-29
《等差數(shù)列》說課稿14篇11-02
《等差數(shù)列》說課稿12篇12-10
等差數(shù)列說課稿15篇12-07