當前位置:育文網>教學文檔>說課稿> 《三角函數(shù)》說課稿

《三角函數(shù)》說課稿

時間:2022-06-15 20:11:27 說課稿 我要投稿

《三角函數(shù)》說課稿

  作為一名優(yōu)秀的教育工作者,就有可能用到說課稿,借助說課稿可以有效提高教學效率。怎樣寫說課稿才更能起到其作用呢?下面是小編幫大家整理的《三角函數(shù)》說課稿,歡迎閱讀,希望大家能夠喜歡。

《三角函數(shù)》說課稿

《三角函數(shù)》說課稿1

  一、教學目標

  1.掌握任意角的正弦、余弦、正切函數(shù)的定義(包括定義域、正負符號判斷);了解任意角的余切、正割、余割函數(shù)的定義.

  2.經歷從銳角三角函數(shù)定義過度到任意角三角函數(shù)定義的推廣過程,體驗三角函數(shù)概念的產生、發(fā)展過程.領悟直角坐標系的工具功能,豐富數(shù)形結合的經驗.

  3.培養(yǎng)學生通過現(xiàn)象看本質的唯物主義認識論觀點,滲透事物相互聯(lián)系、相互轉化的辯證唯物主義世界觀.

  4.培養(yǎng)學生求真務實、實事求是的科學態(tài)度.

  二、重點、難點、關鍵

  重點:任意角的正弦、余弦、正切函數(shù)的定義、定義域、(正負)符號判斷法.

  難點:把三角函數(shù)理解為以實數(shù)為自變量的函數(shù).

  關鍵:如何想到建立直角坐標系;六個比值的確定性(α確定,比值也隨之確定)與依賴性(比值隨著α的變化而變化).

  三、教學理念和方法

  教學中注意用新課程理念處理傳統(tǒng)教材,學生的數(shù)學學習活動不僅要接受、記憶、模仿和練習,而且要自主探索、動手實踐、合作交流、閱讀自學,師生互動,教師發(fā)揮組織者、引導者、合作者的作用,引導學生主體參與、揭示本質、經歷過程.

  根據本節(jié)課內容、高一學生認知特點和我自己的教學風格,本節(jié)課采用"啟發(fā)探索、講練結合"的方法組織教學.

  四、教學過程

  [執(zhí)教線索:

  回想再認:函數(shù)的概念、銳角三角函數(shù)定義(銳角三角形邊角關系)--問題情境:能推廣到任意角嗎?--它山之石:建立直角坐標系(為何?)--優(yōu)化認知:用直角坐標系研究銳角三角函數(shù)--探索發(fā)展:對任意角研究六個比值(與角之間的關系:確定性、依賴性,滿足函數(shù)定義嗎?)--自主定義:任意角三角函數(shù)定義--登高望遠:三角函數(shù)的要素分析(對應法則、定義域、值域與正負符號判定)--例題與練習--回顧小結--布置作業(yè)]

 。ㄒ唬⿵土曇、回想再認

  開門見山,面對全體學生提問:

  在初中我們初步學習了銳角三角函數(shù),前幾節(jié)課,我們把銳角推廣到了任意角,學習了角度制和弧度制,這節(jié)課該研究什么呢?

  探索任意角的三角函數(shù)(板書課題),請同學們回想,再明確一下:

  (情景1)什么叫函數(shù)?或者說函數(shù)是怎樣定義的?

  讓學生回想后再點名回答,投影顯示規(guī)范的定義,教師根據回答情況進行修正、強調:

  傳統(tǒng)定義:設在一個變化過程中有兩個變量x與y,如果對于x的每一個值,y都有唯一確定的值和它對應,那么就說y是x的函數(shù),x叫做自變量,自變量x的取值范圍叫做函數(shù)的定義域.

  現(xiàn)代定義:設A、B是非空的數(shù)集,如果按某個確定的對應關系f,使對于集合A中的任意一個數(shù),在集合B中都有唯一確定的數(shù)f(x)和它對應,那么就稱映射?:A→B為從集合A到集合B的一個函數(shù),記作:y=f(x),x∈A,其中x叫自變量,自變量x的取值范圍A叫做函數(shù)的定義域.

  設計意圖:

  函數(shù)和三角函數(shù)是一般和特殊的關系,是共性和個性的關系,學生已經學習了函數(shù)的概念,因此對三角函數(shù)的學習就是一個從一般到特殊的演繹的過程,也是以具體函數(shù)豐富函數(shù)概念的過程.教學經驗表明:學生對函數(shù)兩種定義的記憶是有一定困難的,容易遺忘,此處讓學生對函數(shù)概念進行回想再認,目的在于明確函數(shù)概念的.本質,為演繹學習任意角三角函數(shù)概念作好知識和認知準備.

 。ㄇ榫2)我們在初中通過銳角三角形的邊角關系,學習了銳角的正弦、余弦、正切等三個三角函數(shù).請回想:這三個三角函數(shù)分別是怎樣規(guī)定的?

  學生口述后再投影展示,教師再根據投影進行強調:

  設計意圖:

  學生在初中學習了銳角的三角函數(shù)概念,現(xiàn)在學習任意角的三角函數(shù),又是一種推廣和拓展的過程(類似于從有理數(shù)到實數(shù)的擴展).溫故知新,要讓學生體會知識的產生、發(fā)展過程,就要從源頭上開始,從學生現(xiàn)有認知狀況開始,對銳角三角函數(shù)的復習就必不可少.

 。ǘ┮熹亯|、創(chuàng)設情景

  (情景3)我們已經把銳角推廣到了任意角,銳角的三角函數(shù)概念也能推廣到任意角嗎?試試看,可以獨立思考和探索,也可以互相討論!

  留時間讓學生獨立思考或自由討論,教師參與討論或巡回對學困生作啟發(fā)引導.

  能推廣嗎?怎樣推廣?針對剛才的問題點名讓學生回答.用角的對邊、臨邊、斜邊比值的說法顯然是受到阻礙了,由于4.1節(jié)已經以直角坐標系為工具來研究任意角了,學生一般會想到(否則教師進行提示)繼續(xù)用直角坐標系來研究任意角的三角函數(shù).

  設計意圖:

  從學生現(xiàn)有知識水平和認知能力出發(fā),創(chuàng)設問題情景,讓學生產生認知沖突,進行必要的啟發(fā),將學生思維引上自主探索、合作交流的"再創(chuàng)造"征程.

  教師對學生回答情況進行點評后布置任務情景:請同學們用直角坐標系重新研究銳角三角函數(shù)定義!

  師生共做(學生口述,教師板書圖形和比值):

  把銳角α安裝(如何安裝?角的頂點與原點重合,角的始邊與x軸非負半軸重合)在直角坐標系中,在角α終邊上任取一點P,作Pm⊥x軸于m,構造一個RtΔomP,則∠moP=α(銳角),設P(x,y)(x>0、y>0),α的臨邊om=x、對邊mP=y,斜邊長|oP∣=r.

  根據銳角三角函數(shù)定義用x、y、r列出銳角α的正弦、余弦、正切三個比值,并補充對應列出三個倒數(shù)比值:

  設計意圖:

  此處做法簡單,思想重要.為了順利實現(xiàn)推廣,可以構建中間橋梁或公共載體,使之既與初中的定義一致,又能自然地遷移到任意角的情形.由于前一節(jié)已經以直角坐標系為工具來研究任意角了,學生自然能想到仍然以直角坐標系為工具來研究任意角的三角函數(shù).初中以直角三角形邊角關系來定義銳角三角函數(shù),現(xiàn)在要用坐標系來研究,探索的結論既要滿足任意角的情形,又要包容初中銳角三角函數(shù)定義.這是一個認識的飛躍,是理解任意角三角函數(shù)概念的關鍵之一,也是數(shù)學發(fā)現(xiàn)的重要思想和方法,屬于策略性知識,能夠形成遷移能力,為學生在以后學習中對某些知識進行推廣拓展奠定了基礎(譬如從平面向量到空間向量的擴展,從實數(shù)到復數(shù)的擴展等).

 。ㄇ榫4)各個比值與角之間有怎樣的關系?比值是角的函數(shù)嗎?

  追問:銳角α大小發(fā)生變化時,比值會改變嗎?

  先讓學生想象思考,作出主觀判斷,再用幾何畫板動畫演示,同時作好解釋說明:保持r不變,讓P繞原點o旋轉即α在銳角范圍內變化,六個比值隨之變化的直觀形象。結論是:比值隨α的變化而變化.

  引導學生觀察圖3,聯(lián)系相似三角形知識,

  探索發(fā)現(xiàn):

  對于銳角α的每一個確定值,六個比值都是

  確定的,不會隨P在終邊上的移動而變化.

  得出結論(強調):當α為銳角時,六個比值隨α的變化而變化;但對于銳角α的每一個確定值,六個比值都是確定的,不會隨P在終邊上的移動而變化.所以,六個比值分別是以角α為自變量、以比值為函數(shù)值的函數(shù).

  設計意圖:

  初中學生對函數(shù)理解較膚淺,這里在學生思維的最近發(fā)展區(qū)進一步研究初中學過的銳角三角函數(shù),在思維上更上了一個層次,扣準函數(shù)概念的內涵,突出變量之間的依賴關系或對應關系,是從函數(shù)知識演繹到三角函數(shù)知識的主要依據,是準確理解三角函數(shù)概念的關鍵,也是在認知上把三角函數(shù)知識納入函數(shù)知識結構的關鍵.這樣做能夠使學生有效地增強函數(shù)觀念.

 。ㄈ┓治鰵w納、自主定義

 。ㄇ榫5)能將銳角的比值情形推廣到任意角α嗎?

  水到渠成,師生共同進行探索和推廣:

  對于一個任意角α,它的終邊所在位置包括下列兩類共八種情形(投影展示并作分析):

  終邊分別在四個象限的情形:終邊分別在四個半軸上的情形:

  ;

  (指出:不畫出角的方向,表明角具有任意性)

  怎樣刻畫任意角的三角函數(shù)呢?研究它的六個比值:

 。ò鍟┰Oα是一個任意角,在α終邊上除原點外任意取一點P(x,y),P與原點o之間的距離記作r(r=>0),列出六個比值:

  α=kππ/2時,x=0,比值y/x、r/x無意義;

  α=kπ時,y=0,比值x/y、r/y無意義.

  追問:α大小發(fā)生變化時,比值會改變嗎?

  先讓學生想象思考,作出主觀判斷,再用幾何畫板動畫演示,同時作好解釋說明:使r保持不變,P繞原點o逆時針、順時針旋轉即角α變化,六個比值隨之改變的直觀形象。結論是:各比值隨α的變化而變化.

  再引導學生利用相似三角形知識,探索發(fā)現(xiàn):對于任意角α的每一個確定值,六個比值都是確定的,不會隨P在終邊上的移動而變化.

  綜上得到(強調):當角α變化時,六個比值隨之變化;對于確定的角α,六個比值(如果存在的話)都不會隨P在角α終邊上的改變而改變,六個比值是確定的(對應的多值性即誘導公式一留到下節(jié)課分析).

  因此,六個比值分別是以角α為自變量、以比值為函數(shù)值的函數(shù).

  根據歷史上的規(guī)定,對比值進行命名,指出英文記法和讀法,記作(承前作復合板書):

  =sinα(正弦)=cosα(余弦)=tanα(正切)

  =cscα(余割)=sec(正弦)=cotα(余切)

  教師強調:sinα表示sin與α的乘積嗎?不是,sinα是函數(shù)記號,是一個整體,相當于函數(shù)記號f(x).其它幾個三角函數(shù)也如此

  投影顯示圖六,指導學生分析其對應關系,進一步體會其函數(shù)內涵:

 。▓D六)

  指導學生識記六個比值及函數(shù)名稱.

  教師指出:正弦、余弦、正切、余切、正割、余割六個函數(shù)統(tǒng)稱為三角函數(shù),三角函數(shù)有非常豐富的知識和思想方法,我們以后主要學習正弦、余弦、正切三個函數(shù)的相關知識和方法,對于余切、正割、余割,只要同學們了解它們的定義就夠了(遵循大綱要求).

  引導學生進一步分析理解:

  已知角的集合與實數(shù)集之間可以建立一一對應關系,對于每一個確定的實數(shù),把它看成一個弧度數(shù),就對應著唯一的一個角,從而分別對應著六個唯一的三角函數(shù)值.因此,(板書)三角函數(shù)可以看成是以實數(shù)為自變量的函數(shù),這將為以后的應用帶來很多方便.

  設計意圖:

  把角的終邊分別在四個象限、四條半軸上的情形全作出來,有利于對任意性的全面把握.明確比值存在與否的條件,為確定函數(shù)定義域作準備.動畫演示比值與角之間的依賴性與確定性關系,深化理解三角函數(shù)內涵.引導學生在理解的基礎上自主地對三角函數(shù)作出明確定義,是本節(jié)課的中心任務.由于學生剛學弧度制,對弧度制的理解有待于在以后的學習應用中逐步感悟,因此部分學生對"三角函數(shù)可以看成是以實數(shù)為自變量的函數(shù)"的理解有半信半疑之感,有待通過后續(xù)的應用加深理解.

 。ㄋ模┨剿鞫x域

 。ㄇ榫6)(1)函數(shù)概念的三要素是什么?

  函數(shù)三要素:對應法則、定義域、值域.

  正弦函數(shù)sinα的對應法則是什么?

  正弦函數(shù)sinα的對應法則,實質上就是sinα的定義:對α的每一個確定的值,有唯一確定的比值y/r與之對應,即α→y/r=sinα.

  (2)布置任務情景:什么是三角函數(shù)的定義域?請求出六個三角函數(shù)的定義域,填寫下表:

  三角函數(shù)

  sinα

  cosα

  tanα

  cotα

  cscα

  secα

  定義域

  引導學生自主探索:

  如果沒有特別說明,那么使解析式有意義的自變量的取值范圍叫做函數(shù)的定義域,三角函數(shù)的定義域自然是指:使比值有意義的角α的取值范圍.

  關于sinα=y/r、cosα=x/r,對于任意角α(弧度數(shù)),r>0,y/r、x/r恒有意義,定義域都是實數(shù)集R.

  對于tanα=y/x,α=kππ/2時x=0,y/x無意義,tanα的定義域是:{α|α∈R,且α≠kππ/2}..........

  教師指出:sinα、cosα、tanα的定義域必須緊扣三角函數(shù)定義在理解的基礎上記熟,cotα、cscα、secα的定義域不要求記憶.

 。P于值域,到后面再學習).

  設計意圖:

  定義域是函數(shù)三要素之一,研究函數(shù)必須明確定義域.指導學生根據定義自主探索確定三角函數(shù)定義域,有利于在理解的基礎上記住它、應用它,也增進對三角函數(shù)概念的掌握.

 。ㄎ澹┓柵袛唷⑿蜗笞R記

 。ㄇ榫7)能判斷三角函數(shù)值的正、負嗎?試試看!

  引導學生緊緊抓住三角函數(shù)定義來分析,r>0,三角函數(shù)值的符號決定于x、y值的正負,根據終邊所在位置總結出形象的識記口訣:

 。ㄍ玫谜愄柕秘摚

  sinα=y/r:上正下負橫為0cosα=x/r:左負右正縱為0tanα=y/x:交叉正負

  設計意圖:

  判斷三角函數(shù)值的正負符號,是本章教材的一項重要的知識、技能要求.要引導學生抓住定義、數(shù)形結合判斷和記憶三角函數(shù)值的正負符號,并總結出形象的識記口訣,這也是理解和記憶的關鍵.

 。┚毩曥柟、理解記憶

  1、自學例1:已知角α的終邊經過點P(2,-3),求α的六個三角函數(shù)值.

  要求:讀完題目,思考:計算什么?需要準備什么?閉目心算,對照解答,模仿書面表達格式,鞏固定義.

  課堂練習:

  p19題1:已知角α的終邊經過點P(-3,-1),求α的六個三角函數(shù)值.

  要求心算,并提問中下學生檢驗,--------

  點評:角α終邊上有無窮多個點,根據三角函數(shù)的定義,只要知道α終邊上任意一個點的坐標,就可以計算這個角的三角函數(shù)值(或判斷其無意義).

  補充例題:已知角α的終邊經過點P(x,-3),cosα=4/5,求α的其它五個三角函數(shù)值.

  師生探索:已知y=-3,要求其它五個三角函數(shù)值,須知r=?,x=?.根據定義得=(方程思想),x>0,解得x=4,從而--------.解答略.

  2、自學例2:求下列各角的六個三角函數(shù)值:(1)0;(2)π/2;(3)3π/2.

  提問,據反饋信息作點評、修正.

  師生探索:緊扣三角函數(shù)定義求解,首先要在終邊上取定一點。終邊在哪兒呢?取定哪一點呢?任意點、還是特殊點?要靈活,只要能夠算出三角函數(shù)值,都可以。

  取特殊點能使計算更簡明。課堂練習:p19題2.(改編)填表:

  角α(角度)

  0°

  90°

  180°

  270°

  360°

  角α(弧度)

  sinα

  cosα

  tanα

  處理:要求取點用定義求解,針對計算過程提問、點評,理解鞏固定義.

  強調:終邊在坐標軸上的角叫軸線角,如0、π/2、π、3π/2等,今后經常用到軸線角的三角函數(shù)值,要結合三角函數(shù)定義記熟這些值.

  設計意圖:

  及時安排自學例題、自做教材練習題,一般性與特殊性相結合,進行適量的變式練習,以鞏固和加深對三角函數(shù)概念的理解,通過課堂積極主動的練習活動進行思維訓練,把"培養(yǎng)學生分析解決問題的能力"貫穿在每一節(jié)課的課堂教學始終.

  (七)回顧小結、建構網絡

  要求全體學生根據教師所提問題進行總結識記,提問檢查并強調:

  1.你是怎樣把銳角三角函數(shù)定義推廣到任意角的?或者說任意角三角函數(shù)具體是怎樣定義的?(建立直角坐標系,使角的頂點與坐標原點重合,---,在終邊上任意取定一點P,---)

  2.你如何判斷和記憶正弦、余弦、正切函數(shù)的定義域?(根據定義,------)

  3.你如何記憶正弦、余弦、正切函數(shù)值的符號?(根據定義,想象坐標位置,-----)

  設計意圖:

  遺忘的規(guī)律是先快后慢,回顧再現(xiàn)是記憶的重要途徑,在課堂內及時總結識記主要內容是上策.此處以問題形式讓學生自己歸納識記本節(jié)課的主體內容,抓住要害,人人參與,及時建構知識網絡,優(yōu)化知識結構,培養(yǎng)認知能力.

 。ò耍┎贾谜n外作業(yè)

  1.書面作業(yè):習題4.3第3、4、5題.

  2.認真閱讀p22"閱讀材料:三角函數(shù)與歐拉",了解歐拉的生平和貢獻,特別學習他對科學的摯著精神和堅忍不拔的頑強毅力!有興趣的同學可以上網查閱歐拉的相關情況.

  教學設計說明

  一、對本節(jié)教材的理解

  三角函數(shù)是描述周期運動現(xiàn)象的重要的數(shù)學模型,有非常廣泛的應用.

  星星之火,可以燎原.

  直角三角形簡單樸素的邊角關系,以直角坐標系為工具進行自然地推廣而得到簡明的任意角的三角函數(shù)定義,緊緊扣住三角函數(shù)定義這個寶貴的源泉,自然地導出三角函數(shù)線、定義域、符號判斷、值域、同角三角函數(shù)關系、多組誘導公式、多組變換公式、輔助角公式、圖象和性質,本章教材就是這些內容的具體安排.定義直接用于解析幾何(如直線斜率公式、極坐標、部分曲線的參數(shù)方程等),定義還是直接解決某些問題的工具,三角函數(shù)知識是物理學、高等數(shù)學、測量學、天文學的重要基礎.

  三角函數(shù)定義必然是學好全章內容的關鍵,如果學生掌握不好,將直接影響到后續(xù)內容的學習,由三角函數(shù)定義的基礎性和應用的廣泛性決定了本節(jié)教材的重點就是定義本身.

  二、教學法加工

  數(shù)學教材通常用抽象概括的形式化的數(shù)學書面語言闡述其知識和方法,教師只有通過教學法加工,始終貫徹"以學生的發(fā)展為本"的科學教育觀,"將數(shù)學的學術形態(tài)轉化為教育形態(tài)"(張奠宙語),引導學生積極主動地進行思考活動,直接參與體驗數(shù)學知識產生發(fā)展的背景、過程,返璞歸真,揭示本質,體會其中的思想和方法,學生只有這樣才能真正理解掌握數(shù)學知識和方法,有效地發(fā)展智力、培養(yǎng)能力.

  在本節(jié)教材中,三角函數(shù)定義是重點,三角函數(shù)線是難點,為了較好地突出重點和突破難點,分散重點和難點,同時兼顧例題、課堂練習的協(xié)調匹配,將不按教材順序來進行教學,第一課時安排三角函數(shù)的定義(突出重點)、定義域、符號判斷、例題1、2及p19課堂練習1、2、3,第二課時安排三角函數(shù)線、p15練習(突破難點)、誘導公式一及課本例題3、4和其它練習.本課例屬第一課時.

  教學經驗表明,三角函數(shù)定義"簡單易記",學生很容易輕視它,不少學生機械記憶、一知半解.本課例堅持"教師主導、學生主體"的原則,采用"啟發(fā)探索、講練結合"的常規(guī)教學方法,在學生的最近發(fā)展區(qū)圍繞學生的學習目標設計了一系列符合學生認知規(guī)律的程序,通過多媒體輔助教學動畫演示比值與角之間的依賴關系,拓展思維活動時空,力求使學生全員主動參與,積極思考,體會定義產生、發(fā)展的過程,通過思維過程來理解知識、培養(yǎng)能力.

  將六個比值放在一起來研究,同時給出六個三角函數(shù)的定義,能夠增強對比感和整體感,至于大綱對兩組函數(shù)掌握與了解的不同要求,在下一步的教學中注意區(qū)分就行了.

  教學中關于符號sinα、cosα、tanα的出場安排,教材首先對比值取名并給出英文記法,再研究它們與α的函數(shù)關系;另外可以先研究六個比值與α之間的函數(shù)關系,然后再對六個比值取名給出記法.后者更能突出函數(shù)內涵,揭示三角函數(shù)本質.本課例采用后者組織教學.

  三、教學過程分析(見穿插在教案中的設計意圖).

《三角函數(shù)》說課稿2

各位領導,各位老師:

  我說課的課題是《任意角的三角函數(shù)》,內容取自人教版普通高中課程標準實驗教科書《數(shù)學》④(必修)第1、2、1節(jié)。

  一、教材結構與內容簡析

  本節(jié)內容在全書及章節(jié)的地位:三角函數(shù)是描述周期運動現(xiàn)象的重要的數(shù)學模型,有非常廣泛的應用。三角函數(shù)的定義是在初中對銳角三角函數(shù)的定義以及剛學過的“角的概念的推廣”的基礎上討論和研究的。三角函數(shù)的定義是本章最基本的概念,對三角內容的整體學習至關重要,是其他所有知識的出發(fā)點。緊緊扣住三角函數(shù)定義這個寶貴的源泉,可以自然地導出本章的具體內容:三角函數(shù)線、定義域、符號判斷、值域、同角三角函數(shù)關系、多組誘導公式、多組變換公式、圖象和性質。三角函數(shù)的定義在教材中起著承前啟后的作用,一方面,通過這部分內容的學習,可以幫助學生更加深入理解函數(shù)這一基本概念,另一方面它又為平面向量、解析幾何等內容的學習作必要的準備。三角函數(shù)知識還是物理學、高等數(shù)學、測量學、天文學的重要基礎。

  三角函數(shù)定義必然是學好全章內容的關鍵,如果學生掌握不好,將直接影響到后續(xù)內容的學習,由三角函數(shù)定義的基礎性和應用的廣泛性決定了本節(jié)教材的重點就是定義本身。

  數(shù)學思想方法分析:作為一名數(shù)學老師,不僅要傳授給學生數(shù)學知識,更重要的是傳授給學生數(shù)學思想、數(shù)學意識,因此本節(jié)課在教學中力圖向學生展示嘗試類比、數(shù)形結合等數(shù)學思想方法。

  二、教學重點、難點、關鍵

  教學重點:任意角的三角函數(shù)的定義,三角函數(shù)的符號規(guī)律。

  教學難點:任意角的三角函數(shù)概念的`建構過程。

  教學關鍵:如何想到建立直角坐標系;六個比值的確定性(α確定,比值也隨之確定)與依賴性(比值隨著α的變化而變化)。

  三、學情分析

  學生已經掌握的內容及學生學習能力

  1、學生在初中時已經學習了基本的銳角三角函數(shù)的定義,掌握了銳角三角函數(shù)的一些常見的知識和求法。

  2、學生的運算能力較差。

  3、部分同學對數(shù)學的學習有相當?shù)呐d趣和積極性。

  4、在探究問題的能力,合作交流的意識等方面發(fā)展不夠均衡,必須在老師一定的指導下才能進行。

  四、教學目標

  根據上述教材結構與內容分析,考慮到學生已有的認知結構心理特征,我制定如下教學目標:

  1、基礎知識目標:使學生正確理解任意角的正弦、余弦、正切的定義,了解余切、正割、余割的定義;

  2、能力訓練目標:通過學生積極參與知識的“發(fā)現(xiàn)”與“形成”的過程,培養(yǎng)合情猜測的能力。

  3、情感目標:通過學習,滲透數(shù)形結合和類比的數(shù)學思想,培養(yǎng)學生良好的思維習慣。

  下面,為了講清重點、難點,使學生能達到本節(jié)設定的教學目標,我再從教法和學法上談談:

  五、教學理念和方法

  教學中注意用新課程理念處理傳統(tǒng)教材,學生的數(shù)學學習活動不僅要接受、記憶、模仿和練習,而且要自主探索、合作交流、師生互動,教師發(fā)揮組織者、引導者、合作者的作用,引導學生主體參與、揭示本質、經歷過程。

  根據本節(jié)課內容、高一學生認知特點和我自己的教學風格,本節(jié)課采用“啟發(fā)探索、講練結合”的方法組織教學教法,在課堂結構上,設計了①創(chuàng)設情境——揭示課題②推廣認知——形成概念③鞏固新知——探求規(guī)律④總結反思——提高認識⑤任務后延——自主探究五個層次的學法,它們環(huán)環(huán)相扣,層層深入,從而順利完成教學目標。接下來,我再具體談一談這堂課的教學過程:

  六、教學程序及設想

  總體來說,由舊及新,由易及難,逐步加強,逐步推進,給定定義后通過應用定義又逐步發(fā)現(xiàn)新知識,拓展、完善定義、

  先由初中的直角三角形中銳角三角函數(shù)的定義,過度到直角坐標系中銳角三角函數(shù)的定義,再發(fā)展到直角坐標系中任意角三角函數(shù)的定義。

 。ㄒ唬﹦(chuàng)設情境——揭示課題

  問題1:在初中我們學習了銳角三角函數(shù),那么銳角三角函數(shù)是如何定義的?

  【設計意圖】學生在初中學習了銳角的三角函數(shù)概念,現(xiàn)在學習任意角的三角函數(shù),又是一種推廣和拓展的過程(類似于從有理數(shù)到實數(shù)的擴展)。溫故知新,要讓學生體會知識的產生、發(fā)展過程,就要從源頭上開始,從學生現(xiàn)有認知狀況開始,對銳角三角函數(shù)的復習就必不可少。

  問題2:角的概念推廣之后,這樣的三角函數(shù)定義還適用嗎?

  問題3:若將銳角放入直角坐標系中,你能用角的終邊上的點的坐標來表示銳角三角函數(shù)嗎?

  留時間讓學生獨立思考或自由討論,教師參與討論或巡回對學困生作啟發(fā)引導。

  能表示嗎?怎樣表示?針對剛才的問題點名讓學生回答。用角的對邊、鄰邊、斜邊比值的說法顯然是受到阻礙了,由于前面已經以直角坐標系為工具來研究任意角了,學生一般會想到(否則教師進行提示)繼續(xù)用直角坐標系來研究任意角的三角函數(shù)。

  【設計意圖】

  從學生現(xiàn)有知識水平和認知能力出發(fā),創(chuàng)設問題情景,讓學生產生認知沖突,進行必要的啟發(fā),將學生思維引上自主探索、合作交流的“再創(chuàng)造”征程。

  教師對學生回答情況進行點評后布置任務情景:請同學們用直角坐標系重新研究銳角三角函數(shù)定義!

  師生共做(學生口述,教師板書圖形和比值)。

  問題4:對于確定的角,這三個比值是否與P在

  的終邊上的位置有關?為什么?

  先讓學生想象思考,作出主觀判斷,再引導學生觀察右圖,

  聯(lián)系相似三角形知識,探索發(fā)現(xiàn):對于銳角α的每一個確定值,

  六個比值都是確定的,不會隨P在終邊上的移動而變化。

  得出結論(強調):當α為銳角時,六個比值隨α的變化而變化;但對于銳角α的每一個確定值,六個比值都是確定的,不會隨P在終邊上的移動而變化、所以,六個比值分別是以角α為自變量、以比值為函數(shù)值的函數(shù)。

  (二)推廣認知——形成概念

  將銳角的比值情形推廣到任意角α后,水到渠成,師生共同進行探索和推廣出:任意角的三角函數(shù)定義。同時教師強調:由于弧度制使角和實數(shù)建立了一一對應關系,所以三角函數(shù)是以實數(shù)為自變量的函數(shù),對數(shù)學學習能力較好的同學起到了很好的指導作用。

  教師指出:sinα、cosα、tanα的定義域必須緊扣三角函數(shù)定義在理解的基礎上記熟,cotα、cscα、secα的定義域不要求記憶。

 。P于值域,到后面再學習)。

  【設計意圖】定義域是函數(shù)三要素之一,研究函數(shù)必須明確定義域、指導學生根據定義自主探索確定三角函數(shù)定義域,有利于在理解的基礎上記住它、應用它,也增進對三角函數(shù)概念的掌握。

 。ㄈ╈柟绦轮角笠(guī)律

  為了使學生達到對知識的深化理解,進而達到鞏固提高的效果,

  例1、已知角的終邊過點,求的六個三角函數(shù)值

  要求:讀完題目,思考:計算什么?需要準備什么?閉目心算,對照板書,模仿書面表達格式。

  鞏固定義之后,我特地設計了一組即時訓練題,以鞏固和加深對三角函數(shù)概念的理解,通過課堂積極主動的練習活動,培養(yǎng)學生分析解決問題的能力。

  例2、求的正弦、余弦和正切值。

  分析:終邊上有無窮多個點,根據三角函數(shù)的定義,只要知道終邊上任意一個點的坐標,就可以計算這個角的三角函數(shù)值(或判斷其無意義)

  師生探索:緊扣三角函數(shù)定義求解,首先要在終邊上取定一點。終邊在哪兒呢?取定哪一點呢?任意點、還是特殊點?要靈活,只要能夠算出三角函數(shù)值,都可以。

  取特殊點能使計算更簡明。

  等待學生基本理解和掌握三角函數(shù)定義后,觀察、分析初、高中所計算的函數(shù)值有何變化,讓學生意識到三角函數(shù)值的正負與角所在象限有關,然后引導學生緊緊抓住三角函數(shù)定義來分析,從而導出三角函數(shù)值的正負與角所在象限的關系,進而由教師總結符號記憶方法,便于學生記憶。

  【設計意圖】判斷三角函數(shù)值的正負符號,是本章教材的一項重要的知識、技能要求、要引導學生抓住定義、數(shù)形結合判斷和記憶三角函數(shù)值的正負符號,并總結出形象的“才”字符號法則,這也是理解和記憶的關鍵。

 。ㄋ模┛偨Y反思——提高認識

  由學生總結本節(jié)課所學習的主要內容:⑴任意角的三角函數(shù)的定義及其定義域;⑵三角函數(shù)的符號規(guī)律。讓學生通過知識性內容的小結,把課堂教學傳授的知識盡快化為學生的素質;通過數(shù)學思想方法的小結,使學生更深刻地理解數(shù)學思想方法在解題中的地位和應用,并且逐漸培養(yǎng)學生的良好的個性品質目標。

 。ㄎ澹┤蝿蘸笱印灾魈骄

  學生經過以上四個環(huán)節(jié)的學習,已經初步掌握了任意角的三角函數(shù)的定義及三角函數(shù)的符號規(guī)律,有待進一步提高認知水平,因此我針對學生素質的差異設計了有層次的作業(yè),其中思考題的設計思想是:綜合練習鞏固提高,更為下節(jié)的學習內容打下基礎,同時留給學生課后自主探究,這樣既使學生掌握基礎知識,又使學有佘力的學生有所提高,從而達到拔尖和“減負”的目的,以有利于全體學生的發(fā)展。

  七、簡述板書設計。

  cotα、cscα、secα的定義寫在sinα、cosα、tanα的左下方,突出本節(jié)重要內容的主體地位。

  結束:以上,我僅從說教材,說學情,說教法,說學法,說教學程序上說明了“教什么”和“怎么教”,闡明了“為什么這樣教”。

《三角函數(shù)》說課稿3

  一、教材分析

  1、教材的地位與作用:《同角三角函數(shù)的基本關系》是學習三角函數(shù)定義后安排的一節(jié)繼續(xù)深入學習的內容,是求三角函數(shù)值,化簡三角函數(shù)式,證明三角恒等式的基本工具,是整個三角函數(shù)的基礎,起承上啟下的作用,同時,它體現(xiàn)的數(shù)學思想方法在整個中學學習中起重要作用。

  2、教學目標的確定及依據

  A、知識與技能目標:通過觀察猜想出兩個公式,運用數(shù)形結合的思想讓學生掌握公式的推導過程,理解同角三角函數(shù)的基本關系式,掌握基本關系式在兩個方面的應用:1)已知一個角的一個三角函數(shù)值能求這個角的其他三角函數(shù)值;2)證明簡單的三角恒等式。

  B、過程與方法:培養(yǎng)學生觀察——猜想——證明的科學思維方式;通過公式的推導過程培養(yǎng)學生用舊知識解決新問題的思想;通過求值、證明來培養(yǎng)學生邏輯推理能力;通過例題與練習提高學生動手能力、分析問題解決問題的能力以及其知識遷移能力。

  C、情感、態(tài)度與價值觀:經歷數(shù)學研究的過程,體驗探索的樂趣,增強學習數(shù)學的興趣。

  3、教學重點和難點

  重點:同角三角函數(shù)基本關系式的推導及應用。

  難點: 同角三角函數(shù)函數(shù)基本關系在解題中的靈活選取及使用公式時由函數(shù)值正、負號的選取而導致的角的范圍的討論。

  二、學情分析

  學生剛開始接觸三角函數(shù)的內容,學習了任意角的三角函數(shù),對這一方面的內容既感到新鮮又感到陌生,很有好奇心,躍躍欲試,學習熱情高漲。

  三、教法分析與學法分析

  1、教法分析:采取誘思探究性教學方法,在教學中提出問題,創(chuàng)設情景引導學生主動觀察、思考、類比、討論、總結、證明,讓學生做學習的主人,在主動探究中汲取知識,提高能力。

 。病W法分析:從學生原有的知識和能力出發(fā),在教師的帶領下,通過合作交流,共同探索,逐步解決問題.數(shù)學學習必須注重概念、原理、公式、法則的形成過程,突出數(shù)學本質。

  四、教學過程設計

  強調:sin是(sin)并不是sin

  設計意圖:從具體到抽象,引導學生完成抽象與具體之間的相互轉換

  2、思考:

  問題1:從以上的過程中,你能發(fā)現(xiàn)什么一般規(guī)律?

  問題2:你能否用代數(shù)式表示這兩個規(guī)律?

  設計意圖:引導學生用特殊到一般的思維來處理問題,通過觀察思考,感知同角三角函數(shù)的基本關系。

  3、證明公式:(同角三角函數(shù)基本關系)

  (1)、平方關系: (2)、商的關系:

  回憶:任意角三角函數(shù)的定義?

  學生回答:設α是一個任意角,它的終邊與單位圓交于點P(x,y)則:

  sin=y;cos=x,

  引導學生注意:單位圓中

  所以: sin+cos=; =

  設計意圖:引導學生運用已知知識解決未知知識,體會數(shù)學知識的形成過程。

  4、辨析討論—深化公式

  辨析1思考:上述兩個公式成立有什么要求嗎?

  設計意圖:注意這些關系式都是對于使它們有意義的角而言的。如(2)式中

  辨析2判斷下列等式是否成立:

  設計意圖:注意“同角”,至于角的形式無關重要,突破難點。

  辨析3思考:你能將兩個公式變形么?

 。◣熒顒樱簩τ诠阶兪降恼J識,強調靈活運用公式的幾大要點。)

  設計意圖:對這些關系式不僅要牢固掌握,還要能靈活運用(正用、反用、變形用)如:, , 等

  5、運用新知、培養(yǎng)能力。

  自然界的萬物都有著千絲萬縷的聯(lián)系,大家只要養(yǎng)成善于觀察的習慣,也許每天都會有新的發(fā)現(xiàn).剛才我們發(fā)現(xiàn)了同角三角函數(shù)的基本關系式,那么這些關系式能用于解決哪些問題呢?

  例1、

  思考1:條件“α是第四象限的角”有什么作用?

  思考2:如何建立cosα與sinα的聯(lián)系?如何建立他們與tanα的聯(lián)系?

  設計意圖:借助學生對于剛學習的知識所擁有的探求心理,讓他們學習使用兩個公式來求三角函數(shù)值。

  思考:本題與例題一的主要區(qū)別在哪兒?如何解決這個問題?

  設計意圖: 對比之前例題,強調他們之間的區(qū)別,并且說明解決問題的'方法:針對α可能所處的象限分類討論。

  變式2、

  設計意圖:類比練習,已知正弦,也可求余弦、正切。

  變式3、

  設計意圖:通過例題與變式使學生掌握基本關系式的應用:已知一個角的一個三角函數(shù)值能求這個角的其他三角函數(shù)值,并在求三角函數(shù)值的過程中注意由函數(shù)值正、負號的選取而導致的角的范圍的討論,培養(yǎng)學生分類討論思想。突破重難點。

  小結:(由學生自己總結,師生共同歸納得出)

  3,注意:若α所在象限未定,應討論α所在象限。

  設計意圖:利用例題與變式,共同總結兩類問題的解決方法,培養(yǎng)學生歸納分析能力。

  例2、已知tan=2,求 的值

  設計意圖:

  利用商的關系的靈活使用,解法多樣,通過對公式正向、逆向、變式使用加深對公式的理解與認識。

  證法2:通過變形等式,先把分式化為整式,再利用同角三角函數(shù)的平方關系即可證得.

  設計意圖: 同角三角函數(shù)平方關系靈活使用,通過對公式正向、逆向、變式使用加深對公式的理解與認識。

  思考:是否還有其他的證明方法?

  方法3:左邊減去右邊,如果等于零,則等式成立。

  方法4:左邊除以右邊,如果等于一,則等式成立。(保證分母不為零)

  設計意圖:發(fā)散學生的思維,為下面的總結做好鋪墊, 突破本節(jié)難點

  總結證明三角恒等式經常使用的方法:

  1:從等式左邊變形到右邊;

  2:從恒等式出發(fā),轉化到所要證明的等式上;

  3:左邊減去右邊等于0;

  4:左邊除以右邊等于1(保證分母不為零)。

  6、課堂小結,深化認識

  讓學生自己總結本節(jié)課的重點、難點和學習目標,教師再補充.這樣做,會檢測出學生聽課、分析、思考和掌握知識的情況,對本節(jié)課的教學起到畫龍點睛的作用。

  公式推導:具體算式→觀察→猜想→論證→基本關系式

  公式應用:

  一般方法(例1):先確定象限角再求值。分類討論思想

  特殊方法(例2):化切為弦 和化弦為切。整體思想、化歸思想

  靈活運用公式(例3):證明恒等式

  7、作業(yè)布置:

  (1)、已知,求 、

  變式1、

  變式2、

  設計意圖:鞏固所學公式,并靈活運用;分層設計,題(1)是在課堂例題的延伸,題(2)是在課堂上沒講的題型,檢測學生對知識的遷移能力。

  8、板書設計

  同角三角函數(shù)基本關系式

  一、公式 二、例題 例2

  1、sin2+cos2=1; 例1

  2、tan= 變式1

  公式變形: 例3

  , 變式2

  , 變式3

  三:總結

  ……

  五、教學反思:

  如此設計教學過程,既復習了上一節(jié)的內容,又充分利用舊知識帶出新知識,讓學生明白到數(shù)學的知識是相互聯(lián)系的,所以每一節(jié)內容都應該把它牢固掌握;在公式的推導中,教師是用創(chuàng)設問題的形式引導學生去發(fā)現(xiàn)關系式,多讓學生動手去計算,體現(xiàn)了"教師為引導,學生為主體,體驗為紅線,探索得材料,研究獲本質,思維促發(fā)展"的教學思想。通過兩種不同的例題的對比,讓學生能夠明白到關系式中的開方,是需要考慮正負號,而正負號是與角的象限有關,角的象限題目可以直接給出來,但有時是需要已知條件來推出角可能所在的象限,通過分析,把本節(jié)課的教學難點解決了。由于課堂在完成例題及變式時要給予學生充分的時間思考與嘗試,故對學生的檢測只能安排在課后的作業(yè)中,作業(yè)可以檢測學生對本節(jié)課內容掌握的情況,能否靈活運用知識進行合理的遷移,可以發(fā)現(xiàn)學生在解題中存在的問題,下節(jié)課教師再根據學生完成的情況加以評講,并設計相應的訓練題,使學生的認識再上一個臺階。

《三角函數(shù)》說課稿4

各位同仁,各位專家:

  我說課的課題是《任意角的三角函數(shù)》,內容取自蘇教版高中實驗教科書《數(shù)學》第四冊 第1。2節(jié)

  先對教材進行分析

  教學內容:任意角三角函數(shù)的定義、定義域,三角函數(shù)值的符號。

  地位和作用: 任意角的三角函數(shù)是本章教學內容的基本概念對三角內容的整體學習至關重要。同時它又為平面向量、解析幾何等內容的學習作必要的準備,通過這部分內容的學習,又可以幫助學生更加深入理解函數(shù)這一基本概念。所以這個內容要認真探討教材,精心設計過程。

  教學重點:任意角三角函數(shù)的定義

  教學難點:正確理解三角函數(shù)可以看作以實數(shù)為自變量的函數(shù)、初中用邊長比值來定義轉變?yōu)樽鴺讼迪掠米鴺吮戎刀x的觀念的轉換以及坐標定義的合理性的理解;

  學情分析:

  學生已經掌握的內容,學生學習能力

  1。初中學生已經學習了基本的銳角三角函數(shù)的定義,掌握了銳角三角函數(shù)的一些常見的知識和求法。

  2。我們南山區(qū)經過多年的初中課改,學生已經具備較強的自學能力,多數(shù)同學對數(shù)學的學習有相當?shù)呐d趣和積極性。

  3。在探究問題的能力,合作交流的意識等方面發(fā)展不夠均衡,尚有待加強必須在老師一定的指導下才能進行

  針對對教材內容重難點的和學生實際情況的分析我們制定教學目標如下

  知識目標:

 。1)任意角三角函數(shù)的定義;三角函數(shù)的定義域;三角函數(shù)值的符號,

  能力目標:

 。1)理解并掌握任意角的三角函數(shù)的定義;

  (2)正確理解三角函數(shù)是以實數(shù)為自變量的函數(shù);

 。3)通過對定義域,三角函數(shù)值的符號的推導,提高學生分析探究解決問題的能力。

  德育目標:

 。1)學習轉化的思想,(2)培養(yǎng)學生嚴謹治學、一絲不茍的科學精神;

  針對學生實際情況為達到教學目標須精心設計教學方法

  教法學法:溫故知新,逐步拓展

 。1)在復習初中銳角三角函數(shù)的定義的基礎上一步一步擴展內容,發(fā)展新知識,形成新的概念;

 。2)通過例題講解分析,逐步引出新知識,完善三角定義

  運用多媒體工具

 。1)提高直觀性增強趣味性。

  教學過程分析

  總體來說, 由舊及新,由易及難,

  逐步加強,逐步推進

  先由初中的直角三角形中銳角三角函數(shù)的定義

  過度到直角坐標系中銳角三角函數(shù)的定義

  再發(fā)展到直角坐標系中任意角三角函數(shù)的定義

  給定定義后通過應用定義又逐步發(fā)現(xiàn)新知識拓展完善定義。

  具體教學過程安排

  引入: 復習提問:初中直角三角形中銳角的正弦余弦正切是怎樣定義的?

  由學生回答

  SinA=對邊/斜邊=BC/AB

  cosA=對邊/斜邊=AC/AB

  tanA=對邊/斜邊=BC/AC

  逐步拓展:在高中我們已經建立了直角坐標系, 把“定義媒介”從直角三角形改為平面直角坐標系。

  我們知道,隨著角的概念的推廣,研究角時多放在直角坐標系里, 那么三角函數(shù)的定義能否也放到坐標系去研究呢?

  引導學生發(fā)現(xiàn)B的坐標和邊長的關系。進一步啟發(fā)他們發(fā)現(xiàn)由于相似三角形的相似比導致OB上任一P點都可以代換B,把三角函數(shù)的定義發(fā)展到用終邊上任一點的坐標來表示, 從而銳角三角函數(shù)可以使用直角坐標系來定義,自然地,要想定義任意一個角三角函數(shù),便考慮放在直角坐標中進行合理進行定義了

  從而得到

  知識點一:任意一個角的`三角函數(shù)的定義

  提醒學生思考:由于相似比相等,對于確定的角A ,這三個比值的大小和P點在角的終邊上的位置無關。

  精心設計例題,引出新內容深化概念,完善定義

  例1已知角A 的終邊經過P(2,—3),求角A的三個三角函數(shù)值

 。ù祟}由學生自己分析獨立動手完成)

  例題變式1,已知角A 的大小是30度,由定義求角A的三個三角函數(shù)值

  結合變式我們發(fā)現(xiàn)三個三角函數(shù)值的大小與角的大小有關,只會隨角的大小而變化,符合當初函數(shù)的定義,而我們又一直稱呼為三角函數(shù),

  提出問題:這三個新的定義確實問是函數(shù)嗎?為什么?

  從而引出函數(shù)極其定義域

  由學生分析討論,得出結論

  知識點二:三個三角函數(shù)的定義域

  同時教師強調:由于弧度制使角和實數(shù)建立了一一對應關系,所以三角函數(shù)是以實數(shù)為自變量的函數(shù)

  例題變式2, 已知角A 的終邊經過P(—2a,—3a)( a不為0),求角A的三個三角函數(shù)值

  解答中需要對變量的正負即角所在象限進行討論, 讓學生意識到三角函數(shù)值的正負與角所在象限有關,從而導出第三個知識點

  知識點三:三角函數(shù)值的正負與角所在象限的關系

  由學生推出結論,教師總結符號記憶方法,便于學生記憶

  例題2:已知A在第二象限且 sinA=0。2 求cosA,tanA

  求cosA,tanA

  綜合練習鞏固提高,更為下節(jié)的同角關系式打下基礎

  拓展,如果不限制A的象限呢,可以留作課外探討

  小結回顧課堂內容

  課堂作業(yè)和課外作業(yè)以加強知識的記憶和理解

  課堂作業(yè)P16 1,2,4

  (學生演板,后集體討論修訂答案同桌討論,由學生回答答案)

  課后分層作業(yè)(有利于全體學生的發(fā)展)

  必作P23 1(2),5(2),6(2)(4) 選作P23 3,4

  板書設計(見PPT)

《三角函數(shù)》說課稿5

  一、教材分析

  (一)內容說明

  函數(shù)是中學數(shù)學的重要內容,中學數(shù)學對函數(shù)的研究大致分成了三個階段。

  三角函數(shù)是最具代表性的一種基本初等函數(shù)。4.8節(jié)是第二章《函數(shù)》學習的延伸,也是第四章《三角函數(shù)》的核心內容,是在前面已經學習過正、余弦函數(shù)的圖象、三角函數(shù)的有關概念和公式基礎上進行的,其知識和方法將為后續(xù)內容的學習打下基礎,有承上啟下的作用。

  本節(jié)課是數(shù)形結合思想方法的良好素材。數(shù)形結合是數(shù)學研究中的重要思想方法和解題方法。

  著名數(shù)學家華羅庚先生的詩句:......數(shù)缺形時少直觀,形少數(shù)時難入微,數(shù)形結合百般好,隔裂分家萬事休......可以說精辟地道出了數(shù)形結合的重要性。

  本節(jié)通過對數(shù)形結合的進一步認識,可以改進學習方法,增強學習數(shù)學的自信心和興趣。另外,三角函數(shù)的曲線性質也體現(xiàn)了數(shù)學的對稱之美、和諧之美。

  因此,本節(jié)課在教材中的知識作用和思想地位是相當重要的。

  (二)課時安排

  4.8節(jié)教材安排為4課時,我計劃用5課時

  (三)目標和重、難點

  1.教學目標

  教學目標的確定,考慮了以下幾點:

  (1)高一學生有一定的抽象思維能力,而形象思維在學習中占有不可替代的地位,所以本節(jié)要緊緊抓住數(shù)形結合方法進行探索;

  (2)本班學生對數(shù)學科特別是函數(shù)內容的學習有畏難情緒,所以在內容上要降低深難度。

  (3)學會方法比獲得知識更重要,本節(jié)課著眼于新知識的探索過程與方法,鞏固應用主要放在后面的三節(jié)課進行。

  由此,我確定了以下三個層面的教學目標:

  (1)知識層面:結合正弦曲線、余弦曲線,師生共同探索發(fā)現(xiàn)正(余)弦函數(shù)的性質,讓學生學會正確表述正、余函數(shù)的單調性和對稱性,理解體會周期函數(shù)性質的研究過程和數(shù)形結合的研究方法;

  (2)能力層面:通過在教師引導下探索新知的過程,培養(yǎng)學生觀察、分析、歸納的自學能力,為學生學習的可持續(xù)發(fā)展打下基礎;

  (3)情感層面:通過運用數(shù)形結合思想方法,讓學生體會(數(shù)學)問題從抽象到形象的轉化過程,體會數(shù)學之美,從而激發(fā)學習數(shù)學的信心和興趣。

  2.重、難點

  由以上教學目標可知,本節(jié)重點是師生共同探索,正、余函數(shù)的性質,在探索中體會數(shù)形結合思想方法。

  難點是:函數(shù)周期定義、正弦函數(shù)的單調區(qū)間和對稱性的理解。

  為什么這樣確定呢?

  因為周期概念是學生第一次接觸,理解上易錯;單調區(qū)間從圖上容易看出,但用一個區(qū)間形式表示出來,學生感到困難。

  如何克服難點呢?

  其一,抓住周期函數(shù)定義中的關鍵字眼,舉反例說明;

  其二,利用函數(shù)的周期性規(guī)律,抓住“橫向距離”和“k∈Z"的含義,充分結合圖象來理解單調性和對稱性

  二、教法分析

  (一)教法說明教法的確定基于如下考慮:

  (1)心理學的研究表明:只有內化的東西才能充分外顯,只有學生自己獲取的知識,他才能靈活應用,所以要注重學生的自主探索。

  (2)本節(jié)目的是讓學生學會如何探索、理解正、余弦函數(shù)的性質。教師始終要注意的是引導學生探索,而不是自己探索、學生觀看,所以教師要引導,而且只能引導不能代辦,否則不但沒有教給學習方法,而且會讓學生產生依賴和倦怠。

  (3)本節(jié)內容屬于本源性知識,一般采用觀察、實驗、歸納、總結為主的方法,以培養(yǎng)學生自學能力。

  所以,根據以人為本,以學定教的原則,我采取以問題為解決為中心、啟發(fā)為主的教學方法,形成教師點撥引導、學生積極參與、師生共同探討的課堂結構形式,營造一種民主和諧的課堂氛圍。

  (二)教學手段說明:

  為完成本節(jié)課的教學目標,突出重點、克服難點,我采取了以下三個教學手段:

  (1)精心設計課堂提問,整個課堂以問題為線索,帶著問題探索新知,因為沒有問題就沒有發(fā)現(xiàn)。

  (2)為便于課堂操作和知識條理化,事先制作正弦函數(shù)、余弦函數(shù)性質表,讓學生當堂完成表格的.填寫;

  (3)為節(jié)省課堂時間,制作幻燈片演示正、余弦函數(shù)圖象和性質,也可以使教學更生動形象和連貫。

  三、學法和能力培養(yǎng)

  我發(fā)現(xiàn),許多學生的學習方法是:直接記住函數(shù)性質,在解題中套用結論,對結論的來源不理解,知其然不知其所以然,應用中不能變通和遷移。

  本節(jié)的學習方法對后續(xù)內容的學習具有指導意義。為了培養(yǎng)學法,充分關注學生的可持續(xù)發(fā)展,教師要轉換角色,站在初學者的位置上,和學生共同探索新知,共同體驗數(shù)形結合的研究方法,體驗周期函數(shù)的研究思路;幫助學生實現(xiàn)知識的意義建構,幫助學生發(fā)現(xiàn)和總結學習方法,使教師成為學生學習的高級合作伙伴。

  教師要做到:

  授之以漁,與之合作而漁,使學生享受漁之樂趣。因此

  1.本節(jié)要教給學生看圖象、找規(guī)律、思考提問、交流協(xié)作、探索歸納的學習方法。

  2.通過本課的探索過程,培養(yǎng)學生觀察、分析、交流、合作、類比、歸納的學習能力及數(shù)形結合(看圖說話)的意識和能力。

  四、教學程序

  指導思想是:兩條線索、三大特點、四個環(huán)節(jié)

  (一)導入

  引出數(shù)形結合思想方法,強調其含義和重要性,告訴學生,本節(jié)課將利用數(shù)形結合方法來研究,會使學習變得輕松有趣。

  采用這樣的引入方法,目的是打消學生對函數(shù)學習的畏難情緒,引起學生注意,也激起學生好奇和興趣。

  (二)新知探索主要環(huán)節(jié),分為兩個部分

  教學過程如下:

  第一部分————師生共同研究得出正弦函數(shù)的性質

  1.定義域、值域2.周期性

  3.單調性(重難點內容)

  為了突出重點、克服難點,采用以下手段和方法:

  (1)利用多媒體動態(tài)演示函數(shù)性質,充分體現(xiàn)數(shù)形結合的重要作用;

  (2)以層層深入,環(huán)環(huán)相扣的課堂提問,啟發(fā)學生思維,反饋課堂信息,使問題成為探索新知的線索和動力,隨著問題的解決,學生的積極性將被調動起來。

  (3)單調區(qū)間的探索過程是:

  先在靠近原點的一個單調周期內找出正弦函數(shù)的一個增區(qū)間,由此表示出所有的增區(qū)間,體現(xiàn)從特殊到一般的知識認識過程。

  xx教師結合圖象幫助學生理解并強調“距離”(“長度”)是周期的多少倍

  為什么要這樣強調呢?

  因為這是對知識的一種意義建構,有助于以后理解記憶正弦型函數(shù)的相關性質。

  4.對稱性

  設計意圖:

  (1)因為奇偶性是特殊的對稱性,掌握了對稱性,容易得出奇偶性,所以著重講清對稱性。體現(xiàn)了從一般到特殊的知識再現(xiàn)過程。

  (2)從正弦函數(shù)的對稱性看到了數(shù)學的對稱之美、和諧之美,體現(xiàn)了數(shù)學的審美功能。

  5.最值點和零值點

  有了對稱性的理解,容易得出此性質。

  第二部分————學習任務轉移給學生

  設計意圖:

  (1)通過把學習任務轉移給學生,激發(fā)學生的主體意識和成就動機,利于學生作自我評價;

  (2)通過學生自主探索,給予學生解決問題的自主權,促進生生交流,利于教師作反饋評價;

  (3)通過課堂教學結構的改革,提高課堂教學效率,最終使學生成為獨立的學習者,這也符合建構主義的教學原則。

  (三)鞏固練習

  補充和選作題體現(xiàn)了課堂要求的差異性。

  (四)結課

  五、板書說明既要體現(xiàn)原則性又要考慮靈活性

  1.板書要基本體現(xiàn)整堂課的內容與方法,體現(xiàn)課堂進程,能簡明扼要反映知識結構及其相互聯(lián)系;能指導教師的教學進程、引導學生探索知識;同時不完全按課本上的呈現(xiàn)方式來編排板書。即體現(xiàn)系統(tǒng)性、程序性、概括性、指導性、啟發(fā)性、創(chuàng)造性的原則;(原則性)

  2.使用幻燈片輔助板書,節(jié)省課堂時間,使課堂進程更加連貫。(靈活性)

  六、效果及評價說明

  (一)知識診斷

  (二)評價說明

  1.針對本班學生情況對課本進行了適當改編、細化,有利于難點克服和學生主體性的調動。

  2.根據課堂上師生的雙邊活動,作出適時調整、補充(反饋評價);根據學生課后作業(yè)、提問等情況,反復修改并指導下節(jié)課的設計(反復評價)。

  3.本節(jié)課充分體現(xiàn)了面向全體學生、以問題解決為中心、注重知識的建構過程與方法、重視學生思想與情感的設計理念,積極地探索和實踐我校的科研課題——努力推進課堂教學結構改革。

  通過這樣的探索過程,相信學生能從中有所體會,對后續(xù)內容的學習和學生的可持續(xù)發(fā)展會有一定的幫助。希望很久以后留在學生記憶中的不是知識本身,而是方法與思想,是學習的習慣和熱情,這正是我們教育工作者追求的結果。

《三角函數(shù)》說課稿6

  今天我說課的課題是《銳角三角函數(shù)》(第一課時),所選用的教材為人教版義務教育課程標準實驗教科書。

  根據新課標的理念,對于本節(jié)課,我將以教什么,怎樣教,為什么這樣教為思路,從教材分析,教學目標分析,教學方法和學法分析,教學過程分析四個方面加以說明。

  一、教材的地位和作用

  本節(jié)教材是人教版初中數(shù)學新教材九年級下第28章第一節(jié)內容,是初中數(shù)學的重要內容之一。一方面,這是在學習了直角三角形兩銳角關系、勾股定理等知識的基礎上,對直角三角形邊角關系的進一步深入和拓展;另一方面,又為解直角三角形等知識奠定了基礎,也是高中進一步研究三角函數(shù)、反三角函數(shù)、三角方程的工具性內容。鑒于這種認識,我認為,本節(jié)課不僅有著廣泛的實際應用,而且起著承前啟后的作用。

  2、學情分析

  從學生的年齡特征和認知特征來看:

  九年級學生的思維活躍,接受能力較強,具備了一定的數(shù)學探究活動經歷和應用數(shù)學的意識。

  從學生已具備的知識和技能來看:

  九年級學生已經掌握直角三角形中各邊和各角的關系,能靈活運用相似圖形的性質及判定方法解決問題,有較強的推理證明能力,這為順利完成本節(jié)課的教學任務打下了基礎

  從心理特征來看:初三學生邏輯思維從經驗型逐步向理論型發(fā)展,觀察能力,記憶能力和想象能力也隨著迅速發(fā)展。

  從學生有待于提高的知識和技能來看:

  學生要得出直角三角形中邊與角之間的關系,需要觀察、思考、交流,進一步體會數(shù)學知識之間的聯(lián)系,感受數(shù)形結合的思想,體會銳角三角函數(shù)的意義,提高應用數(shù)學和合作交流的能力。學生可能會產生一定的困難,所以教學中應予以簡單明了,深入淺出的剖析。

  3、教學重、難點

  根據以上對教材的地位和作用,以及學情分析,結合新課標對本節(jié)課的要求,我將本節(jié)課的重點確定為:理解正弦函數(shù)意義,并會求銳角的正弦值。

  難點確定為:根據銳角的正弦值及一邊,求直角三角形的其他邊長。

  二、教學目標分析

  新課標指出,教學目標應從知識技能、數(shù)學思考、問題解決、情感態(tài)度等四個方面闡述,而這四維目標又應是緊密聯(lián)系的一個完整的'整體,學生學知識技能的過程同時成為學會學習,形成正確價值觀的過程,這告訴我們,在教學中應以知識技能為主線,滲透情感態(tài)度,并把前面兩者通過數(shù)學思考充分體現(xiàn)在問題解決中。借此結合以上教材分析,我將四個目標進行整合,確定本節(jié)課的教學目標為:

  1. 理解銳角正弦的意義,并會求銳角的正弦值;

  2. 初步了解銳角正弦取值范圍及增減性;

  3. 掌握根據銳角的正弦值及直角三角形的一邊,求直角三角形的其他邊長的方法;

  4. 經歷銳角正弦的意義探索的過程,培養(yǎng)學生 觀察分析、類比歸納的探究問題的能力;

  5. 通過主動探究,合作交流,感受探索的樂趣和成功的體驗,體會數(shù)學的合理性和嚴謹性,使學生養(yǎng)成積極思考,獨立思考的好習慣,并且同時培養(yǎng)學生的團隊合作精神。

  三、教學方法和學法分析

  現(xiàn)代教學理論認為,在教學過程中,學生是學習的主體,教師是學習的組織者、引導者,教學的一切活動都必須以強調學生的主動性、積極性為出發(fā)點。根據這一教學理念,結合本節(jié)課的內容特點和學生的學情情況,本節(jié)課我采用“三動五自主”的教學模式,以問題的提出、問題的解決為主線,始終在學生知識的“最近發(fā)展區(qū)”設置問題,倡導學生主動參與教學實踐活動,以獨立思考和合作交流的形式,在教師的指道下發(fā)現(xiàn)、分析和解決問題,在引導分析時,給學生流出足夠的思考時間和空間,讓學生去聯(lián)想、探索,從真正意義上完成對知識的自我建構。

  另外,在教學過程中,我采用多媒體輔助教學,以直觀呈現(xiàn)教學素材,從而更好地激發(fā)學生的學習興趣,增大教學容量,提高教學效率。

  本節(jié)課的教法采用的是情境引導和探究發(fā)現(xiàn)教學法,在教學過程中,通過適宜的問題情境引發(fā)新的認知沖突;建立知識間的聯(lián)系。教師通過引導、指導、反饋、評價,不斷激發(fā)學生對問題的好奇心,使其在積極的自主活動中主動參與概念的建構過程,并運用數(shù)學知識解決實際問題,享受數(shù)學學習帶來的樂趣。

  本節(jié)課的學習方法采用自主探究法與合作交流法相結合。本節(jié)課數(shù)學活動貫穿始終,既有學生自主探究的,也有小組合作交流的,旨在讓學生從自主探究中發(fā)展,從合作交流中提高。

  四、教學過程

  新課標指出,數(shù)學教學過程是教師引導學生進行學習活動的過程,是教師和學生間互動的過程,是師生共同發(fā)展的過程。為有序、有效地進行教學,本節(jié)課我主要安排以下教學環(huán)節(jié):

  (一) 自主探究

  1、 復習舊知,溫故知新

  1、 已知:在Rt△ABC中,∠C=900,∠A=350,則∠B= 0

  2、已知:在Rt△ABC中,∠C=900,AB=5,AC=3,則BC=

  設計意圖:建構注意主張教學應從學生已有的知識體系出發(fā),相似的三角形性質是本節(jié)課深入研究銳角正弦的認知基礎,這樣設計有利于引導學生順利地進入學習情境。

  2、 創(chuàng)設情境,提出問題

  利用多媒體播放意大利比薩斜塔圖片,然后老師問:比薩斜塔中條件和要探究的問題:“你能根據問題背景畫出直角三角形并且利用邊求出斜塔的傾斜角嗎?”這就是今天我們要學習銳角三角函數(shù)(板書課題)

  設計意圖:以問題串的形式創(chuàng)設情境,引起學生的認知沖突,使學生對舊知識產生設疑,從而激發(fā)學生的學習興趣和求知欲望‘

  通過情境創(chuàng)設,學生已激發(fā)了強烈的求知欲望,產生了強勁的學習動力,此時我把學生帶入下一環(huán)節(jié)———

  (二)自主合作

  1、 發(fā)現(xiàn)問題,探求新知(要求學生獨立思考后小組內合作探究)

  1、(播放綠化荒山的視頻)課本P74問題與思考,求的值

  2、課本P75思考:求的值

  設計意圖:現(xiàn)代數(shù)學教學論指出,數(shù)學知識的教學必須在學生自主探索,經驗歸納的基礎上獲得,教學中必須展現(xiàn)思維的過程性,在這里,通過觀察分析、獨立思考、小組交流 等活動,引導學生歸納 。

  2、分析思考,加深理解

  1、課本P75探索 ,

  問:與有什么關系?你能解釋嗎?

  2、正弦函數(shù)定義:在Rt△ABC中,∠C=900,,把銳角A的對邊與斜邊的比叫做∠A的正弦,記作sinA,即sinA=

  對定義的幾點說明:

  1、sinA是一個完整的符號,表示∠A的正切習慣上省略“∠”的符號.

  2、本章我們只研究銳角∠A的正弦.

  3、sinA的范圍:0

  設計意圖:數(shù)學教學論指出, 數(shù)學概念要明確其內涵和外延(條件、結論、應用范圍等) ,通過對銳角正弦定義闡述,使學生的認知結構得到優(yōu)化,知識體系得到完善,使學生的數(shù)學理解又一次突破思維的難點。

  通過前面的學習,學生已基本把握了本節(jié)課所要學習的內容,此時,他們急于尋找一塊用武之地,以展示自我,體驗成功,于是我把學生引入到下一環(huán)節(jié)。

  (三)自主展示(強化訓練,鞏固雙基)

  1、(例1課本P76)已知:在Rt△ABC中,∠C=900,根據圖中數(shù)據

  求sinA和sinB

  2、判斷對錯(學生口答)

  (1)若銳角∠A=∠B,則sinA=sinB ( )

  (2)sin600=sin300+sin300 ( )

  3、如圖,將Rt△ABC各邊擴大100倍,則tanA的值( )

  A.擴大100倍 B.縮小100倍 C.不變 D.不確定

  4、如圖,平面直角坐標系中點P(3,- 4),OP與x軸的夾角為∠1,求sin∠1的值。

  設計意圖:幾道例題及練習題由淺入深、由易到難、各有側重,其中例1……例2……,體現(xiàn)新課標提出的讓不同的學生在數(shù)學上得到不同發(fā)展的教學理念。這一環(huán)節(jié)總的設計意圖是反饋教學,內化知識。

  (四)自主拓展(提高升華)

  1、課本習題28.1第1、2、題;

  2、選做題:已知:在Rt△ABC中,∠C=900,sinA=,周長為60,求:斜邊AB的長?

  以作業(yè)的鞏固性和發(fā)展性為出發(fā)點,我設計了必做題和選做題,必做題是對本節(jié)課內容的一個反饋,選做題是對本節(jié)課知識的一個延伸?偟脑O計意圖是反饋教學,鞏固提高。

  (五)自主評價(小結歸納,拓展深化)

  我的理解是,小結歸納不應該僅僅是知識的簡單羅列,而應該是優(yōu)化認知結構,完善知識體系的一種有效手段,為充分發(fā)揮學生的主題作用,從學習的知識、方法、體驗是那個方面進行歸納,我設計了這么三個問題:

  ① 通過本節(jié)課的學習,你學會了哪些知識;

  ② 通過本節(jié)課的學習,你最大的體驗是什么;

 、 通過本節(jié)課的學習,你掌握了哪些學習數(shù)學的方法?

  以上幾個環(huán)節(jié)環(huán)環(huán)相扣,層層深入,并充分體現(xiàn)教師與學生的交流互動,在教師的整體調控下,學生通過動腦思考、層層遞進,對知識的理解逐步深入,為了使課堂效益達到最佳狀態(tài),我設計以下問題加以追問:

  1、sinA能為負嗎?

  2、比較sin450和sin300的大小?

  設計要求:(1)先學生獨立思考后小組內探究

  (2)各組交流展示探究結果,并且組內或各組之間自主評價.

  設計意圖:

  (1)有一定難度需要學生進行合作探究,有利于培養(yǎng)學生善于反思的好習慣.

  (2)學生通過互評自評,可以使學生全面了解自己的學習過程,感受自己的成長和進步,同時促進學生對學習及時進行反思,為教師全面了解學生的學習狀況,改進教學,實施因材施教提供重要依據。我的說課到此結束,敬請各位老師批評、指正,謝謝!

  教學反思

  1.本教學設計以直角三角形為主線,力求體現(xiàn)生活化課堂的理念,讓學生在經歷“問題情境——形成概念——應用拓展——反思提高”的基本過程中,體驗知識間的內在聯(lián)系,讓學生感受探究的樂趣,使學生在學中思,在思中學。

  2.在教學過程中,重視過程,深化理解,通過學生的主動探究來體現(xiàn)他們的主體地位,教師是通過對學生參與學習的啟發(fā)、調整、激勵來體現(xiàn)自己的引導作用,對學生的主體意識和合作交流的能力起著積極作用。

  3.正弦是生活中應用較廣泛的三角函數(shù)。因而在本節(jié)課的設計中力求貼近生活。又從意大利比薩斜塔提煉出了數(shù)學問題,讓學生體會學數(shù)學、用數(shù)學的樂趣。

《三角函數(shù)》說課稿7

  《銳角三角函數(shù)》(第一課時),所選用的教材為人教版義務教育課程標準實驗教科書。根據新課標的理念,對于本節(jié)課,以教什么,怎樣教,為什么這樣教為思路,從教材分析,教學目標分析,教學方法和學法分析,教學過程分析四個方面加以說明。

  一、教材的地位和作用

  1、教材分析

  本節(jié)教材是人教版初中數(shù)學新教材九年級下第28章第一節(jié)內容,是初中數(shù)學的重要內容之一。一方面,這是在學習了直角三角形兩銳角關系、勾股定理等知識的基礎上,對直角三角形邊角關系的進一步深入和拓展;另一方面,又為解直角三角形等知識奠定了基礎,也是高中進一步研究三角函數(shù)、反三角函數(shù)的工具性內容。鑒于這種認識,我認為,本節(jié)課不僅有著廣泛的實際應用,而且起著承前啟后的作用。

  2、學情分析

  從學生的年齡特征和認知特征來看:

  九年級學生的思維活躍,接受能力較強,具備了一定的數(shù)學探究活動經歷和應用數(shù)學的意識。

  從學生已具備的知識和技能來看:

  九年級學生已經掌握直角三角形中各邊和各角的關系,能靈活運用相似圖形的性質及判定方法解決問題,有較強的推理證明能力,這為順利完成本節(jié)課的教學任務打下了基礎。

  從心理特征來看:九年級學生邏輯思維從經驗型逐步向理論型發(fā)展,觀察能力,記憶能力和想象能力也隨著迅速發(fā)展。

  從學生有待于提高的知識和技能來看:

  學生要得出直角三角形中邊與角之間的關系,需要觀察、思考、交流,進一步體會數(shù)學知識之間的聯(lián)系,感受數(shù)形結合的思想,體會銳角三角函數(shù)的意義,提高應用數(shù)學和合作交流的能力。學生可能會產生一定的困難,所以教學中應予以簡單明了,深入淺出的剖析。

  3、教學重點、難點

  根據以上對教材的地位和作用,以及學情分析,結合新課標對本節(jié)課的要求,我認為本節(jié)課的重點為:理解正弦函數(shù)意義,并會求銳角的正弦值。

  難點為:根據銳角的正弦值及一邊,求直角三角形的其它邊長。

  二、教學目標分析:

  新課標指出,教學目標應從知識技能、數(shù)學思考、問題解決、情感態(tài)度等四個方面闡述,而這四維目標又應是緊密聯(lián)系的一個完整的整體,學生學知識技能的過程同時成為學會學習,形成正確價值觀的過程,這告訴我們,在教學中應以知識技能為主線,滲透情感態(tài)度,并把前面兩者通過數(shù)學思考充分體現(xiàn)在問題解決中。借此結合以上教材分析,將四個目標進行整合,確定本節(jié)課的教學目標為:

  1. 理解銳角正弦的意義,并會求銳角的正弦值;

  2 掌握根據銳角的`正弦值及直角三角形的一邊,求直角三角形的其它邊長的方法;

  3 經歷銳角正弦的意義探索的過程,培養(yǎng)學生 觀察分析、類比歸納的探究問題的能力;

  4 通過主動探究,合作交流,感受探索的樂趣和成功的體驗,體會數(shù)學的合理性和嚴謹性,使學生養(yǎng)成積極思考,獨立思考的好習慣,并且同時培養(yǎng)學生的團隊合作精神。

  三、教學方法和學法分析

  現(xiàn)代教學理論認為,在教學過程中,學生是學習的主體,教師是學習的組織者、引導者,教學的一切活動都必須以強調學生的主動性、積極性為出發(fā)點。根據這一教學理念,結合本節(jié)課的內容特點和學生的學情情況,本節(jié)課我采用“三動五自主”的教學模式,以問題的提出、問題的解決為主線,始終在學生知識的“最近發(fā)展區(qū)”設置問題,倡導學生主動參與教學實踐活動,以獨立思考和合作交流的形式,在教師的指道下發(fā)現(xiàn)、分析和解決問題,在引導分析時,給學生流出足夠的思考時間和空間,讓學生去聯(lián)想、探索,從真正意義上完成對知識的自我建構。

  本節(jié)課的教法采用的是情境引導和自學教學法,在教學過程中,通過適宜的問題情境引發(fā)新的認知沖突;建立知識間的聯(lián)系。教師通過引導、指導、反饋、評價,不斷激發(fā)學生對問題的好奇心,使其在積極的自主活動中主動參與概念的建構過程,并運用數(shù)學知識解決實際問題,享受數(shù)學學習帶來的樂趣。

  本節(jié)課的學習方法采用自主探究法與合作交流法相結合。本節(jié)課數(shù)學活動貫穿始終,既有學生自主探究的,也有小組合作交流的,旨在讓學生從自主探究中發(fā)展,從合作交流中提高。

  四、教學過程

  新課標指出,數(shù)學教學過程是教師引導學生進行學習活動的過程,是教師和學生間互動的過程,是師生共同發(fā)展的過程。為有序、有效地進行教學,本節(jié)課主要安排以下教學環(huán)節(jié):

  (一)自學提綱

  1、 已知:在Rt△ABC中,∠C=900,∠A=30°,BC=10m,求AB

  已知:在Rt△ABC中,∠C=900,∠A=30°,AB=20m,求BC

  設計意圖:建構注意主張教學應從學生已有的知識體系出發(fā),相似的三角形性質是本節(jié)課深入研究銳角正弦的認知基礎,這樣設計有利于引導學生順利地進入學習情境。

  2、 創(chuàng)設情境,提出問題

  利用多媒體播放意大利比薩斜塔圖片,然后老師問:比薩斜塔中條件和要探究的問題:“你能根據問題背景畫出直角三角形并且利用邊求出斜塔的傾斜角嗎?”這就是今天我們要學習銳角三角函數(shù)(板書課題)

  設計意圖:以問題串的形式創(chuàng)設情境,引起學生的認知沖突,使學生對舊知識產生設疑,從而激發(fā)學生的學習興趣和求知欲望。

  通過情境創(chuàng)設,學生已激發(fā)了強烈的求知欲望,產生了強勁的學習動力,此時我把學生帶入下一環(huán)節(jié)。

  (二)合作交流

  1、閱讀課本P74問題與思考 (要求學生獨立思考后小組內合作探究)

  結論:直角三角形中,30°角的對邊與斜邊的比值 。

  2、閱讀課本P75思考,并求值

  結論:直角三角形中,45°角的對邊與斜邊的比值 。

  設計意圖:現(xiàn)代數(shù)學教學論指出,數(shù)學知識的教學必須在學生自主探索,經驗歸納的基礎上獲得,教學中必須展現(xiàn)思維的過程性,在這里,通過觀察分析、獨立思考、小組交流 等活動,引導學生歸納。

  3、閱讀課本P75探究 。

  問:銳角A度數(shù)一定時,不管直角三角形的大小如何,它的對邊與斜邊的比有什么關系?你能解釋嗎?

  4、正弦函數(shù)定義:在Rt△ABC中,∠C=900,把銳角A的對邊與斜邊的比叫做∠A的正弦,記作sinA,即sinA=BC/AB

  對定義的幾點說明:

  1、sinA是一個完整的符號,表示∠A的正弦習慣上省略“∠”的符號.

  2、本章我們只研究銳角的正弦。

  通過前面的學習,學生已基本把握了本節(jié)課所要學習的內容,此時,他們急于尋找一塊用武之地,以展示自我,體驗成功,于是我把學生引入到下一環(huán)節(jié)。

 。ㄈ┳灾髡故荆◤娀柧,鞏固雙基)

  1、(例1課本P76)已知:在Rt△ABC中,∠C=90°,根據圖中數(shù)據

  求sinA和sinB

  2、課本77頁練習

  3、判斷對錯(學生口答)

  (1)若銳角∠A=∠B,則sinA=sinB ( )

  (2)sin60°=30°+sin30° ( )

  4、將Rt△ABC各邊擴大100倍,則sinA的值( )

  A.擴大100倍 B.縮小100倍 C.不變 D.不確定

  5、平面直角坐標系中點P(3,- 4),OP與x軸的夾角為∠1,求sin∠1的值。

  6、在Rt△ABC中,∠C=90°,BC=6,sinA=3/5,求:AB, AC的長。

  設計意圖:例題及練習題由淺入深、由易到難、各有側重,體現(xiàn)新課標提出的讓不同的學生在數(shù)學上得到不同發(fā)展的教學理念。這一環(huán)節(jié)總的設計意圖是反饋教學,內化知識。

 。ㄋ模┳灾髟u價(小結歸納,拓展深化)

  我的理解是,小結歸納不應該僅僅是知識的簡單羅列,而應該是優(yōu)化認知結構,完善知識體系的一種有效手段,為充分發(fā)揮學生的主題作用,從學習的知識、方法、體驗是那個方面進行歸納,我設計了這么三個問題:

  ① 通過本節(jié)課的學習,你學會了哪些知識;

 、 通過本節(jié)課的學習,你最大的體驗是什么;

  ③ 通過本節(jié)課的學習,你掌握了哪些學習數(shù)學的方法?

 。ㄎ澹┳灾魍卣梗ㄌ岣呱A)

  1、課本習題28.1第1、2、題。(只做與正弦函數(shù)有關的部分);

  2、選做題:已知:在Rt△ABC中,∠C=900,sinA=1/3,周長為60,求:斜邊AB的長.

  以作業(yè)的鞏固性和發(fā)展性為出發(fā)點,我設計了必做題和選做題,必做題是對本節(jié)課內容的一個反饋,選做題是對本節(jié)課知識的一個延伸。總的設計意圖是反饋教學,鞏固提高。

  以上幾個環(huán)節(jié)環(huán)環(huán)相扣,層層深入,并充分體現(xiàn)教師與學生的交流互動,在教師的整體調控下,學生通過動腦思考、層層遞進,對知識的理解逐步深入,為了使課堂效益達到最佳狀態(tài),我設計以下問題加以追問:

  1、sinA能為負嗎?

  2、比較sin45°和sin30°的大小。

  設計要求:(1)先學生獨立思考后小組內探究

  (2)各組交流展示探究結果,并且組內或各組之間自主評價.

  設計意圖:

 。1)有一定難度需要學生進行合作探究,有利于培養(yǎng)學生善于反思的好習慣.

 。2)學生通過互評自評,可以使學生全面了解自己的學習過程,感受自己的成長和進步,同時促進學生對學習及時進行反思,為教師全面了解學生的學習狀況,改進教學,實施因材施教提供重要依據。

  教學反思

  1.本教學設計以直角三角形為主線,力求體現(xiàn)生活化課堂的理念,讓學生在經歷“問題情境——形成概念——應用拓展——反思提高”的基本過程中,體驗知識間的內在聯(lián)系,讓學生感受探究的樂趣,使學生在學中思,在思中學。

  2.在教學過程中,重視過程,深化理解,通過學生的主動探究來體現(xiàn)他們的主體地位,教師是通過對學生參與學習的啟發(fā)、調整、激勵來體現(xiàn)自己的引導作用,對學生的主體意識和合作交流的能力起著積極作用。

  3.正弦是生活中應用較廣泛的三角函數(shù)。因而在本節(jié)課的設計中力求貼近生活。又從意大利比薩斜塔提煉出了數(shù)學問題,讓學生體會學數(shù)學、用數(shù)學的樂趣。

《三角函數(shù)》說課稿8

  1、教學目標:

  一、借助單位圓理解任意角的三角函數(shù)的定義。

  二、根據三角函數(shù)的定義,能夠判斷三角函數(shù)值的符號。

  三、通過學生積極參與知識的"發(fā)現(xiàn)"與"形成"的過程,培養(yǎng)合情猜測的能力,從中感悟數(shù)學概念的嚴謹性與科學性。

  四、讓學生在任意角三角函數(shù)概念的形成過程中,體會函數(shù)思想,體會數(shù)形結合思想。

  2、教學重點與難點:

  重點:任意角的正弦、余弦、正切的定義;三角函數(shù)值的符號。

  難點:任意角的三角函數(shù)概念的建構過程。

  授課過程:

  一、引入

  在我們的現(xiàn)實世界中的許多運動變化都有循環(huán)往復、周而復始的現(xiàn)象,這種變化規(guī)律稱為周期性。如何用數(shù)學的方法來刻畫這種變化?從這節(jié)課開始,我們要來學習刻畫這種規(guī)律的數(shù)學模型之一――三角函數(shù)。

  二、創(chuàng)設情境

  三角函數(shù)是與角有關的函數(shù),在學習任意角概念時,我們知道在直角坐標系中研究角,可以給學習帶來許多方便,比如我們可以根據角終邊的位置把它們進行歸類,現(xiàn)在大家考慮:若在直角坐標系中來研究銳角,則銳角三角函數(shù)又可怎樣定義呢?

  學生情況估計:學生可能會提出兩種定義的方式,一種定義為邊之比,另一種定義在比值中引入了終邊上的一點P的坐標。

  問題:

  1、銳角三角函數(shù)能否表示成第二種比值方式?

  2、點P能否取在終邊上的其它位置?為什么?

  3、點P在哪個位置,比值會更簡潔?(引出單位圓的定義)。指出sina=mP的函數(shù)依舊表示一個比值,不過其分母為1而已。

  練習:計算的各三角函數(shù)值。

  三、任意角的三角函數(shù)的定義

  角的概念已經推廣道了任意角,那么三角函數(shù)的定義在任意角的范圍里改怎么定義呢?

  嘗試:根據銳角三角函數(shù)的定義,你能嘗試著給出任意角三角函數(shù)的定義嗎?

  評價學生給出的'定義。給出任意角三角函數(shù)的定義。

  四、解析任意角三角函數(shù)的定義

  三角函數(shù)首先是函數(shù)。你能從函數(shù)觀點解析三角函數(shù)嗎?(定義域)

  對于確定的角a,上面三個函數(shù)值都是唯一確定的,所以,正弦、余弦、正切都是以角為自變量,以單位圓上點的坐標或坐標的比值為函數(shù)值的函數(shù),我們將它們統(tǒng)稱為三角函數(shù)。由于角的集合和實數(shù)集之間可以建立一一對應的關系,三角函數(shù)可以看成是自變量為實數(shù)的函數(shù)。

  五、三角函數(shù)的應用。

  1、已知角,求a的三角函數(shù)值。

  2、已知角a終邊上的一點P(-3,-4),求各三角函數(shù)值。

  以上兩道書上的例題,讓學生自習看書,學生看書的同時,老師提出問題:

  1、已知角如何求三角函數(shù)值?

  2、利用角a的終邊上任意一點的坐標也可以定義三角函數(shù),你能給出這種定義嗎?(這種定義與課本中給出的定義各有什么特點?)

  3、變式:已知角a終邊上點P(-3b,-4b),(b0),求角a的各三角函數(shù)值。

  4、探究:三角函數(shù)的值在各象限的符號。

  六、小結及作業(yè)

  教案設計說明:

  新教材的教學理念之一是讓學生去體驗新知識的發(fā)生過程,這節(jié)《任意角三角函數(shù)》的教案,主要圍繞這一點來設計。

  首先,角的概念推廣了,那么銳角三角函數(shù)的定義是否也該推廣到任意角的三角函數(shù)的定義呢?通過這個問題,讓學生體會到新知識的發(fā)生是可能的,自然的。

  其次,到底應該怎樣去合理定義任意角的三角函數(shù)呢?讓學生提出自己的想法,同時讓學生去辨證這個想法是否是科學的?因為一個概念是嚴謹?shù),科學的,不能隨心所欲地編造,必須去論證它的合理性,至少這種概念不能和銳角三角函數(shù)的定義有所沖突。在這個立-破的過程中,讓學生去體驗一個新的數(shù)學概念可能是如何形成,在形成的過程中可以從哪些角度加以科學的辯思。這樣也有助于學生對任意角三角函數(shù)概念的理解。

  再次,讓學生充分體會在任意角三角函數(shù)定義的推廣中,是如何將直角三角形這個"形"的問題,轉換到直角坐標系下點的坐標這個"數(shù)"的過程的。培養(yǎng)數(shù)形結合的思想。

《三角函數(shù)》說課稿9

  在前一段我講了30度、45度、60度特殊角的三角函數(shù)值,它是北師大版九年級數(shù)學下冊的一節(jié)課,在前一節(jié)剛講過正弦、余弦、正切三角函數(shù)的定義和求法,F(xiàn)把我對本節(jié)課的做法和想法與大家交流一下,希望能得到同行和專家的指點,以期取得更大的進步。

  一、說教學目標

  1、經歷探索30°、45°、60°角的三角函數(shù)值的過程,能夠進行有關的推理。進一步體會三角函數(shù)的意義;能夠進行30°、45°、60°角的三角函數(shù)值的計算;能夠根據30°、45°、60°的三角函數(shù)值說明相應的銳角的大小。

  2、發(fā)展學生觀察、分析、發(fā)現(xiàn)的能力;培養(yǎng)學生把實際問題轉化為數(shù)學問題的能力。

  3、積極參與數(shù)學活動,對數(shù)學產生好奇心。培養(yǎng)學生獨立思考問題的習慣。

  二、說教學重點

  教學重點:探索特殊銳角三角函數(shù)值的.過程,進行這些三角函數(shù)值的計算并會比較不同銳角三角函數(shù)值大小

  在引入時我采用創(chuàng)設情境法,“為了測量一棵大樹的高度,準備了如下測量工具:(1)含30、60度角的直角三角尺(2)皮尺。請你設計一個方案,來測量一棵大樹的高度。這樣會增強學生的學習欲望,使學生對本節(jié)內容更感興趣。

  三、說教學設計:

  1、讓學生自主研習,獨立探究。

  (1)觀察一副三角尺,其中有幾個銳角?他們分別等于多少度?

 。2)sin30度等于多少呢?你是怎樣得到的?cos30度呢,tan30度呢?

  2、讓學生合作學習、生生互動

  (1)請同學們完成下表:30°、45°、60°角的三角函數(shù)值(表格略)

 。2)觀察表格中函數(shù)值的特點。先看第一列30°、45°、60°角的正弦值,你能發(fā)現(xiàn)什么規(guī)律呢?第二列、第三列呢?

 。3)同桌之間可互相檢查一下對30°、45°、60°角的三角函數(shù)值的記憶情況。

  3、精講細評,師生合作(先由學生獨立完成)

 。1)計算:sin30°+cos45°;sin260°+cos260°—tan45°。

 。2)鐘表上的鐘擺長度為25 Cm,當鐘擺向兩邊擺動時,擺角恰好為60°,且兩邊的擺動角度相同,求它擺至最高位置時與其擺至最低位置時的高度之差。(結果精確到0。1 Cm)

  分析:引導學生自己根據題意畫出示意圖,培養(yǎng)學生把實際問題轉化為數(shù)學問題的能力

  4、延伸遷移,形成技能

  (1)計算:sin60°—tan45°;cos60°+tan60°;

  (2)某商場有一自動扶梯,其傾斜角為30°。高為7 m,扶梯的長度是多少?

  自主小結:

  講課后我讓學生自主小結本節(jié)收獲,并給他們提出困惑的時間和機會

  在本節(jié)課中我感覺學生整體來說收獲不小,有百分之八十的學生都會進行計算,只是對這些三角函數(shù)值的記憶還有欠缺,課下還需時間加以鞏固。課堂中學生積極性也很高,能體會到數(shù)學在生活中的應用廣泛,學習數(shù)學對解決實際生活問題的幫助,體會到學習數(shù)學的重要性。

《三角函數(shù)》說課稿10

  一、教學內容

  本節(jié)主要內容為:經歷探索30°、45°、60°角的三角函數(shù)值的過程,能夠進行含有30°、45°、60°角的三角函數(shù)值的計算。

  二、教學目標

  1、經歷探索30°、45°、60°角的三角函數(shù)值的過程,能夠進行有關推理,進一步體會三角函數(shù)的意義。

  2、能夠進行含有30°、45°、60°角的三角函數(shù)值的計算。

  3、能夠根據30°、45°、60°角的三角函數(shù)值,說出相應的銳角的大小。

  三、過程與方法

  通過進行有關推理,探索30°、45°、60°角的三角函數(shù)值。在具體教學過程中,教師可在教材的基礎上適當拓展,使得內容更為豐富.教師可以運用和學生共同探究式的.教學方法,學生可以采取自主探討式的學習方法.

  四、教學重點和難點

  重點:進行含有30°、45°、60°角的三角函數(shù)值的計算

  難點:記住30°、45°、60°角的三角函數(shù)值

  五、教學準備

  教師準備

  預先準備教材、教參以及多媒體課件

  學生準備

  教材、同步練習冊、作業(yè)本、草稿紙、作圖工具等

  六、教學步驟

  教學流程設計

  教師指導學生活動

  1.新章節(jié)開場白. 1.進入學習狀態(tài).

  2.進行教學. 2.配合學習.

  3.總結和指導學生練習. 3記錄相關內容,完成練習.

  教學過程設計

  1、從學生原有的認知結構提出問題

  2、師生共同研究形成概念

  3、隨堂練習

  4、小結

  5、作業(yè)

  板書設計

  1、敘述三角函數(shù)的意義

  2、30°、45°、60°角的三角函數(shù)值

  3、例題

  七、課后反思

  本節(jié)課基本上能夠突出重點、弱化難點,在時間上也能掌控得比較合理,學生也比較積極投入學習中,但是學生好像并不是掌握得很好,在今后的教學中應該再加強關于這方面的學習。

《三角函數(shù)》說課稿11

  一:教材分析:

  1、教材的地位與作用:本節(jié)課要講的是正、余弦函數(shù)的性質,它是歷年高考的重點內容之一,在高考中常以選擇題、填空題的形式出現(xiàn)。有時與其它三角變換、函數(shù)的一般性質綜合?疾殪`活,常有創(chuàng)新性。這就要求我們注意運用三角函數(shù)的性質培養(yǎng)學生善于運用三角函數(shù)的性質解決問題。因此,學好這節(jié)課不僅可以為我們今后學習正切、余切函數(shù)的性質打下基礎,還可以進一步提高學生分析問題和解決問題的能力,它對知識起到了承上啟下的作用。

  2、教學目標的確定:根據教參及教學大綱的要求,依據教學目的以及學生的實際情況,制定如下的教學目標:

  (1)知識目標:正、余弦函數(shù)的性質及應用(定義域、值域、最大、最小值、奇偶性、單調性)

  (2)能力目標:

  a:掌握正、余弦函數(shù)的性質;

  b:靈活利用正、余弦函數(shù)的性質

  (3)德育目標:

  a:滲透數(shù)形結合的思想

  b:培養(yǎng)聯(lián)合變化的觀點

  c:提高數(shù)學素質

  3、教學重點和難點的確定及依據;

  由于正、余弦函數(shù)的主要性質在本節(jié)中有著重要的地位。因此,成為本節(jié)課的重點,在教學中,單調性、奇偶性和周期性是學生第一次接觸的三個概念,而函數(shù)的單調性、奇偶性以及周期函數(shù),周期,最小正周期的意義是本節(jié)教學中學生第一次接觸的內容。這在學生的基礎上理解有一定的難度。因此成為本節(jié)課的難點。那么克服本節(jié)課的難點的關鍵在于復習好正、余弦函數(shù)圖象的意義,充分利用圖形講清正、余弦函數(shù)的特點,梳理好講解順序,使學生通過適當?shù)木毩曊_理解概念、圖象、特性、實現(xiàn)教學目標和進一步提高學生的學習探索能力,充分發(fā)揮學生的主體作用。

  二:教材處理:

  正、余弦函數(shù)的性質,其中定義域、值域、最大值、最小值,學生以前已接觸過,所以只需簡單提示。但是單調性,奇偶性,周期性是學生第一次接觸到的,考慮到學生的基礎參差不齊,接受能力不同,因此在教學中要顧全局,耐心講解,并通過適當?shù)慕叹邌l(fā)調動學生的主觀能動性。

  三、教學方法和手段:

  1、教學方法:啟發(fā)誘導式教學方法,為增強圖象的形象直觀性,增大教學內容,提高效率。我利用計算機軟件,在此基礎上,學生運用觀察法、發(fā)現(xiàn)法、學習法、歸納法以及練習法進行學習,在教學過程中,首先我以習提問形式引入課題,意義使學生利用類比思想,認識到研究三角函數(shù)的方向所在,減少盲目性。為了有利于學生正確了解正、余弦圖形的性質,我又指導了學生復習正、余弦函數(shù)的圖象。再從介紹圖象的特點讓學生觀察、發(fā)現(xiàn)、歸納函數(shù)的性質。同時結合不同例子鞏固所學的知識,訓練學生的知識應用能力。軟件輔助教的充分利用使得教學生動而有條理,使學生認識到數(shù)歸思想、數(shù)形結合在學習知識中的作用。

  2、教學手段:根據本節(jié)課的特點,要在正、余弦函數(shù)的圖象的基礎上操作性質,所以有條件的話不防可用動畫的形式表現(xiàn),給學生一種直觀形象,不僅激發(fā)了學生的創(chuàng)造性思維能力,更起到了事半功倍的效果。

  四、教學過程:

  1、復習導入:

  通過復習已學過的正、余弦函數(shù)的圖象,不妨叫學生自己作圖,這樣不僅復習了上節(jié)課的五點作圖法,還可以引出新課,正、余弦函數(shù)的性質

  2、新課

  a:打出多媒體課件,不妨叫學生自己觀察正、余弦函數(shù)的圖象,定義域和值域,最大值,最小值,學生應該都能觀察出來,只須稍微強調一下。

  b:周期函數(shù)的定義:可有誘導公式sin(x+2kn)=sinx

  得出函數(shù)值是按一定的規(guī)律重復取的,給出定義,講解定義時,要特別強調“作零常數(shù)t”,及“對于定義域的每一值,都要有f(x+t)=f(x)成立,也就是說,如果在定義域內的每一個值使得f(x+t)=f(x)成立。非零常數(shù)t就是周期了,不妨舉一個例子,是否正弦函數(shù)的周期,sin(n/2+x)是否等于sin(x)還應強調并不是所有的函數(shù)都會有最小正周期。

  c:奇偶性:在講解定義時,應該強調,在判斷函數(shù)是否為奇偶函數(shù)時,必須先看其定義域是否關于原點對稱,后再由f(x)=f(-x)或f(-x)=-f(x),也就是說,定義域關于原點對稱,一個函數(shù)有奇偶性的必要條件,還應強調并不是所有的函數(shù)都有奇偶性,但也有函數(shù)既是奇函數(shù),也是偶函數(shù)?梢耘e例說明:奇函數(shù)一定關于原點對稱,偶函數(shù)一定關于y軸對稱。反之也成立。

  d:在講解周期性、奇偶性、單調性時可有多媒體課件實現(xiàn)。

  (1)、對稱軸:y=sinx的對稱軸是x=kn+n/2;y=cosx的對稱軸是x=kn;對稱性;

  (2)對稱中心:y=sinx的對稱中心是(kn,0)y=cosx的.對稱中心是(kn+n/2,0)

  當y=sinxx∈[-n/2+2kn,n/2+2kn]時,曲線逐漸上升,y的值由-1逐漸增加到1;

  單調性x∈[n/2+2kn,n/2+2kn]時,曲線逐漸下降,y的值由1逐漸減少到-1;

  當y=cosxx∈[-n+2kn,2kn]時,曲線逐漸上升,y的值由-1逐漸增加到1;

  x∈[2kn,n+2kn]時,曲線逐漸下降,y的值由1逐漸減少到-1;

  五、例題講解:

  例1:

  cos(-23n/5)-cos(-17n/4)

  問:能否求出上式的值?能否求出其值比0大還是小?須運用我們這節(jié)課所學的哪部分知識?

  求上式的值大于0還是小于0?

  ∵y=cosx是偶函數(shù),∴原式為cos(23n/5)-cos(17n/4)

  可知cos(23n/5)

  即cos(-23n/5)-cos(-17n/4)<0

  例2:y=√sinx+1

  提出問題:學生能提出什么問題?

  教師引導:上式有沒有最大值,最小值,值域,什么時候取得最大值?什么時候取得最小值?奇偶性如何?能不能畫出它的圖象?圖象與y=cosx有什么關系?

  求取的最大值的x的值所有集合。

  當x取最大值時的取值為x=kn+n/2(k∈r)

  即取的最大值的x的值的所有集合為[x∣x=kn+n/2(k∈r)]

  例3:y=√sinx的定義域。

  由0≦sinx≦1可得:

  x的定義域為:2kn≦x≦&pro

  d;+2kn(k∈r)

  即x的定義域為[2kn,n+2kn](k∈r)

  問:可不可以求值域?有沒有奇偶性?如果有的話,是奇函數(shù)還是偶函數(shù)?

  拓展:求上式函數(shù)的奇偶性。一般來講,學生會用定義法求出上式既不是奇函數(shù),也不是偶函數(shù)。

  結果:上式既不是奇函數(shù),也不是偶函數(shù)。

  問:為什么呢?

  強調:函數(shù)有奇偶性的必要條件是定義域關于原點對稱。

  六、課堂小結:

  通過本節(jié)學習,要求掌握正、余弦函數(shù)的性質以及性質的簡單應用,解決一些相關問題。

  七、作業(yè)布置:

  使學生通過作業(yè)進一步掌握和鞏固本節(jié)內容

《三角函數(shù)》說課稿12

  一、教材分析

  1、教材的地位與作用:《同角三角函數(shù)的基本關系》是學習三角函數(shù)定義后安排的一節(jié)繼續(xù)深入學習的內容,是求三角函數(shù)值,化簡三角函數(shù)式,證明三角恒等式的基本工具,是整個三角函數(shù)的基礎,起承上啟下的作用,同時,它體現(xiàn)的數(shù)學思想方法在整個中學學習中起重要作用。

  2、教學目標的確定及依據

  A、知識與技能目標:通過觀察猜想出兩個公式,運用數(shù)形結合的思想讓學生掌握公式的推導過程,理解同角三角函數(shù)的基本關系式,掌握基本關系式在兩個方面的應用:

  1)已知一個角的一個三角函數(shù)值能求這個角的其他三角函數(shù)值;

  2)證明簡單的三角恒等式。

  B、過程與方法:培養(yǎng)學生觀察——猜想——證明的科學思維方式;通過公式的推導過程培養(yǎng)學生用舊知識解決新問題的思想;通過求值、證明來培養(yǎng)學生邏輯推理能力;通過例題與練習提高學生動手能力、分析問題解決問題的能力以及其知識遷移能力。

  C、情感、態(tài)度與價值觀:經歷數(shù)學研究的過程,體驗探索的樂趣,增強學習數(shù)學的興趣。

  3、教學重點和難點

  重點:同角三角函數(shù)基本關系式的推導及應用。

  難點:同角三角函數(shù)函數(shù)基本關系在解題中的靈活選取及使用公式時由函數(shù)值正、負號的選取而導致的角的范圍的討論。

  二、學情分析:

  學生剛開始接觸三角函數(shù)的內容,學習了任意角的三角函數(shù),對這一方面的內容既感到新鮮又感到陌生,很有好奇心,躍躍欲試,學習熱情高漲。

  三、教法分析與學法分析:

  1、教法分析:采取誘思探究性教學方法,在教學中提出問題,創(chuàng)設情景引導學生主動觀察、思考、類比、討論、總結、證明,讓學生做學習的主人,在主動探究中汲取知識,提高能力。

 。病W法分析:從學生原有的知識和能力出發(fā),在教師的帶領下,通過合作交流,共同探索,逐步解決問題.數(shù)學學習必須注重概念、原理、公式、法則的形成過程,突出數(shù)學本質。

  四、教學過程設計

  例1、設計意圖:已知一個角的某一個三角函數(shù)值,便可運用基本關系式求出其它三角函數(shù)值。在求值中,確定角的終邊位置是關鍵和必要的。有時,由于角的終邊位置的不確定,因此解的情況不止一種。本題主要利用的數(shù)學解題思想是:分類討論

  例2、設計意圖:

 。1)分子、分母是正余弦的一次(或二次)齊次式,注意所求值式的分子、分母均為一次齊次式,把分子、分母同除以 ,將分子、分母轉化為 的代數(shù)式;還可以利用商數(shù)關系解決。

 。2)“化1法”,可利用平方關系 ,將分子、分母都變?yōu)槎锡R次式,再利用商數(shù)關系化歸為 的分式求值;

  五、教學反思:

  如此設計教學過程,既復習了上一節(jié)的內容,又充分利用舊知識帶出新知識,讓學生明白到數(shù)學的知識是相互聯(lián)系的,所以每一節(jié)內容都應該把它牢固掌握;在公式的推導中,教師是用創(chuàng)設問題的形式引導學生去發(fā)現(xiàn)關系式,多讓學生動手去計算,體現(xiàn)了&qut;教師為引導,學生為主體,體驗為紅線,探索得材料,研究獲本質,思維促發(fā)展&qut;的教學思想。通過兩種不同的'例題的對比,讓學生能夠明白到關系式中的開方,是需要考慮正負號,而正負號是與角的象限有關,角的象限題目可以直接給出來,但有時是需要已知條件來推出角可能所在的象限,通過分析,把本節(jié)課的教學難點解決了。

  由于課堂在完成例題及變式時要給予學生充分的時間思考與嘗試,故對學生的檢測只能安排在課后的作業(yè)中,作業(yè)可以檢測學生對本節(jié)課內容掌握的情況,能否靈活運用知識進行合理的遷移,可以發(fā)現(xiàn)學生在解題中存在的問題,下節(jié)課教師再根據學生完成的情況加以評講,并設計相應的訓練題,使學生的認識再上一個臺階。

《三角函數(shù)》說課稿13

  各位領導,各位老師:

  我說課的課題是《任意角的三角函數(shù)》,內容取自人教版普通高中課程標準實驗教科書《數(shù)學》④(必修)第1。2。1節(jié)。

  一、教材結構與內容簡析

  本節(jié)內容在全書及章節(jié)的地位:三角函數(shù)是描述周期運動現(xiàn)象的重要的數(shù)學模型,有非常廣泛的應用。三角函數(shù)的定義是在初中對銳角三角函數(shù)的定義以及剛學過的“角的概念的推廣”的基礎上討論和研究的。三角函數(shù)的定義是本章最基本的概念,對三角內容的整體學習至關重要,是其他所有知識的出發(fā)點。緊緊扣住三角函數(shù)定義這個寶貴的源泉,可以自然地導出本章的具體內容:三角函數(shù)線、定義域、符號判斷、值域、同角三角函數(shù)關系、多組誘導公式、多組變換公式、圖象和性質。 三角函數(shù)的定義在教材中起著承前啟后的作用,一方面,通過這部分內容的學習,可以幫助學生更加深入理解函數(shù)這一基本概念,另一方面它又為平面向量、解析幾何等內容的學習作必要的準備。三角函數(shù)知識還是物理學、高等數(shù)學、測量學、天文學的重要基礎。

  三角函數(shù)定義必然是學好全章內容的關鍵,如果學生掌握不好,將直接影響到后續(xù)內容的學習,由三角函數(shù)定義的基礎性和應用的廣泛性決定了本節(jié)教材的重點就是定義本身。

  數(shù)學思想方法分析:作為一名數(shù)學老師,不僅要傳授給學生數(shù)學知識,更重要的是傳授給學生數(shù)學思想、數(shù)學意識,因此本節(jié)課在教學中力圖向學生展示嘗試類比、數(shù)形結合等數(shù)學思想方法。

  二、教學重點、難點、關鍵

  教學重點:任意角的三角函數(shù)的定義,三角函數(shù)的符號規(guī)律。

  教學難點:任意角的三角函數(shù)概念的建構過程。

  教學關鍵:如何想到建立直角坐標系;六個比值的確定性( α確定,比值也隨之確定)與依賴性(比值隨著α的變化而變化)。

  三、學情分析

  學生已經掌握的內容及學生學習能力

  1。 學生在初中時已經學習了基本的銳角三角函數(shù)的定義,掌握了銳角三角函數(shù)的一些常見的知識和求法。

  2。學生的運算能力較差。

  3。部分同學對數(shù)學的學習有相當?shù)呐d趣和積極性。

  4。在探究問題的能力,合作交流的意識等方面發(fā)展不夠均衡,必須在老師一定的指導下才能進行。

  四、 教學目標

  根據上述教材結構與內容分析,考慮到學生已有的認知結構心理特征 ,我制定如下教學目標:

  1;A知識目標:使學生正確理解任意角的正弦、余弦、正切的定義,了解余切、正割、余割的定義;

  2。能力訓練目標:通過學生積極參與知識的“發(fā)現(xiàn)”與“形成”的過程,培養(yǎng)合情猜測的能力。

  3。情感目標:通過學習,滲透數(shù)形結合和類比的數(shù)學思想,培養(yǎng)學生良好的思維習慣。

  下面,為了講清重點、難點,使學生能達到本節(jié)設定的教學目標,我再從教法和學法上談談:

  五、教學理念和方法

  教學中注意用新課程理念處理傳統(tǒng)教材,學生的數(shù)學學習活動不僅要接受、記憶、模仿和練習,而且要自主探索、合作交流、師生互動,教師發(fā)揮組織者、引導者、合作者的作用,引導學生主體參與、揭示本質、經歷過程。

  根據本節(jié)課內容、高一學生認知特點和我自己的教學風格,本節(jié)課采用“啟發(fā)探索、講練結合”的方法組織教學教法, 在課堂結構上,設計了 ①創(chuàng)設情境——揭示課題②推廣認知——形成概念③鞏固新知——探求規(guī)律④總結反思——提高認識⑤任務后延——自主探究五個層次的學法,它們環(huán)環(huán)相扣,層層深入,從而順利完成教學目標。 接下來,我再具體談一談這堂課的教學過程:

  六、教學程序及設想

  總體來說, 由舊及新,由易及難,逐步加強,逐步推進,給定定義后通過應用定義又逐步發(fā)現(xiàn)新知識,拓展、完善定義。

  先由初中的直角三角形中銳角三角函數(shù)的定義,過度到直角坐標系中銳角三角函數(shù)的定義,再發(fā)展到直角坐標系中任意角三角函數(shù)的定義。

 。ㄒ唬﹦(chuàng)設情境——揭示課題

  問題1:在初中我們學習了銳角三角函數(shù),那么銳角三角函數(shù)是如何定義的?

  【設計意圖】學生在初中學習了銳角的三角函數(shù)概念,現(xiàn)在學習任意角的三角函數(shù),又是一種推廣和拓展的過程(類似于從有理數(shù)到實數(shù)的擴展)。溫故知新,要讓學生體會知識的產生、發(fā)展過程,就要從源頭上開始,從學生現(xiàn)有認知狀況開始,對銳角三角函數(shù)的復習就必不可少。

  問題 2:角的概念推廣之后,這樣的三角函數(shù)定義還適用嗎?

  問題 3:若將銳角放入直角坐標系中,你能用角的終邊上的點的坐標來表示銳角三角函數(shù)嗎?

  留時間讓學生獨立思考或自由討論,教師參與討論或巡回對學困生作啟發(fā)引導。

  能表示嗎?怎樣表示?針對剛才的問題點名讓學生回答。 用角的對邊、鄰邊、斜邊比值的說法顯然是受到阻礙了,由于前面已經以直角坐標系為工具來研究任意角了,學生一般會想到(否則教師進行提示)繼續(xù)用直角坐標系來研究任意角的三角函數(shù)。

  【設計意圖】

  從學生現(xiàn)有知識水平和認知能力出發(fā),創(chuàng)設問題情景,讓學生產生認知沖突,進行必要的啟發(fā),將學生思維引上自主探索、合作交流的“再創(chuàng)造”征程。

  教師對學生回答情況進行點評后布置任務情景:請同學們用直角坐標系重新研究銳角三角函數(shù)定義!

  師生共做(學生口述,教師板書圖形和比值)。

  問題 4:對于確定的角 ,這三個比值是否與P在 的終邊上的位置有關?為什么?

  先讓學生想象思考,作出主觀判斷,再引導學生觀察右圖,

  聯(lián)系相似三角形知識,探索發(fā)現(xiàn): 對于銳角α的每一個確定值,

  六個比值都是確定的,不會隨P在終邊上的移動而變化。

  得出結論(強調):當α為銳角時,六個比值隨α的變化而變化;但對于銳角α的每一個確定值,六個比值都是確定的,不會隨P在終邊上的`移動而變化。 所以,六個比值分別是以角α為自變量、以比值為函數(shù)值的函數(shù)。

 。ǘ┩茝V認知——形成概念

  將銳角的比值情形推廣到任意角α后,水到渠成,師生共同進行探索和推廣出:任意角的三角函數(shù)定義。同時教師強調:由于弧度制使角和實數(shù)建立了一一對應關系,所以三角函數(shù)是以實數(shù)為自變量的函數(shù),對數(shù)學學習能力較好的同學起到了很好的指導作用。

  教師指出: sinα、csα、tanα的定義域必須緊扣三角函數(shù)定義在理解的基礎上記熟,ctα、cscα、secα的定義域不要求記憶。

 。P于值域,到后面再學習)。

  【設計意圖】定義域是函數(shù)三要素之一,研究函數(shù)必須明確定義域。 指導學生根據定義自主探索確定三角函數(shù)定義域,有利于在理解的基礎上記住它、應用它,也增進對三角函數(shù)概念的掌握。

 。ㄈ╈柟绦轮角笠(guī)律

  為了使學生達到對知識的深化理解,進而達到鞏固提高的效果,

  例1。已知角 的終邊過點 ,求 的六個三角函數(shù)值

  要求:讀完題目,思考:計算什么?需要準備什么?閉目心算,對照板書,模仿書面表達格式。

  鞏固定義之后,我特地設計了一組即時訓練題,以鞏固和加深對三角函數(shù)概念的理解,通過課堂積極主動的練習活動,培養(yǎng)學生分析解決問題的能力。

  例2。 求 的正弦、余弦和正切值。

  分析: 終邊上有無窮多個點,根據三角函數(shù)的定義,只要知道 終邊上任意一個點的坐標,就可以計算這個角的三角函數(shù)值(或判斷其無意義)

  師生探索:緊扣三角函數(shù)定義求解,首先要在終邊上取定一點。終邊在哪兒呢?取定哪一點呢?任意點、還是特殊點?要靈活,只要能夠算出三角函數(shù)值,都可以。

  取特殊點能使計算更簡明。

  等待學生基本理解和掌握三角函數(shù)定義后,觀察、分析初、高中所計算的函數(shù)值有何變化,讓學生意識到三角函數(shù)值的正負與角所在象限有關, 然后引導學生緊緊抓住三角函數(shù)定義來分析,從而導出三角函數(shù)值的正負與角所在象限的關系,進而由教師總結符號記憶方法,便于學生記憶。

  【設計意圖】判斷三角函數(shù)值的正負符號,是本章教材的一項重要的知識、技能要求。 要引導學生抓住定義、數(shù)形結合判斷和記憶三角函數(shù)值的正負符號,并總結出形象的“才”字符號法則,這也是理解和記憶的關鍵。

 。ㄋ模┛偨Y反思——提高認識

  由學生總結本節(jié)課所學習的主要內容:⑴任意角的三角函數(shù)的定義及其定義域;⑵三角函數(shù)的符號規(guī)律。讓學生通過知識性內容的小結,把課堂教學傳授的知識盡快化為學生的素質;通過數(shù)學思想方法的小結,使學生更深刻地理解數(shù)學思想方法在解題中的地位和應用,并且逐漸培養(yǎng)學生的良好的個性品質目標。

 。ㄎ澹┤蝿蘸笱印灾魈骄

  學生經過以上四個環(huán)節(jié)的學習,已經初步掌握了任意角的三角函數(shù)的定義及三角函數(shù)的符號規(guī)律,有待進一步提高認知水平,因此我針對學生素質的差異設計了有層次的作業(yè),其中思考題的設計思想是:綜合練習鞏固提高,更為下節(jié)的學習內容打下基礎,同時留給學生課后自主探究,這樣既使學生掌握基礎知識,又使學有佘力的學生有所提高,從而達到拔尖和“減負”的目的,以有利于全體學生的發(fā)展。

  六、簡述板書設計。

  ctα、cscα、secα的定義寫在sinα、csα、tanα的左下方,突出本節(jié)重要內容的主體地位。

  結束:以上,我僅從說教材,說學情,說教法,說學法,說教學程序上說明了“教什么”和“怎么教”,闡明了“為什么這樣教”。

  希望各位領導 、同行對本堂說課提出寶貴意見。

【《三角函數(shù)》說課稿】相關文章:

《三角函數(shù)》說課稿13篇06-15

《任意角的三角函數(shù)》說課稿07-09

任意角的三角函數(shù)說課稿07-02

同角三角函數(shù)的基本關系說課稿11-12

三角函數(shù)的教案02-25

三角函數(shù)的定義教案03-24

三角函數(shù)教學反思02-28

三角函數(shù)的定義教案5篇03-24

《任意角的三角函數(shù)》教學反思03-28