(精選)初中數(shù)學(xué)知識點
漫長的學(xué)習(xí)生涯中,看到知識點,都是先收藏再說吧!知識點就是一些?嫉膬(nèi)容,或者考試經(jīng)常出題的地方。你知道哪些知識點是真正對我們有幫助的嗎?下面是小編精心整理的初中數(shù)學(xué)知識點,希望能夠幫助到大家。
初中數(shù)學(xué)知識點1
1.圓是以圓心為對稱中心的中心對稱圖形;同圓或等圓的半徑相等。
2.到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓。
3.定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等。
4.圓是定點的距離等于定長的點的集合。
5.圓的內(nèi)部可以看作是圓心的距離小于半徑的.點的集合;圓的外部可以看作是圓心的距離大于半徑的點的集合。
6.不在同一直線上的三點確定一個圓。
7.垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧。
推論1:
①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧;
②弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧;
③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧。
推論2:圓的兩條平行弦所夾的弧相等。
8.推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等。
9.定理圓的內(nèi)接四邊形的對角互補,并且任何一個外角都等于它的內(nèi)對角。
10.經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心。
11.切線的判定定理經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線。
12.切線的性質(zhì)定理圓的切線垂直于經(jīng)過切點的半徑。
13.經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點
14.切線長定理從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角。
15.圓的外切四邊形的兩組對邊的和相等外角等于內(nèi)對角。
16.如果兩個圓相切,那么切點一定在連心線上。
17.
①兩圓外離d>R+r
、趦蓤A外切d=R+r
③兩圓相交d>R-r)
、軆蓤A內(nèi)切d=R-r(R>r)
⑤兩圓內(nèi)含d=r)
18.定理把圓分成n(n≥3):
、乓来芜B結(jié)各分點所得的多邊形是這個圓的內(nèi)接正n邊形
⑵經(jīng)過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形。
19.定理任何正多邊形都有一個外接圓和一個內(nèi)切圓,這兩個圓是同心圓。
20.弧長計算公式:L=n兀R/180;扇形面積公式:S扇形=n兀R^2/360=LR/2。
21.內(nèi)公切線長= d-(R-r)外公切線長= d-(R+r)。
22.定理一條弧所對的圓周角等于它所對的圓心角的一半。
23.推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等。
24.推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑。
初中數(shù)學(xué)知識點2
一、數(shù)與代數(shù)
1.有理數(shù)
有理數(shù):
①整數(shù)→正整數(shù)/0/負(fù)整數(shù)
、诜?jǐn)?shù)→正分?jǐn)?shù)/負(fù)分?jǐn)?shù)
數(shù)軸:
①畫一條水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規(guī)定直線上向右的方向為正方向,就得到數(shù)軸。
②任何一個有理數(shù)都可以用數(shù)軸上的一個點來表示。
、廴绻麅蓚數(shù)只有符號不同,那么我們稱其中一個數(shù)為另外一個數(shù)的相反數(shù),也稱這兩個數(shù)互為相反數(shù)。在數(shù)軸上,表示互為相反數(shù)的兩個點,位于原點的兩側(cè),并且與原點距離相等。
、軘(shù)軸上兩個點表示的數(shù),右邊的總比左邊的大。正數(shù)大于0,負(fù)數(shù)小于0,正數(shù)大于負(fù)數(shù)。
2.實數(shù)
無理數(shù):無限不循環(huán)小數(shù)叫無理數(shù)
平方根:如果一個數(shù)的平方等于a,那么這個數(shù)就叫做a的平方根(或二次方跟);一個數(shù)有兩個平方根,他們互為相反數(shù);零的平方根是零;負(fù)數(shù)沒有平方根。
算術(shù)平方根:正數(shù)的正的平方根和零的平方根統(tǒng)稱為主根,用符號“√a”表示,a為“被開方數(shù)”。
立方根:如果一個數(shù)的立方等于a,那么這個數(shù)就叫做a的立方根(或a的三次方根);一個正數(shù)的立方根是正數(shù)、零的.立方根是零、負(fù)數(shù)的立方根是負(fù)數(shù);
二、方程
1.代數(shù)式:單獨一個數(shù)字或一個字母也是代數(shù)式。
2.一元一次方程:含有一個未知數(shù),并且未知數(shù)的次數(shù)是1,并且含有一個未知數(shù),并且未知數(shù)的次數(shù)是1的所有整式方程是一元一次方程。
3.一元二次方程:含有一個未知數(shù),并且未知數(shù)的次數(shù)是2的所有整式方程是一元二次方程。
4.二元一次方程:含有兩個未知數(shù),并且含有一個未知數(shù)的次數(shù)是1的所有整式方程叫二元一次方程。
5.二元二次方程:含有兩個未知數(shù),并且含有一個未知數(shù)的次數(shù)是2的所有整式方程叫二元二次方程。
三、三角形
1.幾何圖形:學(xué)過的立體圖形有圓柱、圓錐和球以及長方體、正方體、棱柱、棱錐、棱臺。
2.圖形的三視圖:俯視圖、主視圖、左視圖。
3.三角形的穩(wěn)定性。
4.三角形的分類:銳角三角形、直角三角形、鈍角三角形。
5.三角形的內(nèi)角和定理:三角形三個內(nèi)角的和等于180度。
6.解直角三角形:解直角三角形需要運用勾股定理及銳角三角函數(shù)的定義。銳角三角函數(shù)的定義:在直角三角形中,一銳角的正切等于銳角A對邊與鄰邊的比值;一銳角的余切等于銳角A的鄰邊與對邊的比值;一銳角的正弦等于銳角A的對邊與斜邊的比值;一銳角的余弦等于銳角A的鄰邊與斜邊的比值。
7.全等三角形:全等三角形的對應(yīng)邊相等;全等三角形的對應(yīng)角相等。
8.等腰三角形的性質(zhì)定理:等腰三角形的兩個底角相等;(簡稱:等邊對等角)以及等腰三角形的頂角平分線、底邊上的中線、底邊上的高相互重合。(簡稱:三線合一)
9.等腰三角形的判定定理:如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等。(簡稱:等角對等邊)
10.等邊三角形:三條邊都相等的三角形是等腰三角形;三個角都相等的三角形是等邊三角形。
11.相似的三角形:相似三角形的對應(yīng)邊成比例;對應(yīng)角相等。
12.反證法:在證明一個命題的論證中,假設(shè)命題的結(jié)論不成立,從這個假設(shè)出發(fā),經(jīng)過推理論證,得出與定義、公理或已經(jīng)證明過的命題或已經(jīng)掌握的事實相矛盾,從而使這個假設(shè)成為一個不成立的命題,這種推證方法叫做反證法。證明兩條線段相等時常常用反證法。
四、四邊形
1.平行四邊形及特殊平行四邊形的重心:平行四邊形及特殊平行四邊形的重心是它的兩條對角線的交點。
2.矩形、菱形、正方形的重心:矩形、菱形、正方形的重心是它們的對角線的交點。
3.梯形問題
初中數(shù)學(xué)知識點3
1、有理數(shù)的加法運算:
同號相加一邊倒;異號相加“大”減“小”,符號跟著大的跑;絕對值相等“零”正好、
2、合并同類項:
合并同類項,法則不能忘,只求系數(shù)和,字母、指數(shù)不變樣、
3、去、添括號法則:
去括號、添括號,關(guān)鍵看符號,括號前面是正號,去、添括號不變號,括號前面是負(fù)號,去、添括號都變號、
4、一元一次方程:
已知未知要分離,分離方法就是移,加減移項要變號,乘除移了要顛倒、
5、平方差公式:
平方差公式有兩項,符號相反切記牢,首加尾乘首減尾,莫與完全公式相混淆、
1、完全平方公式:
完全平方有三項,首尾符號是同鄉(xiāng),首平方、尾平方,首尾二倍放中央;
首±尾括號帶平方,尾項符號隨中央、
2、因式分解:
一提(公因式)二套(公式)三分組,細(xì)看幾項不離譜,兩項只用平方差,三項十字相乘法,陣法熟練不馬虎,四項仔細(xì)看清楚,若有三個平方數(shù)(項),就用一三來分組,否則二二去分組,五項、六項更多項,二三、三三試分組,以上若都行不通,拆項、添項看清楚、
3、單項式運算:
加、減、乘、除、乘(開)方,三級運算分得清,系數(shù)進(jìn)行同級(運)算,指數(shù)運算降級(進(jìn))行、
4、一元一次不等式解題的.一般步驟:
去分母、去括號,移項時候要變號,同類項合并好,再把系數(shù)來除掉,兩邊除(以)負(fù)數(shù)時,不等號改向別忘了、
5、一元一次不等式組的解集:
大大取較大,小小取較小,小大、大小取中間,大小、小大無處找、
一元二次不等式、一元一次絕對值不等式的解集:
大(魚)于(吃)取兩邊,。~)于(吃)取中間。
初中數(shù)學(xué)知識點4
正棱錐是棱錐的一種,具備著所有棱錐的性質(zhì)和定理。
正棱錐
如果一個棱錐的底面是正多邊形,且頂點在底面的射影是底面的'中心,這樣的棱錐叫正棱錐。
正棱錐的性質(zhì)
(1)正棱錐各側(cè)棱相等,各側(cè)面都是全等的等腰三角形,各等腰三角形底邊上的高相等(它叫做正棱錐的斜高);
(2)正棱錐的高、斜高和斜高在底面內(nèi)的射影組成一個直角三角形,正棱錐的高、側(cè)棱、側(cè)棱在底面內(nèi)的射影也組成一個直角三角形;
(3)正棱錐的側(cè)棱與底面所成的角都相等;正棱錐的側(cè)面與底面所成的二面角都相等;
(4)正棱錐的側(cè)面積:如果正棱錐的底面周長為c,斜高為h’,那么它的側(cè)面積是 s=1/2ch‘。
特別地,側(cè)棱與底面邊長相等的正三棱錐叫做正四面體。
初中數(shù)學(xué)知識點5
一、圓
1、圓的有關(guān)性質(zhì)
在一個平面內(nèi),線段OA繞它固定的一個端點O旋轉(zhuǎn)一周,另一個端點A隨之旋轉(zhuǎn)所形成的圖形叫圓,固定的端點O叫圓心,線段OA叫半徑。
由圓的意義可知:
圓上各點到定點(圓心O)的距離等于定長的點都在圓上。
就是說:圓是到定點的距離等于定長的點的集合,圓的內(nèi)部可以看作是到圓。心的距離小于半徑的點的集合。
圓的外部可以看作是到圓心的距離大于半徑的點的集合。連結(jié)圓上任意兩點的線段叫做弦,經(jīng)過圓心的弦叫直徑。圓上任意兩點間的部分叫圓弧,簡稱弧。
圓的任意一條直徑的兩個端點分圓成兩條弧,每一條弧都叫半圓,大于半圓的弧叫優(yōu)弧;小于半圓的弧叫劣弧。由弦及其所對的弧組成的圓形叫弓形。
圓心相同,半徑不相等的兩個圓叫同心圓。
能夠重合的兩個圓叫等圓。
同圓或等圓的半徑相等。
在同圓或等圓中,能夠互相重合的弧叫等弧。
二、過三點的圓
l、過三點的圓
過三點的圓的作法:利用中垂線找圓心
定理不在同一直線上的三個點確定一個圓。
經(jīng)過三角形各頂點的圓叫三角形的外接圓,外接圓的圓心叫外心,這個三角形叫圓的'內(nèi)接三角形。
2、反證法
反證法的三個步驟:
、偌僭O(shè)命題的結(jié)論不成立;
、趶倪@個假設(shè)出發(fā),經(jīng)過推理論證,得出矛盾;
、塾擅艿贸黾僭O(shè)不正確,從而肯定命題的結(jié)論正確。
例如:求證三角形中最多只有一個角是鈍角。
證明:設(shè)有兩個以上是鈍角
則兩個鈍角之和>180°
與三角形內(nèi)角和等于180°矛盾。
∴不可能有二個以上是鈍角。
即最多只能有一個是鈍角。
三、垂直于弦的直徑
圓是軸對稱圖形,經(jīng)過圓心的每一條直線都是它的對稱軸。
垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的兩條弧。
推理1:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對兩條弧。
弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧。
平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一個條弧。
推理2:圓兩條平行弦所夾的弧相等。
四、圓心角、弧、弦、弦心距之間的關(guān)系
圓是以圓心為對稱中心的中心對稱圖形。
實際上,圓繞圓心旋轉(zhuǎn)任意一個角度,都能夠與原來的圖形重合。
頂點是圓心的角叫圓心角,從圓心到弦的距離叫弦心距。
定理:在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦心距相等。
推理:在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩條弦的弦心距中,有一組量相等,那么它們所對應(yīng)的其余各組量都分別相等。
五、圓周角
頂點在圓上,并且兩邊都和圓相交的角叫圓周角。
推理1:同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等。
推理2:半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑。
推理3:如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形。
由于以上的定理、推理,所添加輔助線往往是添加能構(gòu)成直徑上的圓周角的輔助線。
如何養(yǎng)成良好的數(shù)學(xué)學(xué)習(xí)習(xí)慣
制定計劃,成為習(xí)慣
無論是學(xué)習(xí)哪一科,明確的目標(biāo)計劃都是最基本的方法,也是要被大家說爛了的提高成績的基本。
數(shù)學(xué)也是一樣,雖然公式多,定義多,圖形多,但完全不影響制定數(shù)學(xué)的學(xué)習(xí)計劃。學(xué)習(xí)是一個長久性的打算,因此在制定數(shù)學(xué)學(xué)習(xí)內(nèi)容的過程中可以盡量的詳細(xì)一點。
比如說每天做多少道題,掌握多少個公式,記住幾個定義等等。這樣才是學(xué)好高中數(shù)學(xué)應(yīng)該做的步驟。
其次就是每天按照自己給自己的規(guī)定去做,不要想著偷懶,今天不愛做就留給明天,想著明天多做點補回來。
這種想法是非常錯誤的,今天的任務(wù)就要今天完成,想著自己為了提高數(shù)學(xué)成績,無論如何都要努力。
預(yù)習(xí)與復(fù)習(xí)相結(jié)合
預(yù)習(xí)幫助大家在數(shù)學(xué)課上對知識有一個大概的了解,也對老師要講的內(nèi)容有個先知,不至于驚訝驚訝老師接下來要講什么。
而復(fù)習(xí)就是對這一堂課的.數(shù)學(xué)學(xué)習(xí)進(jìn)行一個驗收和反饋,檢驗自己是否學(xué)會數(shù)學(xué)老師講的內(nèi)容;反饋自己的學(xué)習(xí)成效,及時找到自己數(shù)學(xué)學(xué)習(xí)的問題以便及時解決。
這樣在學(xué)習(xí)新的數(shù)學(xué)知識的時候就不會帶著之前留下來的疑問了。這對于學(xué)好高中數(shù)學(xué),提高數(shù)學(xué)成績非常有幫助。
高質(zhì)量的完成作業(yè)
作業(yè)是一個很好查缺補漏的過程,因此同學(xué)們想要學(xué)好數(shù)學(xué),就一定要認(rèn)真完成作業(yè)。不要依賴不會就空著等數(shù)學(xué)老師上課講這樣的想法,這樣只會退步。
數(shù)學(xué)學(xué)習(xí)就是要不斷的動腦解決問題,所以作業(yè)要完成,還要高質(zhì)量的去完成,這樣才能不斷提高自己的能力。
不要空太多的題不寫,就只等著老師公布正確答案和解題過程,這樣一來,需要自己消化的數(shù)學(xué)問題就因為自己的懶惰變得越來越多,以至于影響之后的學(xué)習(xí)效率。
數(shù)學(xué)最常用且非常實用的學(xué)習(xí)方法
1、預(yù)習(xí)很重要:
往往被忽略,理由:沒時間,看不懂,不必要等。預(yù)習(xí)是學(xué)習(xí)的必要過程,還是提高自學(xué)能力的好方法。
2、聽講有學(xué)問:
聽分析、聽思路、聽?wèi)?yīng)用,關(guān)鍵內(nèi)容一字不漏,注意記錄。
3、做好錯題本:
每個會學(xué)習(xí)的學(xué)生都會有。最好再加個“好題本”。發(fā)現(xiàn)許多同學(xué)沒有錯題本,或者是只做不用。這樣學(xué)習(xí)效果都不好。
4、用好課外書:
正確認(rèn)識網(wǎng)絡(luò)課程和課外書籍,是副食,是幫助吸收的良藥,絕對不是課堂學(xué)習(xí)的替代品。
5、注意總結(jié)和反思:
知識點、解題方法和技巧、經(jīng)驗和教訓(xùn)。
6、接受數(shù)學(xué)思想方法的指導(dǎo):
要注意數(shù)學(xué)思想和方法的指導(dǎo),站得高,才能看得遠(yuǎn)。
關(guān)于數(shù)學(xué)常見誤區(qū)有哪些
1、被動學(xué)習(xí)
許多同學(xué)進(jìn)入高中后,還像初中那樣,有很強的依賴心理,跟隨老師慣性運轉(zhuǎn),沒有掌握學(xué)習(xí)主動權(quán).表現(xiàn)在不定計劃,坐等上課,課前沒有預(yù)習(xí),對老師要上課的內(nèi)容不了解,上課忙于記筆記,沒聽到“門道”,沒有真正理解所學(xué)內(nèi)容。
2、學(xué)不得法
老師上課一般都要講清知識的來龍去脈,剖析概念的內(nèi)涵,分析重點難點,突出思想方法。而一部分同學(xué)上課沒能專心聽課,對要點沒聽到或聽不全,筆記記了一大本,問題也有一大堆,課后又不能及時鞏固、總結(jié)、尋找知識間的聯(lián)系,只是趕做作業(yè),亂套題型,對概念、法則、公式、定理一知半解,機械模仿,死記硬背。也有的晚上加班加點,白天無精打采,或是上課根本不聽,自己另搞一套,結(jié)果是事倍功半,收效甚微。
3、不重視基礎(chǔ)
一些“自我感覺良好”的同學(xué),常輕視基本知識、基本技能和基本方法的學(xué)習(xí)與訓(xùn)練,經(jīng)常是知道怎么做就算了,而不去認(rèn)真演算書寫,但對難題很感興趣,以顯示自己的“水平”,好高鶩遠(yuǎn),重“量”輕“質(zhì)”,陷入題海。到正規(guī)作業(yè)或考試中不是演算出錯就是中途“卡殼”。
4、進(jìn)一步學(xué)習(xí)條件不具備
高中數(shù)學(xué)與初中數(shù)學(xué)相比,知識的深度、廣度,能力要求都是一次飛躍.這就要求必須掌握基礎(chǔ)知識與技能為進(jìn)一步學(xué)習(xí)作好準(zhǔn)備。高中數(shù)學(xué)很多地方難度大、方法新、分析能力要求高。
如二次函數(shù)在閉區(qū)間上的最值問題,函數(shù)值域的求法,實根分布與參變量方程,三角公式的變形與靈活運用,空間概念的形成,排列組合應(yīng)用題及實際應(yīng)用問題等?陀^上這些觀點就是分化點,有的內(nèi)容還是高初中教材都不講的脫節(jié)內(nèi)容,如不采取補救措施,查缺補漏,分化是不可避免的。
初中數(shù)學(xué)知識點6
關(guān)于初中數(shù)學(xué)函數(shù)知識點
上加下減,左加右減
y=a(x+b)2+c,是將y=ax2的二次函數(shù)圖像按以下規(guī)律平移
。1)c>0時,圖像向上平移c個單位(上加上)。
。2)c<0時,圖像向下平移c個單位(下減)。
。3)b>0時,圖像向左平移b個單位(左加)。
(4)b<0時,圖像向右平移b個單位(右減)。
二次函數(shù)(以下稱函數(shù))y=ax2+bx+c。
當(dāng)y=0時,二次函數(shù)為關(guān)于x的一元二次方程(以下稱方程),即ax2+bx+c=0。
此時,函數(shù)圖像與x軸有無交點即方程有無實數(shù)根。函數(shù)與x軸交點的橫坐標(biāo)即為方程的根。
1、二次函數(shù)y=ax2,y=a(x—h)2,y=a(x—h)2+k,y=ax2+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同。當(dāng)h>0時,y=a(x—h)2的圖象可由拋物線y=ax2向右平行移動h個單位得到。
當(dāng)h<0時,則向左平行移動|h|個單位得到。
當(dāng)h>0,k>0時,將拋物線y=ax2向右平行移動h個單位,再向上移動k個單位,就可以得到y(tǒng)=a(x—h)2+k的.圖象。
當(dāng)h>0,k<0時,將拋物線y=ax2向右平行移動h個單位,再向下移動|k|個單位可得到y(tǒng)=a(x—h)2+k的圖象。
當(dāng)h<0,k>0時,將拋物線向左平行移動|h|個單位,再向上移動k個單位可得到y(tǒng)=a(x—h)2+k的圖象。
當(dāng)h<0,k<0時,將拋物線向左平行移動|h|個單位,再向下移動|k|個單位可得到y(tǒng)=a(x—h)2+k的圖象。
因此,研究拋物線y=ax2+bx+c(a≠0)的圖象,通過配方,將一般式化為y=a(x—h)2+k的形式,可確定其頂點坐標(biāo)、對稱軸,拋物線的大體位置就很清楚了、這給畫圖象提供了方便。
2、拋物線y=ax2+bx+c(a≠0)的圖象:當(dāng)a>0時,開口向上,當(dāng)a<0時開口向下,對稱軸是直線x=—b/2a,頂點坐標(biāo)是(—b/2a,[4ac—b2]/4a)。
3、拋物線y=ax2+bx+c(a≠0),若a>0,當(dāng)x≤—b/2a時,y隨x的增大而減。划(dāng)x≥—b/2a時,y隨x的增大而增大、若a<0,當(dāng)x≤—b/2a時,y隨x的增大而增大;當(dāng)x≥—b/2a時,y隨x的增大而減小。
4、拋物線y=ax2+bx+c的圖象與坐標(biāo)軸的交點:
。1)圖象與y軸一定相交,交點坐標(biāo)為(0,c)。
(2)當(dāng)△=b^2—4ac>0,圖象與x軸交于兩點A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根、這兩點間的距離AB=|x?—x?|。
當(dāng)△=0、圖象與x軸只有一個交點;當(dāng)△<0、圖象與x軸沒有交點、當(dāng)a>0時,圖象落在x軸的上方,x為任何實數(shù)時,都有y>0;當(dāng)a<0時,圖象落在x軸的下方,x為任何實數(shù)時,都有y<0。
5、拋物線y=ax2+bx+c的最值:如果a>0(a<0),則當(dāng)x=—b/2a時,y最。ù螅┲=(4ac—b2)/4a。
頂點的橫坐標(biāo),是取得最值時的自變量值,頂點的縱坐標(biāo),是最值的取值。
初中數(shù)學(xué)知識點7
構(gòu)造方程是初中數(shù)學(xué)的基本方法之一。
在解題過程中要善于觀察、善于發(fā)現(xiàn)、認(rèn)真分析,根據(jù)問題的結(jié)構(gòu)特征、及其問題中的數(shù)量關(guān)系,挖掘潛在已知和未知之間的因素,從而構(gòu)造出方程,使問題解答巧妙、簡潔、合理。
1、某些題目根據(jù)條件、仔細(xì)觀察其特點,構(gòu)造一個"一元一次方程" 求解,從而獲得問題解決。
例1:如果關(guān)于x的方程ax+b=2(2x+7)+1有無數(shù)多個解,那么a、b的值分別是多少?
解:原方程整理得(a-4)
∵此方程有無數(shù)多解,∴a-4=0且
分別解得a=4,
2、有些問題,直接求解比較困難,但如果根據(jù)問題的特征,通過轉(zhuǎn)化,構(gòu)造"一元二次方程",再用根與系數(shù)的關(guān)系求解,使問題得到解決。此方法簡明、功能獨特,應(yīng)用比較廣泛,特別在數(shù)學(xué)競賽中的`應(yīng)用。
3、有時可根據(jù)題目的條件和結(jié)論的特征,構(gòu)造出方程組,從而可找到解題途徑。
例3:已知3,5,2x,3y的平均數(shù)是4。 20,18,5x,-6y的平均數(shù)是1。求的值。
分析:這道題考查了平均數(shù)概念,根據(jù)題目的特征構(gòu)造二元一次方程組,從而解出x、y的值,再求出的值。
初中數(shù)學(xué)知識點8
平面直角坐標(biāo)系
下面是對平面直角坐標(biāo)系的內(nèi)容學(xué)習(xí),希望同學(xué)們很好的掌握下面的內(nèi)容。
平面直角坐標(biāo)系:
在平面內(nèi)畫兩條互相垂直、原點重合的數(shù)軸,組成平面直角坐標(biāo)系。
水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標(biāo)軸的交點為平面直角坐標(biāo)系的原點。
平面直角坐標(biāo)系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點重合
三個規(guī)定:
①正方向的規(guī)定橫軸取向右為正方向,縱軸取向上為正方向
、趩挝婚L度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數(shù)軸上必須相同。
③象限的規(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。
相信上面對平面直角坐標(biāo)系知識的講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。
初中數(shù)學(xué)知識點:平面直角坐標(biāo)系的構(gòu)成
對于平面直角坐標(biāo)系的構(gòu)成內(nèi)容,下面我們一起來學(xué)習(xí)哦。
平面直角坐標(biāo)系的構(gòu)成
在同一個平面上互相垂直且有公共原點的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,簡稱為直角坐標(biāo)系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標(biāo)軸,它們的公共原點O稱為直角坐標(biāo)系的原點。
通過上面對平面直角坐標(biāo)系的構(gòu)成知識的講解學(xué)習(xí),希望同學(xué)們對上面的內(nèi)容都能很好的掌握,同學(xué)們認(rèn)真學(xué)習(xí)吧。
初中數(shù)學(xué)知識點:點的坐標(biāo)的性質(zhì)
下面是對數(shù)學(xué)中點的坐標(biāo)的性質(zhì)知識學(xué)習(xí),同學(xué)們認(rèn)真看看哦。
點的坐標(biāo)的性質(zhì)
建立了平面直角坐標(biāo)系后,對于坐標(biāo)系平面內(nèi)的任何一點,我們可以確定它的坐標(biāo)。反過來,對于任何一個坐標(biāo),我們可以在坐標(biāo)平面內(nèi)確定它所表示的一個點。
對于平面內(nèi)任意一點C,過點C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對應(yīng)點a,b分別叫做點C的橫坐標(biāo)、縱坐標(biāo),有序?qū)崝?shù)對(a,b)叫做點C的坐標(biāo)。
一個點在不同的象限或坐標(biāo)軸上,點的坐標(biāo)不一樣。
希望上面對點的坐標(biāo)的性質(zhì)知識講解學(xué)習(xí),同學(xué)們都能很好的掌握,相信同學(xué)們會在考試中取得優(yōu)異成績的。
初中數(shù)學(xué)知識點:因式分解的一般步驟
關(guān)于數(shù)學(xué)中因式分解的一般步驟內(nèi)容學(xué)習(xí),我們做下面的知識講解。
因式分解的`一般步驟
如果多項式有公因式就先提公因式,沒有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,
通常采用分組分解法,最后運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。
注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個整式的積的形式。
相信上面對因式分解的一般步驟知識的內(nèi)容講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們會考出好成績。
初中數(shù)學(xué)知識點:因式分解
下面是對數(shù)學(xué)中因式分解內(nèi)容的知識講解,希望同學(xué)們認(rèn)真學(xué)習(xí)。
因式分解定義:
把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。
因式分解要素:
、俳Y(jié)果必須是整式
、诮Y(jié)果必須是積的形式
、劢Y(jié)果是等式
、芤蚴椒纸馀c整式乘法的關(guān)系:m(a+b+c)
公因式:
一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。
公因式確定方法:
、傧禂(shù)是整數(shù)時取各項最大公約數(shù)。
②相同字母取最低次冪
、巯禂(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個多項式各項的公因式。
提取公因式步驟:
、俅_定公因式。
、诖_定商式
、酃蚴脚c商式寫成積的形式。
分解因式注意;
、俨粶(zhǔn)丟字母
、诓粶(zhǔn)丟常數(shù)項注意查項數(shù)
、垭p重括號化成單括號
、芙Y(jié)果按數(shù)單字母單項式多項式順序排列
、菹嗤蚴綄懗蓛绲男问
⑥首項負(fù)號放括號外
、呃ㄌ杻(nèi)同類項合并。
通過上面對因式分解內(nèi)容知識的講解學(xué)習(xí),相信同學(xué)們已經(jīng)能很好的掌握了吧,希望上面的內(nèi)容給同學(xué)們的學(xué)習(xí)很好的幫助。
初中數(shù)學(xué)知識點9
自然數(shù)的分類包括了奇數(shù)和偶數(shù),質(zhì)數(shù)與合數(shù)、1和0。
自然數(shù)的'分類
、侔茨芊癖2整除分
可分為奇數(shù)和偶數(shù)。
1、奇 數(shù):不能被2整除的數(shù)叫奇數(shù)。
2、偶 數(shù):能被2整除的數(shù)叫偶數(shù)。
注:0是偶數(shù)。(20xx年國際數(shù)學(xué)協(xié)會規(guī)定,零為偶數(shù).我國20xx年也規(guī)定零為偶數(shù)。偶數(shù)可以被2整除,0照樣可以,只不過得數(shù)依然是0而已)。
、诎匆驍(shù)個數(shù)分
可分為質(zhì)數(shù)、合數(shù)、1和0。
1、質(zhì) 數(shù):只有1和它本身這兩個因數(shù)的自然數(shù)叫做質(zhì)數(shù)。也稱作素數(shù)。
2、合 數(shù):除了1和它本身還有其它的因數(shù)的自然數(shù)叫做合數(shù)。
3、1:只有1個因數(shù)。它既不是質(zhì)數(shù)也不是合數(shù)。
4、當(dāng)然0不能計算因數(shù),和1一樣,也不是質(zhì)數(shù)也不是合數(shù)。
備注:這里是因數(shù)不是約數(shù)。
同學(xué)們對于“0”,它是否包括在自然數(shù)之內(nèi)存在爭議,其實學(xué)術(shù)界目前關(guān)于這個問題尚無一致意見。
初中數(shù)學(xué)知識點10
一、平移變換:
1、概念:在平面內(nèi),將一個圖形沿著某個方向移動一定的距離,這樣的圖形運動叫做平移。
2、性質(zhì):
。1)平移前后圖形全等;
。2)對應(yīng)點連線平行或在同一直線上且相等。
3、平移的作圖步驟和方法:
。1)分清題目要求,確定平移的方向和平移的距離。
。2)分析所作的圖形,找出構(gòu)成圖形的關(guān)健點。
(3)沿一定的方向,按一定的距離平移各個關(guān)健點。
。4)連接所作的各個關(guān)鍵點,并標(biāo)上相應(yīng)的字母。
。5)寫出結(jié)論。
二、旋轉(zhuǎn)變換:
1、概念:在平面內(nèi),將一個圖形繞一個定點沿某個方向轉(zhuǎn)動一個角度,這樣的'圖形運動叫做旋轉(zhuǎn)。
說明:
。1)圖形的旋轉(zhuǎn)是由旋轉(zhuǎn)中心和旋轉(zhuǎn)的角度所決定的;
。2)旋轉(zhuǎn)過程中旋轉(zhuǎn)中心始終保持不動。
。3)旋轉(zhuǎn)過程中旋轉(zhuǎn)的方向是相同的。
。4)旋轉(zhuǎn)過程靜止時,圖形上一個點的旋轉(zhuǎn)角度是一樣的。⑤旋轉(zhuǎn)不改變圖形的大小和形狀。
2、性質(zhì):
。1)對應(yīng)點到旋轉(zhuǎn)中心的距離相等;
。2)對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;
。3)旋轉(zhuǎn)前、后的圖形全等。
3、旋轉(zhuǎn)作圖的步驟和方法:
。1)確定旋轉(zhuǎn)中心及旋轉(zhuǎn)方向、旋轉(zhuǎn)角;
。2)找出圖形的關(guān)鍵點;
。3)將圖形的關(guān)鍵點和旋轉(zhuǎn)中心連接起來,然后按旋轉(zhuǎn)方向分別將它們旋轉(zhuǎn)一個旋轉(zhuǎn)角度數(shù),得到這些關(guān)鍵點的對應(yīng)點;
(4)按原圖形順次連接這些對應(yīng)點,所得到的圖形就是旋轉(zhuǎn)后的圖形。
說明:在旋轉(zhuǎn)作圖時,一對對應(yīng)點與旋轉(zhuǎn)中心的夾角即為旋轉(zhuǎn)角。
4、常見考法
。1)把平移旋轉(zhuǎn)結(jié)合起來證明三角形全等;
。2)利用平移變換與旋轉(zhuǎn)變換的性質(zhì),設(shè)計一些題目。
誤區(qū)提醒
。1)弄反了坐標(biāo)平移的上加下減,左減右加的規(guī)律;
。2)平移與旋轉(zhuǎn)的性質(zhì)沒有掌握。
初中數(shù)學(xué)知識點11
一、基本知識
、、數(shù)與代數(shù)
A、數(shù)與式:
1、有理數(shù)
有理數(shù):
、僬麛(shù)→正整數(shù)/0/負(fù)整數(shù)
、诜?jǐn)?shù)→正分?jǐn)?shù)/負(fù)分?jǐn)?shù)
數(shù)軸:
、佼嬕粭l水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規(guī)定直線上向右的方向為正方向,就得到數(shù)軸。
、谌魏我粋有理數(shù)都可以用數(shù)軸上的一個點來表示。
、廴绻麅蓚數(shù)只有符號不同,那么我們稱其中一個數(shù)為另外一個數(shù)的相反數(shù),也稱這兩個數(shù)互為相反數(shù)。在數(shù)軸上,表示互為相反數(shù)的兩個點,位于原點的兩側(cè),并且與原點距離相等。
、軘(shù)軸上兩個點表示的數(shù),右邊的總比左邊的大。正數(shù)大于0,負(fù)數(shù)小于0,正數(shù)大于負(fù)數(shù)。
絕對值:
、僭跀(shù)軸上,一個數(shù)所對應(yīng)的點與原點的距離叫做該數(shù)的絕對值。
、谡龜(shù)的絕對值是他的本身、負(fù)數(shù)的絕對值是他的相反數(shù)、0的絕對值是0、兩個負(fù)數(shù)比較大小,絕對值大的反而小。
有理數(shù)的運算:
加法:
、偻栂嗉,取相同的符號,把絕對值相加。
②異號相加,絕對值相等時和為0;絕對值不等時,取絕對值較大的數(shù)的符號,并用較大的絕對值減去較小的絕對值。
、垡粋數(shù)與0相加不變。
減法:減去一個數(shù),等于加上這個數(shù)的相反數(shù)。
乘法:
、賰蓴(shù)相乘,同號得正,異號得負(fù),絕對值相乘。
、谌魏螖(shù)與0相乘得0、
、鄢朔e為1的兩個有理數(shù)互為倒數(shù)。
除法:
、俪砸粋數(shù)等于乘以一個數(shù)的倒數(shù)。
②0不能作除數(shù)。
乘方:求N個相同因數(shù)A的積的運算叫做乘方,乘方的結(jié)果叫冪,A叫底數(shù),N叫次數(shù)。
混合順序:先算乘法,再算乘除,最后算加減,有括號要先算括號里的。
2、實數(shù)
無理數(shù):無限不循環(huán)小數(shù)叫無理數(shù)
平方根:
、偃绻粋正數(shù)X的平方等于A,那么這個正數(shù)X就叫做A的算術(shù)平方根。
②如果一個數(shù)X的平方等于A,那么這個數(shù)X就叫做A的平方根。
、垡粋正數(shù)有2個平方根/0的平方根為0/負(fù)數(shù)沒有平方根。
、芮笠粋數(shù)A的平方根運算,叫做開平方,其中A叫做被開方數(shù)。
立方根:
、偃绻粋數(shù)X的立方等于A,那么這個數(shù)X就叫做A的立方根。
、谡龜(shù)的立方根是正數(shù)、0的立方根是0、負(fù)數(shù)的立方根是負(fù)數(shù)。
、矍笠粋數(shù)A的立方根的運算叫開立方,其中A叫做被開方數(shù)。
實數(shù):
①實數(shù)分有理數(shù)和無理數(shù)。
、谠趯崝(shù)范圍內(nèi),相反數(shù),倒數(shù),絕對值的意義和有理數(shù)范圍內(nèi)的相反數(shù),倒數(shù),絕對值的意義完全一樣。
、勖恳粋實數(shù)都可以在數(shù)軸上的一個點來表示。
3、代數(shù)式
代數(shù)式:單獨一個數(shù)或者一個字母也是代數(shù)式。
合并同類項:
、偎帜赶嗤,并且相同字母的指數(shù)也相同的項,叫做同類項。
、诎淹愴椇喜⒊梢豁椌徒凶龊喜⑼愴。
、墼诤喜⑼愴棔r,我們把同類項的系數(shù)相加,字母和字母的指數(shù)不變。
4、整式與分式
整式:
①數(shù)與字母的乘積的代數(shù)式叫單項式,幾個單項式的和叫多項式,單項式和多項式統(tǒng)稱整式。
、谝粋單項式中,所有字母的指數(shù)和叫做這個單項式的次數(shù)。
③一個多項式中,次數(shù)最高的項的次數(shù)叫做這個多項式的次數(shù)。
整式運算:加減運算時,如果遇到括號先去括號,再合并同類項。
冪的運算:AM+AN=A(M+N)
。ˋM)N=AMN
。ˋ/B)N=AN/BN除法一樣。
整式的乘法:
、賳雾検脚c單項式相乘,把他們的系數(shù),相同字母的冪分別相乘,其余字母連同他的指數(shù)不變,作為積的因式。
、趩雾検脚c多項式相乘,就是根據(jù)分配律用單項式去乘多項式的每一項,再把所得的積相加。
、鄱囗検脚c多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加。
公式兩條:平方差公式/完全平方公式
整式的除法:
、賳雾検较喑,把系數(shù),同底數(shù)冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則連同他的指數(shù)一起作為商的一個因式。
、诙囗検匠詥雾検,先把這個多項式的每一項分別除以單項式,再把所得的商相加。
分解因式:把一個多項式化成幾個整式的積的形式,這種變化叫做把這個多項式分解因式。
方法:提公因式法、運用公式法、分組分解法、十字相乘法。
分式:
、僬紸除以整式B,如果除式B中含有分母,那么這個就是分式,對于任何一個分式,分母不為0、
、诜质降姆肿优c分母同乘以或除以同一個不等于0的整式,分式的值不變。分式的運算:
乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。
除法:除以一個分式等于乘以這個分式的倒數(shù)。
加減法:
、偻帜阜质较嗉訙p,分母不變,把分子相加減。
②異分母的分式先通分,化為同分母的分式,再加減。
分式方程:
、俜帜钢泻形粗獢(shù)的方程叫分式方程。
、谑狗匠痰姆帜笧0的解稱為原方程的增根。
B、方程與不等式
1、方程與方程組
一元一次方程:
、僭谝粋方程中,只含有一個未知數(shù),并且未知數(shù)的指數(shù)是1,這樣的方程叫一元一次方程。
、诘仁絻蛇呁瑫r加上或減去或乘以或除以(不為0)一個代數(shù)式,所得結(jié)果仍是等式。
解一元一次方程的步驟:去分母,移項,合并同類項,未知數(shù)系數(shù)化為1、
二元一次方程:含有兩個未知數(shù),并且所含未知數(shù)的項的次數(shù)都是1的`方程叫做二元一次方程。二元一次方程組:兩個二元一次方程組成的方程組叫做二元一次方程組。適合一個二元一次方程的一組未知數(shù)的值,叫做這個二元一次方程的一個解。二元一次方程組中各個方程的公共解,叫做這個二元一次方程的解。解二元一次方程組的方法:代入消元法/加減消元法。
一元二次方程:只有一個未知數(shù),并且未知數(shù)的項的最高系數(shù)為2的方程
1)一元二次方程的二次函數(shù)的關(guān)系
大家已經(jīng)學(xué)過二次函數(shù)(即拋物線)了,對他也有很深的了解,好像解法,在圖象中表示等等,其實一元二次方程也可以用二次函數(shù)來表示,其實一元二次方程也是二次函數(shù)的一個特殊情況,就是當(dāng)Y的0的時候就構(gòu)成了一元二次方程了。那如果在平面直角坐標(biāo)系中表示出來,一元二次方程就是二次函數(shù)中,圖象與X軸的交點。也就是該方程的解了
2)一元二次方程的解法
大家知道,二次函數(shù)有頂點式(—b/2a,4ac—b2/4a),這大家要記住,很重要,因為在上面已經(jīng)說過了,一元二次方程也是二次函數(shù)的一部分,所以他也有自己的一個解法,利用他可以求出所有的一元一次方程的解
(1)配方法
利用配方,使方程變?yōu)橥耆椒焦,在用直接開平方法去求出解
。2)分解因式法
提取公因式,套用公式法,和十字相乘法。在解一元二次方程的時候也一樣,利用這點,把方程化為幾個乘積的形式去解
。3)公式法
這方法也可以是在解一元二次方程的萬能方法了,方程的根X1={—b+√[b2—4ac)]}/2a,X2={—b—√[b2—4ac)]}/2a
3)解一元二次方程的步驟:
。1)配方法的步驟:
先把常數(shù)項移到方程的右邊,再把二次項的系數(shù)化為1,再同時加上1次項的系數(shù)的一半的平方,最后配成完全平方公式
。2)分解因式法的步驟:
把方程右邊化為0,然后看看是否能用提取公因式,公式法(這里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化為乘積的形式
。3)公式法
就把一元二次方程的各系數(shù)分別代入,這里二次項的系數(shù)為a,一次項的系數(shù)為b,常數(shù)項的系數(shù)為c
4)韋達(dá)定理
利用韋達(dá)定理去了解,韋達(dá)定理就是在一元二次方程中,二根之和=—b/a,二根之積=c/a,也可以表示為x1+x2=—b/a,x1x2=c/a。利用韋達(dá)定理,可以求出一元二次方程中的各系數(shù),在題目中很常用
5)一元一次方程根的情況
利用根的判別式去了解,根的判別式可在書面上可以寫為“△”,讀作“diaota”,而△=b2—4ac,這里可以分為3種情況:
I當(dāng)△>0時,一元二次方程有2個不相等的實數(shù)根;
II當(dāng)△=0時,一元二次方程有2個相同的實數(shù)根;
III當(dāng)△B,A+C>B+C在不等式中,如果減去同一個數(shù)(或加上一個負(fù)數(shù)),不等式符號不改向;例如:A>B,A—C>B—C在不等式中,如果乘以同一個正數(shù),不等號不改向;例如:A>B,A*C>B*C(C>0)在不等式中,如果乘以同一個負(fù)數(shù),不等號改向;例如:A>B,A*C系內(nèi)描出它的對應(yīng)點,所有這些點組成的圖形叫做該函數(shù)的圖象。
②正比例函數(shù)Y=KX的圖象是經(jīng)過原點的一條直線。
、墼谝淮魏瘮(shù)中,當(dāng)K〈0,B〈O,則經(jīng)234象限;當(dāng)K〈0,B〉0時,則經(jīng)124象限;當(dāng)K〉0,B〈0時,則經(jīng)134象限;當(dāng)K〉0,B〉0時,則經(jīng)123象限。
、墚(dāng)K〉0時,Y的值隨X值的增大而增大,當(dāng)X〈0時,Y的值隨X值的增大而減少。
㈡空間與圖形A、圖形的認(rèn)識1、點,線,面
點,線,面:
①圖形是由點,線,面構(gòu)成的。
、诿媾c面相交得線,線與線相交得點。
、埸c動成線,線動成面,面動成體。
展開與折疊:
、僭诶庵,任何相鄰的兩個面的交線叫做棱,側(cè)棱是相鄰兩個側(cè)面的交線,棱柱的所有側(cè)棱長相等,棱柱的上下底面的形狀相同,側(cè)面的形狀都是長方體。
、贜棱柱就是底面圖形有N條邊的棱柱。
截一個幾何體:用一個平面去截一個圖形,截出的面叫做截面。視圖:主視圖,左視圖,俯視圖。
多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形。
弧、扇形:
、儆梢粭l弧和經(jīng)過這條弧的端點的兩條半徑所組成的圖形叫扇形。
、趫A可以分割成若干個扇形。
2、角
線:
①線段有兩個端點。
、趯⒕段向一個方向無限延長就形成了射線。射線只有一個端點。
、蹖⒕段的兩端無限延長就形成了直線。直線沒有端點。
、芙(jīng)過兩點有且只有一條直線。
比較長短:
、賰牲c之間的所有連線中,線段最短。
、趦牲c之間線段的長度,叫做這兩點之間的距離。
角的度量與表示:
、俳怯蓛蓷l具有公共端點的射線組成,兩條射線的公共端點是這個角的頂點。
、谝欢鹊1/60是一分,一分的1/60是一秒。
角的比較:
①角也可以看成是由一條射線繞著他的端點旋轉(zhuǎn)而成的。
②一條射線繞著他的端點旋轉(zhuǎn),當(dāng)終邊和始邊成一條直線時,所成的角叫做平角。始邊繼續(xù)旋轉(zhuǎn),當(dāng)他又和始邊重合時,所成的角叫做周角。
、蹚囊粋角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。
平行:
①同一平面內(nèi),不相交的兩條直線叫做平行線。
、诮(jīng)過直線外一點,有且只有一條直線與這條直線平行。
③如果兩條直線都與第3條直線平行,那么這兩條直線互相平行。
垂直:
、偃绻麅蓷l直線相交成直角,那么這兩條直線互相垂直。
、诨ハ啻怪钡膬蓷l直線的交點叫做垂足。
、燮矫鎯(nèi),過一點有且只有一條直線與已知直線垂直。垂直平分線:垂直和平分一條線段的直線叫垂直平分線。
垂直平分線垂直平分的一定是線段,不能是射線或直線,這根據(jù)射線和直線可以無限延長有關(guān),再看后面的,垂直平分線是一條直線,所以在畫垂直平分線的時候,確定了2點后(關(guān)于畫法,后面會講)一定要把線段穿出2點。
垂直平分線定理:
性質(zhì)定理:在垂直平分線上的點到該線段兩端點的距離相等;判定定理:到線段2端點距離相等的點在這線段的垂直平分線上角平分線:把一個角平分的射線叫該角的角平分線。
定義中有幾個要點要注意一下的,就是角的角平分線是一條射線,不是線段也不是直線,很多時,在題目中會出
現(xiàn)直線,這是角平分線的對稱軸才會用直線的,這也涉及到軌跡的問題,一個角個角平分線就是到角兩邊距離相等的點
性質(zhì)定理:角平分線上的點到該角兩邊的距離相等
判定定理:到角的兩邊距離相等的點在該角的角平分線上正方形:一組鄰邊相等的矩形是正方形
性質(zhì):正方形具有平行四邊形、菱形、矩形的一切性質(zhì)
判定:1、對角線相等的菱形2、鄰邊相等的矩形
二、基本定理
1、過兩點有且只有一條直線
2、兩點之間線段最短
3、同角或等角的補角相等
4、同角或等角的余角相等
5、過一點有且只有一條直線和已知直線垂直
6、直線外一點與直線上各點連接的所有線段中,垂線段最短
7、平行公理經(jīng)過直線外一點,有且只有一條直線與這條直線平行
8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9、同位角相等,兩直線平行
10、內(nèi)錯角相等,兩直線平行
11、同旁內(nèi)角互補,兩直線平行
12、兩直線平行,同位角相等
13、兩直線平行,內(nèi)錯角相等
14、兩直線平行,同旁內(nèi)角互補
15、定理三角形兩邊的和大于第三邊
16、推論三角形兩邊的差小于第三邊
17、三角形內(nèi)角和定理三角形三個內(nèi)角的和等于180°
18、推論1直角三角形的兩個銳角互余
19、推論2三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和
20、推論3三角形的一個外角大于任何一個和它不相鄰的內(nèi)角
21、全等三角形的對應(yīng)邊、對應(yīng)角相等
22、邊角邊公理(SAS)有兩邊和它們的夾角對應(yīng)相等的兩個三角形全等
23、角邊角公理(ASA)有兩角和它們的夾邊對應(yīng)相等的兩個三角形全等
24、推論(AAS)有兩角和其中一角的對邊對應(yīng)相等的兩個三角形全等
25、邊邊邊公理(SSS)有三邊對應(yīng)相等的兩個三角形全等
26、斜邊、直角邊公理(HL)有斜邊和一條直角邊對應(yīng)相等的兩個直角三角形全等
27、定理1在角的平分線上的點到這個角的兩邊的距離相等
28、定理2到一個角的兩邊的距離相同的點,在這個角的平分線上
29、角的平分線是到角的兩邊距離相等的所有點的集合
30、等腰三角形的性質(zhì)定理等腰三角形的兩個底角相等(即等邊對等角)
31、推論1等腰三角形頂角的平分線平分底邊并且垂直于底邊
32、等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
33、推論3等邊三角形的各角都相等,并且每一個角都等于60°
34、等腰三角形的判定定理如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)
35、推論1三個角都相等的三角形是等邊三角形
36、推論2有一個角等于60°的等腰三角形是等邊三角形
37、在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半
38、直角三角形斜邊上的中線等于斜邊上的一半
39、定理線段垂直平分線上的點和這條線段兩個端點的距離相等
40、逆定理和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
41、線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
42、定理1關(guān)于某條直線對稱的兩個圖形是全等形
43、定理2如果兩個圖形關(guān)于某直線對稱,那么對稱軸是對應(yīng)點連線的垂直平分線
44、定理3兩個圖形關(guān)于某直線對稱,如果它們的對應(yīng)線段或延長線相交,那么交點在對稱軸上
45、逆定理如果兩個圖形的對應(yīng)點連線被同一條直線垂直平分,那么這兩個圖形關(guān)于這條直線對稱
46、勾股定理直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2
47、勾股定理的逆定理如果三角形的三邊長a、b、c有關(guān)系a2+b2=c2,那么這個三角形是直角三角形
48、定理四邊形的內(nèi)角和等于360°
49、四邊形的外角和等于360°
50、多邊形內(nèi)角和定理n邊形的內(nèi)角的和等于(n—2)×180°
51、推論任意多邊的外角和等于360°
52、平行四邊形性質(zhì)定理1平行四邊形的對角相等
53、平行四邊形性質(zhì)定理2平行四邊形的對邊相等
54、推論夾在兩條平行線間的平行線段相等
55、平行四邊形性質(zhì)定理3平行四邊形的對角線互相平分
56、平行四邊形判定定理1兩組對角分別相等的四邊形是平行四邊形
57、平行四邊形判定定理2兩組對邊分別相等的四邊形是平行四邊形
58、平行四邊形判定定理3對角線互相平分的四邊形是平行四邊形
59、平行四邊形判定定理4一組對邊平行相等的四邊形是平行四邊形
60、矩形性質(zhì)定理1矩形的四個角都是直角
61、矩形性質(zhì)定理2矩形的對角線相等
62、矩形判定定理1有三個角是直角的四邊形是矩形
63、矩形判定定理2對角線相等的平行四邊形是矩形
64、菱形性質(zhì)定理1菱形的四條邊都相等
65、菱形性質(zhì)定理2菱形的對角線互相垂直,并且每一條對角線平分一組對角
66、菱形面積=對角線乘積的一半,即S=(a×b)÷2
67、菱形判定定理1四邊都相等的四邊形是菱形
68、菱形判定定理2對角線互相垂直的平行四邊形是菱形
69、正方形性質(zhì)定理1正方形的四個角都是直角,四條邊都相等
70、正方形性質(zhì)定理2正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角
71、定理1關(guān)于中心對稱的兩個圖形是全等的
72、定理2關(guān)于中心對稱的兩個圖形,對稱點連線都經(jīng)過對稱中心,并且被對稱中心平分
73、逆定理如果兩個圖形的對應(yīng)點連線都經(jīng)過某一點,并且被這一點平分,那么這兩個圖形關(guān)于這一點對稱
74、等腰梯形性質(zhì)定理等腰梯形在同一底上的兩個角相等
75、等腰梯形的兩條對角線相等
76、等腰梯形判定定理在同一底上的兩個角相等的梯形是等腰梯形
77、對角線相等的梯形是等腰梯形
78、平行線等分線段定理如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等
79、推論1經(jīng)過梯形一腰的中點與底平行的直線,必平分另一腰
80、推論2經(jīng)過三角形一邊的中點與另一邊平行的直線,必平分第三邊
81、三角形中位線定理三角形的中位線平行于第三邊,并且等于它的一半
82、梯形中位線定理梯形的中位線平行于兩底,并且等于兩底和的一半L=(a+b)÷2S=L×h
83、(1)比例的基本性質(zhì):如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d
84、(2)合比性質(zhì):如果a/b=c/d,那么(a±b)/b=(c±d)/d
85、(3)等比性質(zhì):如果a/b=c/d==m/n(b+d++n≠0),那么(a+c++m)/(b+d++n)=a/b
86、平行線分線段成比例定理三條平行線截兩條直線,所得的對應(yīng)線段成比例
87、推論平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應(yīng)線段成比例
88、定理如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應(yīng)線段成比例,那么這條直線平行于三角形的第三邊
89、平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應(yīng)成比例
90、定理平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似
91、相似三角形判定定理1兩角對應(yīng)相等,兩三角形相似(ASA)
92、直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似
93、判定定理2兩邊對應(yīng)成比例且夾角相等,兩三角形相似(SAS)
94、判定定理3三邊對應(yīng)成比例,兩三角形相似(SSS)
95、定理如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應(yīng)成比例,那么這兩個直角三角形相似
96、性質(zhì)定理1相似三角形對應(yīng)高的比,對應(yīng)中線的比與對應(yīng)角平分線的比都等于相似比
97、性質(zhì)定理2相似三角形周長的比等于相似比
98、性質(zhì)定理3相似三角形面積的比等于相似比的平方
99、任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值
100、任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值
101、圓是定點的距離等于定長的點的集合
102、圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合
103、圓的外部可以看作是圓心的距離大于半徑的點的集合
104、同圓或等圓的半徑相等
105、到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓
106、和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線
107、到已知角的兩邊距離相等的點的軌跡,是這個角的平分線
108、到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線
109、定理不在同一直線上的三點確定一個圓。
110、垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧
111、推論1
、倨椒窒遥ú皇侵睆剑┑闹睆酱怪庇谙,并且平分弦所對的兩條弧
、谙业拇怪逼椒志經(jīng)過圓心,并且平分弦所對的兩條弧
、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧
112、推論2圓的兩條平行弦所夾的弧相等
113、圓是以圓心為對稱中心的中心對稱圖形
114、定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
115、推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等
116、定理一條弧所對的圓周角等于它所對的圓心角的一半
117、推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
118、推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑
119、推論3如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形
120、定理圓的內(nèi)接四邊形的對角互補,并且任何一個外角都等于它的內(nèi)對角
121、①直線L和⊙O相交dr②直線L和⊙O相切d=r③直線L和⊙O相離dr
122、切線的判定定理經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線
123、切線的性質(zhì)定理圓的切線垂直于經(jīng)過切點的半徑
124、推論1經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點
125、推論2經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心
126、切線長定理從圓外一點引圓的兩條切線,它們的切線長相等圓心和這一點的連線平分兩條切線的夾角
127、圓的外切四邊形的兩組對邊的和相等
128、弦切角定理弦切角等于它所夾的弧對的圓周角
129、推論如果兩個弦切角所夾的弧相等,那么這兩個弦切角也相等
130、相交弦定理圓內(nèi)的兩條相交弦,被交點分成的兩條線段長的積相等
131、推論如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項
132、切割線定理從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項
133、推論從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等
134、如果兩個圓相切,那么切點一定在連心線上
135、①兩圓外離dR+r②兩圓外切d=R+r③兩圓相交R—rdR+r(Rr)④兩圓內(nèi)切d=R—r(Rr)⑤兩圓內(nèi)含dR—r(Rr)
136、定理相交兩圓的連心線垂直平分兩圓的公共弦
137、定理把圓分成n(n≥3):
、乓来芜B結(jié)各分點所得的多邊形是這個圓的內(nèi)接正n邊形
、平(jīng)過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形
138、定理任何正多邊形都有一個外接圓和一個內(nèi)切圓,這兩個圓是同心圓
139、正n邊形的每個內(nèi)角都等于(n—2)×180°/n
140、定理正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形
141、正n邊形的面積Sn=pnrn/2p表示正n邊形的周長
142、正三角形面積√3a/4a表示邊長
143、如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應(yīng)為360°,因此k×(n—2)180°/n=360°化為(n—2)(k—2)=4
144、弧長計算公式:L=n兀R/180
145、扇形面積公式:S扇形=n兀R^2/360=LR/2146、內(nèi)公切線長=d—(R—r)外公切線長=d—(R+r)
一、常用數(shù)學(xué)公式
公式分類公式表達(dá)式乘法與因式分解a2—b2=(a+b)(a—b)a3+b3=(a+b)(a2—ab+b2)a3—b3=(a—b(a2+ab+b2)
三角不等式|a+b|≤|a|+|b||a—b|≤|a|+|b|
|a|≤b—b≤a≤b|a—b|≥|a|—|b|—|a|≤a≤|a|
一元二次方程的解—b+√(b2—4ac)/2a—b—√(b2—4ac)/2a
根與系數(shù)的關(guān)系X1+X2=—b/aX1*X2=c/a注:韋達(dá)定理判別式
b2—4ac=0注:方程有兩個相等的實根b2—4ac>0注:方程有兩個不等的實根
b2—4ac歸謬是反證法的關(guān)鍵,導(dǎo)出矛盾的過程沒有固定的模式,但必須從反設(shè)出發(fā),否則推導(dǎo)將成為無源之水,無本之木。推理必須嚴(yán)謹(jǐn)。導(dǎo)出的矛盾有如下幾種類型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設(shè)矛盾;自相矛盾。
8、面積法
平面幾何中講的面積公式以及由面積公式推出的與面積計算有關(guān)的性質(zhì)定理,不僅可用于計算面積,而且用它來證明平面幾何題有時會收到事半功倍的效果。運用面積關(guān)系來證明或計算平面幾何題的方法,稱為面積方法,它是幾何中的一種常用方法。
用歸納法或分析法證明平面幾何題,其困難在添置輔助線。面積法的特點是把已知和未知各量用面積公式聯(lián)系起來,通過運算達(dá)到求證的結(jié)果。所以用面積法來解幾何題,幾何元素之間關(guān)系變成數(shù)量之間的關(guān)系,只需要計算,有時可以不添置補助線,即使需要添置輔助線,也很容易考慮到。
9、幾何變換法
在數(shù)學(xué)問題的研究中,常常運用變換法,把復(fù)雜性問題轉(zhuǎn)化為簡單性的問題而得到解決。所謂變換是一個集合的任一元素到同一集合的元素的一個一一映射。中學(xué)數(shù)學(xué)中所涉及的變換主要是初等變換。有一些看來很難甚至于無法下手的習(xí)題,可以借助幾何變換法,化繁為簡,化難為易。另一方面,也可將變換的觀點滲透到中學(xué)數(shù)學(xué)教學(xué)中。將圖形從相等靜止條件下的研究和運動中的研究結(jié)合起來,有利于對圖形本質(zhì)的認(rèn)識。幾何變換包括:(1)平移;(2)旋轉(zhuǎn);(3)對稱。
10、客觀性題的解題方法
選擇題是給出條件和結(jié)論,要求根據(jù)一定的關(guān)系找出正確答案的一類題型。選擇題的題型構(gòu)思精巧,形式靈活,可以比較全面地考察學(xué)生的基礎(chǔ)知識和基本技能,從而增大了試卷的容量和知識覆蓋面。
填空題是標(biāo)準(zhǔn)化考試的重要題型之一,它同選擇題一樣具有考查目標(biāo)明確,知識復(fù)蓋面廣,評卷準(zhǔn)確迅速,有利于考查學(xué)生的分析判斷能力和計算能力等優(yōu)點,不同的是填空題未給出答案,可以防止學(xué)生猜估答案的情況。要想迅速、正確地解選擇題、填空題,除了具有準(zhǔn)確的計算、嚴(yán)密的推理外,還要有解選擇題、填空題的方法與技巧。下面通過實例介紹常用方法。
(1)直接推演法:直接從命題給出的條件出發(fā),運用概念、公式、定理等進(jìn)行推理或運算,得出結(jié)論,選擇正確答案,這就是傳統(tǒng)的解題方法,這種解法叫直接推演法。
。2)驗證法:由題設(shè)找出合適的驗證條件,再通過驗證,找出正確答案,亦可將供選擇的答案代入條件中去驗證,找出正確答案,此法稱為驗證法(也稱代入法)。當(dāng)遇到定量命題時,常用此法。
。3)特殊元素法:用合適的特殊元素(如數(shù)或圖形)代入題設(shè)條件或結(jié)論中去,從而獲得解答。這種方法叫特殊元素法。
。4)排除、篩選法:對于正確答案有且只有一個的選擇題,根據(jù)數(shù)學(xué)知識或推理、演算,把不正確的結(jié)論排除,余下的結(jié)論再經(jīng)篩選,從而作出正確的結(jié)論的解法叫排除、篩選法。
。5)圖解法:借助于符合題設(shè)條件的圖形或圖象的性質(zhì)、特點來判斷,作出正確的選擇稱為圖解法。圖解法是解選擇題常用方法之一。
。6)分析法:直接通過對選擇題的條件和結(jié)論,作詳盡的分析、歸納和判斷,從而選出正確的結(jié)果,為分析法。
初中數(shù)學(xué)知識點12
一、重要概念
1.總體:考察對象的全體。
2.個體:總體中每一個考察對象。
3.樣本:從總體中抽出的一部分個體。
4.樣本容量:樣本中個體的數(shù)目。
5.眾數(shù):一組數(shù)據(jù)中,出現(xiàn)次數(shù)最多的數(shù)據(jù)。
6.中位數(shù):將一組數(shù)據(jù)按大小依次排列,處在最中間位置的一個數(shù)(或最中間位置的兩個數(shù)據(jù)的平均數(shù))
二、計算方法
1.樣本平均數(shù):⑴;⑵若,…,,則(a—常數(shù),…,接近較整的常數(shù)a);⑶加權(quán)平均數(shù):;⑷平均數(shù)是刻劃數(shù)據(jù)的集中趨勢(集中位置)的特征數(shù)。通常用樣本平均數(shù)去估計總體平均數(shù),樣本容量越大,估計越準(zhǔn)確。
2.樣本方差:⑴;⑵若,,…,,則(a—接近、、…、的平均數(shù)的較“整”的常數(shù));若、、…、較“小”較“整”,則;⑶樣本方差是刻劃數(shù)據(jù)的離散程度(波動大小)的特征數(shù),當(dāng)樣本容量較大時,樣本方差非常接近總體方差,通常用樣本方差去估計總體方差。
3.樣本標(biāo)準(zhǔn)差:
三、應(yīng)用舉例(略)
初三數(shù)學(xué)知識點:第四章直線形
★重點★相交線與平行線、三角形、四邊形的有關(guān)概念、判定、性質(zhì)。
☆內(nèi)容提要☆
一、直線、相交線、平行線
1.線段、射線、直線三者的區(qū)別與聯(lián)系
從“圖形”、“表示法”、“界限”、“端點個數(shù)”、“基本性質(zhì)”等方面加以分析。
2.線段的.中點及表示
3.直線、線段的基本性質(zhì)(用“線段的基本性質(zhì)”論證“三角形兩邊之和大于第三邊”)
4.兩點間的距離(三個距離:點-點;點-線;線-線)
5.角(平角、周角、直角、銳角、鈍角)
6.互為余角、互為補角及表示方法
7.角的平分線及其表示
8.垂線及基本性質(zhì)(利用它證明“直角三角形中斜邊大于直角邊”)
9.對頂角及性質(zhì)
10.平行線及判定與性質(zhì)(互逆)(二者的區(qū)別與聯(lián)系)
11.常用定理:①同平行于一條直線的兩條直線平行(傳遞性);②同垂直于一條直線的兩條直線平行。
12.定義、命題、命題的組成
13.公理、定理
14.逆命題
二、三角形
分類:⑴按邊分;
、瓢唇欠
1.定義(包括內(nèi)、外角)
2.三角形的邊角關(guān)系:⑴角與角:①內(nèi)角和及推論;②外角和;③n邊形內(nèi)角和;④n邊形外角和。⑵邊與邊:三角形兩邊之和大于第三邊,兩邊之差小于第三邊。⑶角與邊:在同一三角形中
3.三角形的主要線段
討論:①定義②x線的交點—三角形的×心③性質(zhì)
、俑呔②中線③角平分線④中垂線⑤中位線
⑴一般三角形⑵特殊三角形:直角三角形、等腰三角形、等邊三角形
4.特殊三角形(直角三角形、等腰三角形、等邊三角形、等腰直角三角形)的判定與性質(zhì)
5.全等三角形
、乓话闳切稳鹊呐卸(sas、asa、aas、sss)
⑵特殊三角形全等的判定:①一般方法②專用方法
6.三角形的面積
、乓话阌嬎愎舰菩再|(zhì):等底等高的三角形面積相等。
7.重要輔助線
、胖悬c配中點構(gòu)成中位線;⑵加倍中線;⑶添加輔助平行線
8.證明方法
、胖苯幼C法:綜合法、分析法
、崎g接證法—反證法:①反設(shè)②歸謬③結(jié)論
、亲C線段相等、角相等常通過證三角形全等
、茸C線段倍分關(guān)系:加倍法、折半法
⑸證線段和差關(guān)系:延結(jié)法、截余法
⑹證面積關(guān)系:將面積表示出來
三、四邊形
分類表:
1.一般性質(zhì)(角)
、艃(nèi)角和:360°
⑵順次連結(jié)各邊中點得平行四邊形。
推論1:順次連結(jié)對角線相等的四邊形各邊中點得菱形。
推論2:順次連結(jié)對角線互相垂直的四邊形各邊中點得矩形。
、峭饨呛停360°
2.特殊四邊形
、叛芯克鼈兊囊话惴椒:
、破叫兴倪呅巍⒕匦巍⒘庑、正方形;梯形、等腰梯形的定義、性質(zhì)和判定
、桥卸ú襟E:四邊形→平行四邊形→矩形→正方形
┗→菱形——↑
、葘蔷的紐帶作用:
3.對稱圖形
、泡S對稱(定義及性質(zhì));⑵中心對稱(定義及性質(zhì))
4.有關(guān)定理:①平行線等分線段定理及其推論1、2
、谌切、梯形的中位線定理
、燮叫芯間的距離處處相等。(如,找下圖中面積相等的三角形)
5.重要輔助線:①常連結(jié)四邊形的對角線;②梯形中!捌揭埔谎薄ⅰ捌揭茖蔷”、“作高”、“連結(jié)頂點和對腰中點并延長與底邊相交”轉(zhuǎn)化為三角形。
6.作圖:任意等分線段。
初中數(shù)學(xué)知識點13
一、初中數(shù)學(xué)基本概念
1.方程:含有未知數(shù)的等式叫做方程。
2.一元一次方程:只含有一個未知數(shù),并且未知數(shù)的次數(shù)是1,并且含未知數(shù)項的系數(shù)不是零的整式方程是一元一次方程。
3.二元一次方程:含有兩個未知數(shù),并且未知數(shù)的次數(shù)是1的二元一次方程。
4.二元一次方程組:由兩個二元一次方程組成的方程組。
5.一元二次方程:含有一個未知數(shù),并且未知數(shù)的最高次數(shù)是2的整式方程。
6.一元二次方程的解:使一元二次方程左右兩邊相等的未知數(shù)的值。
7.一元二次方程的根:一元二次方程的解。
8.一元二次方程的判別式:當(dāng)a是正數(shù)時,如果一元二次方程左右兩邊相等時,那么這個一元二次方程有兩個不相等的實數(shù)根;當(dāng)a是負(fù)數(shù)時,如果一元二次方程左右兩邊相等時,那么這個一元二次方程沒有實數(shù)根;當(dāng)a是零時,如果一元二次方程左右兩邊相等時,那么這個一元二次方程有兩個相等的實數(shù)根。
9.函數(shù):在某變化過程中有兩個變量x、y,如果對于x在某一范圍內(nèi)的每一個確定的值,y都有唯一的值與它對應(yīng),那么稱y是x的函數(shù),x叫做自變量。
10.一次函數(shù):在某個變化過程中有兩個變量x、y,如果對于x在某一范圍內(nèi)的每一個確定的值,y都有唯一的值與它對應(yīng),那么稱y是x的一次函數(shù)。
11.正比例函數(shù):在某個變化過程中有兩個變量x、y,如果對于x在某一范圍內(nèi)的每一個確定的值,y都有唯一的值與它對應(yīng),并且這個數(shù)值在比例上成正比,那么稱y是x的`比例函數(shù)。
12.反比例函數(shù):在某個變化過程中有兩個變量x、y,如果對于x在某一范圍內(nèi)的每一個確定的值,y都有唯一的值與它對應(yīng),并且這個數(shù)值在比例上成反比,那么稱y是x的反比例函數(shù)。
13.平行四邊形:在同一個平面內(nèi)兩組對角分別平行的四邊形叫做平行四邊形。
14.矩形:有一個內(nèi)角是直角的平行四邊形叫做矩形。
15.菱形:有兩組鄰邊相等的平行四邊形叫做菱形。
16.正方形:四邊相等的矩形叫做正方形。
17.等腰梯形:兩條腰相等的梯形叫做等腰梯形。
18.三角形:在同一個平面內(nèi)由不在同一條直線上的三條線段首尾順次相接所組成的圖形叫做三角形。
19.中線:連接一個頂點和它對邊的中點的線段叫做中線。
20.高線:從三角形的一個頂點向它的對邊作垂線,垂足與頂點之間的線段叫做高線。
21.角平分線:三角形的一個內(nèi)角的平分線與它的對邊相交,這個角的頂點與交點之間的線段叫做角平分線。
22.中位線:連接三角形兩邊中點的線段叫做中位線。
23.軸對稱圖形:一條物體沿一條直線折疊后,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形。
24.直接開平方法:形如x2=p或者(nx+m)2=p(p≥0)的一元二次方程可采用直接開平方的方法解一元二次方程的方法。
25.配方法:把一元二次方程的常數(shù)項移到方程的右邊,兩邊加上一次項系數(shù)的一半的平方,再用右邊的式子除以左邊的式子,得到一個平方的形式,再用直接開平方的方法求解一元二次方程的方法。
26.公式法:用求根公式解一元二次方程的方法。
27.因式分解法:將一元二次方程分解成兩個一次因式的積等于0的一元二次方程,然后將各個因式分解,得到一元一次方程,再用直接開方法求解一元一次方程的方法。
二、初中數(shù)學(xué)基本運算
1.整式:單項式和多項式的統(tǒng)稱。
2.單項式:由數(shù)字和字母的積組成的代數(shù)式叫做單項式。單獨的一個數(shù)字或字母也叫做單項式。
3.多項式:幾個單項式的和叫做多項式。每個單項式叫做多項式的項。其中不含字母的項叫做常數(shù)
初中數(shù)學(xué)知識點14
顧名思義。中位線就是圖形的中點的連線,包括三角形中位線和梯形中位線兩種。
中位線
中位線概念
(1)三角形中位線定義:連接三角形兩邊中點的線段叫做三角形的中位線。
(2)梯形中位線定義:連結(jié)梯形兩腰中點的線段叫做梯形的中位線。
注意:
(1)要把三角形的中位線與三角形的中線區(qū)分開。三角形中線是連結(jié)一頂點和它對邊的中點,而三角形中位線是連結(jié)三角形兩邊中點的線段。
(2)梯形的中位線是連結(jié)兩腰中點的.線段而不是連結(jié)兩底中點的線段。
(3)兩個中位線定義間的聯(lián)系:可以把三角形看成是上底為零時的梯形,這時梯形的中位線就變成三角形的中位線。
初中數(shù)學(xué)知識點15
換元法在研究方程、不等式、函數(shù)、數(shù)列、三角等問題中有廣泛的應(yīng)用。
解數(shù)學(xué)題時,把某個式子看成一個整體,用一個變量去代替它,從而使問題得到簡化,這叫換元法。換元的實質(zhì)是轉(zhuǎn)化,關(guān)鍵是構(gòu)造元和設(shè)元,理論依據(jù)是等量代換,目的是變換研究對象,將問題移至新對象的知識背景中去研究,從而使非標(biāo)準(zhǔn)型問題標(biāo)準(zhǔn)化、復(fù)雜問題簡單化,變得容易處理。
換元法又稱輔助元素法、變量代換法。通過引進(jìn)新的變量,可以把分散的條件聯(lián)系起來,隱含的'條件顯露出來,或者把條件與結(jié)論聯(lián)系起來;蛘咦?yōu)槭煜さ男问剑褟?fù)雜的計算和推證簡化。
它可以化高次為低次、化分式為整式、化無理式為有理式、化超越式為代數(shù)式。
分類
換元的方法有:局部換元、三角換元、均值換元等。
換元的種類有:等參量換元、非等量換元
換元法是二元一次方程的另一種方法,就是說把一個方程用其他未知數(shù)表示,再帶入另一個方程中。
【初中數(shù)學(xué)知識點】相關(guān)文章:
初中數(shù)學(xué)垂直知識點12-07
初中數(shù)學(xué)角的知識點05-31
(經(jīng)典)初中數(shù)學(xué)知識點07-19
初中數(shù)學(xué)倒數(shù)的知識點08-01
初中數(shù)學(xué)知識點04-30
初中數(shù)學(xué)概率知識點06-14
初中數(shù)學(xué)圓的知識點總結(jié)12-05
初中數(shù)學(xué)知識點歸納.07-30