當前位置:育文網(wǎng)>高中>高中數(shù)學> 高中數(shù)學知識點總結(jié)

高中數(shù)學知識點總結(jié)

時間:2024-05-28 10:30:00 高中數(shù)學 我要投稿

【精品】高中數(shù)學知識點總結(jié)

  總結(jié)是把一定階段內(nèi)的有關(guān)情況分析研究,做出有指導性的經(jīng)驗方法以及結(jié)論的書面材料,它能幫我們理順知識結(jié)構(gòu),突出重點,突破難點,不如我們來制定一份總結(jié)吧。你所見過的總結(jié)應(yīng)該是什么樣的?以下是小編為大家整理的高中數(shù)學知識點總結(jié),希望對大家有所幫助。

【精品】高中數(shù)學知識點總結(jié)

高中數(shù)學知識點總結(jié)1

  空間中的垂直問題

 。1)線線、面面、線面垂直的定義

 、賰蓷l異面直線的垂直:如果兩條異面直線所成的角是直角,就說這兩條異面直線互相垂直。

  ②線面垂直:如果一條直線和一個平面內(nèi)的任何一條直線垂直,就說這條直線和這個平面垂直。

  ③平面和平面垂直:如果兩個平面相交,所成的二面角(從一條直線出發(fā)的兩個半平面所組成的圖形)是直二面角(平面角是直角),就說這兩個平面垂直。

 。2)垂直關(guān)系的'判定和性質(zhì)定理

 、倬面垂直判定定理和性質(zhì)定理

  判定定理:如果一條直線和一個平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直這個平面。

  性質(zhì)定理:如果兩條直線同垂直于一個平面,那么這兩條直線平行。

 、诿婷娲怪钡呐卸ǘɡ砗托再|(zhì)定理

  判定定理:如果一個平面經(jīng)過另一個平面的一條垂線,那么這兩個平面互相垂直。

  性質(zhì)定理:如果兩個平面互相垂直,那么在一個平面內(nèi)垂直于他們的交線的直線垂直于另一個平面。

  棱錐

  棱錐的定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,這些面圍成的幾何體叫做棱錐

  棱錐的性質(zhì):

  (1)側(cè)棱交于一點。側(cè)面都是三角形

 。2)平行于底面的截面與底面是相似的多邊形。且其面積比等于截得的棱錐的高與遠棱錐高的比的平方

  正棱錐

  正棱錐的定義:如果一個棱錐底面是正多邊形,并且頂點在底面內(nèi)的射影是底面的中心,這樣的棱錐叫做正棱錐。

  正棱錐的性質(zhì):

  (1)各側(cè)棱交于一點且相等,各側(cè)面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。

 。2)多個特殊的直角三角形

  esp:

  a、相鄰兩側(cè)棱互相垂直的正三棱錐,由三垂線定理可得頂點在底面的射影為底面三角形的垂心。

  b、四面體中有三對異面直線,若有兩對互相垂直,則可得第三對也互相垂直。且頂點在底面的射影為底面三角形的垂心。

高中數(shù)學知識點總結(jié)2

  一次函數(shù)

  一、定義與定義式:

  自變量x和因變量y有如下關(guān)系:

  y=kx+b

  則此時稱y是x的一次函數(shù)。

  特別地,當b=0時,y是x的正比例函數(shù)。

  即:y=kx (k為常數(shù),k0)

  二、一次函數(shù)的性質(zhì):

  1、y的變化值與對應(yīng)的x的變化值成正比例,比值為k

  即:y=kx+b (k為任意不為零的實數(shù)b取任何實數(shù))

  2、當x=0時,b為函數(shù)在y軸上的截距。

  三、一次函數(shù)的圖像及性質(zhì):

  1、作法與圖形:通過如下3個步驟

 。1)列表;

 。2)描點;

  (3)連線,可以作出一次函數(shù)的圖像一條直線。因此,作一次函數(shù)的圖像只需知道2點,并連成直線即可。(通常找函數(shù)圖像與x軸和y軸的交點)

  2、性質(zhì):(1)在一次函數(shù)上的任意一點P(x,y),都滿足等式:y=kx+b。(2)一次函數(shù)與y軸交點的坐標總是(0,b),與x軸總是交于(—b/k,0)正比例函數(shù)的圖像總是過原點。

  3、k,b與函數(shù)圖像所在象限:

  當k0時,直線必通過一、三象限,y隨x的增大而增大;

  當k0時,直線必通過二、四象限,y隨x的增大而減小。

  當b0時,直線必通過一、二象限;

  當b=0時,直線通過原點

  當b0時,直線必通過三、四象限。

  特別地,當b=O時,直線通過原點O(0,0)表示的是正比例函數(shù)的圖像。

  這時,當k0時,直線只通過一、三象限;當k0時,直線只通過二、四象限。

  四、確定一次函數(shù)的表達式:

  已知點A(x1,y1);B(x2,y2),請確定過點A、B的一次函數(shù)的表達式。

 。1)設(shè)一次函數(shù)的表達式(也叫解析式)為y=kx+b。

 。2)因為在一次函數(shù)上的任意一點P(x,y),都滿足等式y(tǒng)=kx+b。所以可以列出2個方程:y1=kx1+b ①和y2=kx2+b ②

 。3)解這個二元一次方程,得到k,b的值。

 。4)最后得到一次函數(shù)的表達式。

  五、一次函數(shù)在生活中的應(yīng)用:

  1、當時間t一定,距離s是速度v的一次函數(shù)。s=vt。

  2、當水池抽水速度f一定,水池中水量g是抽水時間t的一次函數(shù)。設(shè)水池中原有水量S。g=S—ft。

  六、常用公式:(不全,希望有人補充)

  1、求函數(shù)圖像的k值:(y1—y2)/(x1—x2)

  2、求與x軸平行線段的中點:|x1—x2|/2

  3、求與y軸平行線段的中點:|y1—y2|/2

  4、求任意線段的長:(x1—x2)^2+(y1—y2)^2 (注:根號下(x1—x2)與(y1—y2)的.平方和)

  二次函數(shù)

  I、定義與定義表達式

  一般地,自變量x和因變量y之間存在如下關(guān)系:

  y=ax^2+bx+c

 。╝,b,c為常數(shù),a0,且a決定函數(shù)的開口方向,a0時,開口方向向上,a0時,開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大、)

  則稱y為x的二次函數(shù)。

  二次函數(shù)表達式的右邊通常為二次三項式。

  II、二次函數(shù)的三種表達式

  一般式:y=ax^2+bx+c(a,b,c為常數(shù),a0)

  頂點式:y=a(x—h)^2+k [拋物線的頂點P(h,k)]

  交點式:y=a(x—x)(x—x ) [僅限于與x軸有交點A(x,0)和B(x,0)的拋物線]

  注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:

  h=—b/2ak=(4ac—b^2)/4a x,x=(—bb^2—4ac)/2a

  III、二次函數(shù)的圖像

  在平面直角坐標系中作出二次函數(shù)y=x^2的圖像,

  可以看出,二次函數(shù)的圖像是一條拋物線。

  IV、拋物線的性質(zhì)

  1、拋物線是軸對稱圖形。對稱軸為直線

  x= —b/2a。

  對稱軸與拋物線唯一的交點為拋物線的頂點P。

  特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)

  2、拋物線有一個頂點P,坐標為

  P( —b/2a,(4ac—b^2)/4a )

  當—b/2a=0時,P在y軸上;當= b^2—4ac=0時,P在x軸上。

  3、二次項系數(shù)a決定拋物線的開口方向和大小。

  當a0時,拋物線向上開口;當a0時,拋物線向下開口。

  |a|越大,則拋物線的開口越小。

  4、一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置。

  當a與b同號時(即ab0),對稱軸在y軸左;

  當a與b異號時(即ab0),對稱軸在y軸右。

  5、常數(shù)項c決定拋物線與y軸交點。

  拋物線與y軸交于(0,c)

  6、拋物線與x軸交點個數(shù)

  = b^2—4ac0時,拋物線與x軸有2個交點。

  = b^2—4ac=0時,拋物線與x軸有1個交點。

  = b^2—4ac0時,拋物線與x軸沒有交點。X的取值是虛數(shù)(x= —bb^2—4ac的值的相反數(shù),乘上虛數(shù)i,整個式子除以2a)

  V、二次函數(shù)與一元二次方程

  特別地,二次函數(shù)(以下稱函數(shù))y=ax^2+bx+c,

  當y=0時,二次函數(shù)為關(guān)于x的一元二次方程(以下稱方程),

  即ax^2+bx+c=0

  此時,函數(shù)圖像與x軸有無交點即方程有無實數(shù)根。

  函數(shù)與x軸交點的橫坐標即為方程的根。

  1、二次函數(shù)y=ax^2,y=a(x—h)^2,y=a(x—h)^2+k,y=ax^2+bx+c(各式中,a0)的圖象形狀相同,只是位置不同,它們的頂點坐標及對稱軸如下表:

  解析式頂點坐標對稱軸

  y=ax^2(0,0) x=0

  y=a(x—h)^2(h,0) x=h

  y=a(x—h)^2+k(h,k) x=h

  y=ax^2+bx+c(—b/2a,[4ac—b^2]/4a) x=—b/2a

  當h0時,y=a(x—h)^2的圖象可由拋物線y=ax^2向右平行移動h個單位得到,

  當h0時,則向左平行移動|h|個單位得到、

  當h0,k0時,將拋物線y=ax^2向右平行移動h個單位,再向上移動k個單位,就可以得到y(tǒng)=a(x—h)^2+k的圖象;

  當h0,k0時,將拋物線y=ax^2向右平行移動h個單位,再向下移動|k|個單位可得到y(tǒng)=a(x—h)^2+k的圖象;

  當h0,k0時,將拋物線向左平行移動|h|個單位,再向上移動k個單位可得到y(tǒng)=a(x—h)^2+k的圖象;

  當h0,k0時,將拋物線向左平行移動|h|個單位,再向下移動|k|個單位可得到y(tǒng)=a(x—h)^2+k的圖象;

  因此,研究拋物線y=ax^2+bx+c(a0)的圖象,通過配方,將一般式化為y=a(x—h)^2+k的形式,可確定其頂點坐標、對稱軸,拋物線的大體位置就很清楚了、這給畫圖象提供了方便、

  2、拋物線y=ax^2+bx+c(a0)的圖象:當a0時,開口向上,當a0時開口向下,對稱軸是直線x=—b/2a,頂點坐標是(—b/2a,[4ac—b^2]/4a)、

  3、拋物線y=ax^2+bx+c(a0),若a0,當x —b/2a時,y隨x的增大而減;當x —b/2a時,y隨x的增大而增大、若a0,當x —b/2a時,y隨x的增大而增大;當x —b/2a時,y隨x的增大而減小、

  4、拋物線y=ax^2+bx+c的圖象與坐標軸的交點:

  (1)圖象與y軸一定相交,交點坐標為(0,c);

 。2)當△=b^2—4ac0,圖象與x軸交于兩點A(x,0)和B(x,0),其中的x1,x2是一元二次方程ax^2+bx+c=

 。╝0)的兩根、這兩點間的距離AB=|x—x|

  當△=0、圖象與x軸只有一個交點;

  當△0、圖象與x軸沒有交點、當a0時,圖象落在x軸的上方,x為任何實數(shù)時,都有y0;當a0時,圖象落在x軸的下方,x為任何實數(shù)時,都有y0、

  5、拋物線y=ax^2+bx+c的最值:如果a0(a0),則當x= —b/2a時,y最。ù螅┲=(4ac—b^2)/4a、

  頂點的橫坐標,是取得最值時的自變量值,頂點的縱坐標,是最值的取值、

  6、用待定系數(shù)法求二次函數(shù)的解析式

 。1)當題給條件為已知圖象經(jīng)過三個已知點或已知x、y的三對對應(yīng)值時,可設(shè)解析式為一般形式:

  y=ax^2+bx+c(a0)、

 。2)當題給條件為已知圖象的頂點坐標或?qū)ΨQ軸時,可設(shè)解析式為頂點式:y=a(x—h)^2+k(a0)、

 。3)當題給條件為已知圖象與x軸的兩個交點坐標時,可設(shè)解析式為兩根式:y=a(x—x)(x—x)(a0)、

  7、二次函數(shù)知識很容易與其它知識綜合應(yīng)用,而形成較為復雜的綜合題目。因此,以二次函數(shù)知識為主的綜合性題目是中考的熱點考題,往往以大題形式出現(xiàn)、

  反比例函數(shù)

  形如y=k/x(k為常數(shù)且k0)的函數(shù),叫做反比例函數(shù)。

  自變量x的取值范圍是不等于0的一切實數(shù)。

  反比例函數(shù)圖像性質(zhì):

  反比例函數(shù)的圖像為雙曲線。

  由于反比例函數(shù)屬于奇函數(shù),有f(—x)=—f(x),圖像關(guān)于原點對稱。

  另外,從反比例函數(shù)的解析式可以得出,在反比例函數(shù)的圖像上任取一點,向兩個坐標軸作垂線,這點、兩個垂足及原點所圍成的矩形面積是定值,為∣k∣。

  如圖,上面給出了k分別為正和負(2和—2)時的函數(shù)圖像。

  當K0時,反比例函數(shù)圖像經(jīng)過一,三象限,是減函數(shù)

  當K0時,反比例函數(shù)圖像經(jīng)過二,四象限,是增函數(shù)

  反比例函數(shù)圖像只能無限趨向于坐標軸,無法和坐標軸相交。

  知識點:

  1、過反比例函數(shù)圖象上任意一點作兩坐標軸的垂線段,這兩條垂線段與坐標軸圍成的矩形的面積為| k |。

  2、對于雙曲線y=k/x,若在分母上加減任意一個實數(shù)(即y=k/(xm)m為常數(shù)),就相當于將雙曲線圖象向左或右平移一個單位。(加一個數(shù)時向左平移,減一個數(shù)時向右平移)

高中數(shù)學知識點總結(jié)3

  總體和樣本

  ①在統(tǒng)計學中,把研究對象的全體叫做總體。

 、诎衙總研究對象叫做個體。

  ③把總體中個體的總數(shù)叫做總體容量。

  ④為了研究總體的有關(guān)性質(zhì),一般從總體中隨機抽取一部分:x1,x2,....,x-x研究,我們稱它為樣本.其中個體的個數(shù)稱為樣本容量。

  簡單隨機抽樣

  也叫純隨機抽樣。就是從總體中不加任何分組、劃類、排隊等,完全隨。

  機地抽取調(diào)查單位。特點是:每個樣本單位被抽中的可能性相同(概率相等),樣本的每個單位完全獨立,彼此間無一定的關(guān)聯(lián)性和排斥性。簡單隨機抽樣是其它各種抽樣形式的基礎(chǔ),高三。通常只是在總體單位之間差異程度較小和數(shù)目較少時,才采用這種方法。

  簡單隨機抽樣常用的方法

 、俪楹灧

 、陔S機數(shù)表法

 、塾嬎銠C模擬法

 、苁褂媒y(tǒng)計軟件直接抽取。

  在簡單隨機抽樣的樣本容量設(shè)計中,主要考慮:

 、倏傮w變異情況;

 、谠试S誤差范圍;

 、鄹怕时WC程度。

  抽簽法

 、俳o調(diào)查對象群體中的每一個對象編號;

 、跍蕚涑楹灥墓ぞ撸瑢嵤┏楹;

 、蹖颖局械拿恳粋個體進行測量或調(diào)查。

  拓展閱讀:高二數(shù)學學習方法

  一、提高聽課的效率是關(guān)鍵

  課前預習能提高聽課的針對性。預習中發(fā)現(xiàn)的難點,就是聽課的重點;對預習中遇到的沒有掌握好的有關(guān)的舊知識,可進行補缺,以減少聽課過程中的困難;有助于提高思維能力,預習后把自己理解了的東西與老師的講解進行比較、分析即可提高自己思維水平;預習還可以培養(yǎng)自己的自學能力。其次就是聽課要全神貫注。

  二、做好復習和總結(jié)工作

  做好及時的'復習。課完課的當天,必須做好當天的復習。復習的有效方法不是一遍遍地看書或筆記,而是采取回憶式的復習,然后打開筆記與書本,對照一下還有哪些沒記清的,把它補起來,就使得當天上課內(nèi)容鞏固下來,同時也就檢查了當天課堂聽課的效果如何,也為改進聽課方法及提高聽課效果提出必要的改進措施。

  三、指導做一定量的練習題

  做題的目的在于檢查你學的知識,方法是否掌握得很好。如果你掌握得不準,甚至有偏差,那么多做題的結(jié)果,反而鞏固了你的缺欠,因此,要在準確地把握住基本知識和方法的基礎(chǔ)上做一定量的練習是必要的。而對于中檔題,尢其要講究做題的效益,這就需要在做題后進行一定的“反思”,思考一下本題所用的基礎(chǔ)知識,把它們聯(lián)系起來,你就會得到更多的經(jīng)驗和教訓,更重要的是養(yǎng)成善于思考的好習慣,這將大大有利于你今后的學習。

高中數(shù)學知識點總結(jié)4

  1.求函數(shù)的單調(diào)性

  利用導數(shù)求函數(shù)單調(diào)性的基本方法:設(shè)函數(shù)yf(x)在區(qū)間(a,b)內(nèi)可導,(1)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為增函數(shù);(2)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為減函數(shù);(3)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為常數(shù)函數(shù).

  利用導數(shù)求函數(shù)單調(diào)性的基本步驟:①求函數(shù)yf(x)的定義域;②求導數(shù)f(x);③解不等式f(x)0,解集在定義域內(nèi)的不間斷區(qū)間為增區(qū)間;④解不等式f(x)0,解集在定義域內(nèi)的不間斷區(qū)間為減區(qū)間.

  反過來,也可以利用導數(shù)由函數(shù)的單調(diào)性解決相關(guān)問題(如確定參數(shù)的取值范圍):設(shè)函數(shù)yf(x)在區(qū)間(a,b)內(nèi)可導,

  (1)如果函數(shù)yf(x)在區(qū)間(a,b)上為增函數(shù),則f(x)0(其中使f(x)0的x值不構(gòu)成區(qū)間);

 。2)如果函數(shù)yf(x)在區(qū)間(a,b)上為減函數(shù),則f(x)0(其中使f(x)0的x值不構(gòu)成區(qū)間);

 。3)如果函數(shù)yf(x)在區(qū)間(a,b)上為常數(shù)函數(shù),則f(x)0恒成立.

  2.求函數(shù)的極值:

  設(shè)函數(shù)yf(x)在x0及其附近有定義,如果對x0附近的所有的點都有f(x)f(x0)(或f(x)f(x0)),則稱f(x0)是函數(shù)f(x)的極小值(或極大值).

  可導函數(shù)的極值,可通過研究函數(shù)的單調(diào)性求得,基本步驟是:

 。1)確定函數(shù)f(x)的定義域;(2)求導數(shù)f(x);(3)求方程f(x)0的全部實根,x1x2xn,順次將定義域分成若干個小區(qū)間,并列表:x變化時,f(x)和f(x)值的變化情況:

 。4)檢查f(x)的符號并由表格判斷極值.

  3.求函數(shù)的值與最小值:

  如果函數(shù)f(x)在定義域I內(nèi)存在x0,使得對任意的xI,總有f(x)f(x0),則稱f(x0)為函數(shù)在定義域上的值.函數(shù)在定義域內(nèi)的極值不一定,但在定義域內(nèi)的最值是的.

  求函數(shù)f(x)在區(qū)間[a,b]上的值和最小值的步驟:(1)求f(x)在區(qū)間(a,b)上的極值;

 。2)將第一步中求得的.極值與f(a),f(b)比較,得到f(x)在區(qū)間[a,b]上的值與最小值.

  4.解決不等式的有關(guān)問題:

 。1)不等式恒成立問題(絕對不等式問題)可考慮值域.

  f(x)(xA)的值域是[a,b]時,

  不等式f(x)0恒成立的充要條件是f(x)max0,即b0;

  不等式f(x)0恒成立的充要條件是f(x)min0,即a0.

  f(x)(xA)的值域是(a,b)時,

  不等式f(x)0恒成立的充要條件是b0;不等式f(x)0恒成立的充要條件是a0.

  (2)證明不等式f(x)0可轉(zhuǎn)化為證明f(x)max0,或利用函數(shù)f(x)的單調(diào)性,轉(zhuǎn)化為證明f(x)f(x0)0.

  5.導數(shù)在實際生活中的應(yīng)用:

  實際生活求解(。┲祮栴},通常都可轉(zhuǎn)化為函數(shù)的最值.在利用導數(shù)來求函數(shù)最值時,一定要注意,極值點的單峰函數(shù),極值點就是最值點,在解題時要加以說明.

高中數(shù)學知識點總結(jié)5

  數(shù)學知識點1

  柱、錐、臺、球的結(jié)構(gòu)特征

  (1)棱柱:

  幾何特征:兩底面是對應(yīng)邊平行的全等多邊形;側(cè)面、對角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。

  (2)棱錐

  幾何特征:側(cè)面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到

  截面距離與高的比的平方。

  (3)棱臺:

  幾何特征:

 、偕舷碌酌媸窍嗨频钠叫卸噙呅

  ②側(cè)面是梯形

 、蹅(cè)棱交于原棱錐的.頂點

  (4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成

  幾何特征:

 、俚酌媸侨鹊膱A;

  ②母線與軸平行;

 、圯S與底面圓的半徑垂直;

 、軅(cè)面展開圖

  是一個矩形。

  (5)圓錐:定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成

  幾何特征:

 、俚酌媸且粋圓;

 、谀妇交于圓錐的頂點;

 、蹅(cè)面展開圖是一個扇形。

  (6)圓臺:定義:以直角梯形的垂直與底邊的腰為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成

  幾何特征:

 、偕舷碌酌媸莾蓚圓;

  ②側(cè)面母線交于原圓錐的頂點;

 、蹅(cè)面展開圖是一個弓形。

  (7)球體:定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體

  幾何特征:

 、偾虻慕孛媸菆A;

 、谇蛎嫔先我庖稽c到球心的距離等于半徑。

  數(shù)學知識點2

  空間幾何體的三視圖

  定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、 俯視圖(從上向下)

  注:正視圖反映了物體的高度和長度;俯視圖反映了物體的長度和寬度;側(cè)視圖反映了物體的高度和寬度。

  數(shù)學知識點3

  空間幾何體的直觀圖——斜二測畫法

  斜二測畫法特點:

  ①原來與x軸平行的線段仍然與x平行且長度不變;

 、谠瓉砼cy軸平行的線段仍然與y平行,長度為原來的一半。

高中數(shù)學知識點總結(jié)6

  導數(shù)及其應(yīng)用

  一.導數(shù)概念的引入

  數(shù)學選修2-2知識點總結(jié)

  1.導數(shù)的物理意義:瞬時速率。一般的,函數(shù)yf(x)在xx0處的瞬時變化率是

  limf(x0x)f(x0)x,

  x0我們稱它為函數(shù)yf(x)在xx0處的導數(shù),記作f(x0)或y|xx,即

  0f(x0)=limf(x0x)f(x0)xx0

  例1.在高臺跳水運動中,運動員相對于水面的高度h(單位:m)與起跳后的時間t(單位:

  s)存在函數(shù)關(guān)系

  h(t)4.9t6.5t10

  2運動員在t=2s時的瞬時速度是多少?解:根據(jù)定義

  vh(2)limh(2x)h(2)xx013.1

  即該運動員在t=2s是13.1m/s,符號說明方向向下

  2.導數(shù)的幾何意義:曲線的切線.通過圖像,我們可以看出當點Pn趨近于P時,直線PT與

  曲線相切。容易知道,割線PPn的斜率是knf(xn)f(x0)xnx0,當點Pn趨近于P時,函

  數(shù)yf(x)在xx0處的導數(shù)就是切線PT的斜率k,即

  klimf(xn)f(x0)xnx0f(x0)

  x03.導函數(shù):當x變化時,f(x)便是x的一個函數(shù),我們稱它為f(x)的導函數(shù).yf(x)的導函數(shù)有時也記作y,即

  f(x)limf(xx)f(x)xx0

  二.導數(shù)的計算

  1.函數(shù)yf(x)c的導數(shù)2.函數(shù)yf(x)x的導數(shù)3.函數(shù)yf(x)x的導數(shù)

  4.函數(shù)yf(x)1x的導數(shù)

  基本初等函數(shù)的導數(shù)公式:

  1若f(x)c(c為常數(shù)),則f(x)0;2若f(x)x,則f(x)x1;3若f(x)sinx,則f(x)cosx4若f(x)cosx,則f(x)sinx;5若f(x)ax,則f(x)axlna6若f(x)ex,則f(x)ex

  x7若f(x)loga,則f(x)1xlna1x

  8若f(x)lnx,則f(x)導數(shù)的運算法則

  1.[f(x)g(x)]f(x)g(x)

  2.[f(x)g(x)]f(x)g(x)f(x)g(x)

  f(x)g(x)f(x)g(x)f(x)g(x)[g(x)]23.[]

  復合函數(shù)求導

  yf(u)和ug(x),稱則y可以表示成為x的函數(shù),即yf(g(x))為一個復合函數(shù)yf(g(x))g(x)

  三.導數(shù)在研究函數(shù)中的應(yīng)用1.函數(shù)的單調(diào)性與導數(shù):

  一般的,函數(shù)的單調(diào)性與其導數(shù)的正負有如下關(guān)系:

  在某個區(qū)間(a,b)內(nèi),如果f(x)0,那么函數(shù)yf(x)在這個區(qū)間單調(diào)遞增;如果f(x)0,那么函數(shù)yf(x)在這個區(qū)間單調(diào)遞減.2.函數(shù)的極值與導數(shù)

  極值反映的是函數(shù)在某一點附近的大小情況.求函數(shù)yf(x)的極值的方法是:

  (1)如果在x0附近的左側(cè)f(x)0,右側(cè)f(x)0,那么f(x0)是極大值;(2)如果在x0附近的左側(cè)f(x)0,右側(cè)f(x)0,那么f(x0)是極小值;4.函數(shù)的最大(小)值與導數(shù)

  函數(shù)極大值與最大值之間的關(guān)系.

  求函數(shù)yf(x)在[a,b]上的最大值與最小值的步驟(1)求函數(shù)yf(x)在(a,b)內(nèi)的極值;

 。2)將函數(shù)yf(x)的各極值與端點處的函數(shù)值f(a),f(b)比較,其中最大的是一個

  最大值,最小的是最小值.

  四.生活中的優(yōu)化問題

  利用導數(shù)的知識,,求函數(shù)的最大(小)值,從而解決實際問題

  第二章推理與證明

  考點一合情推理與類比推理

  根據(jù)一類事物的部分對象具有某種性質(zhì),退出這類事物的所有對象都具有這種性質(zhì)的推理,叫做歸納推理,歸納是從特殊到一般的過程,它屬于合情推理

  根據(jù)兩類不同事物之間具有某些類似(或一致)性,推測其中一類事物具有與另外一類事物類似的性質(zhì)的推理,叫做類比推理.

  類比推理的一般步驟:

  (1)找出兩類事物的相似性或一致性;

  (2)用一類事物的性質(zhì)去推測另一類事物的性質(zhì),得出一個明確的命題(猜想);

  (3)一般的,事物之間的`各個性質(zhì)并不是孤立存在的,而是相互制約的如果兩個事物在某

  些性質(zhì)上相同或相似,那么他們在另一寫性質(zhì)上也可能相同或類似,類比的結(jié)論可能是真的

  (4)一般情況下,如果類比的相似性越多,相似的性質(zhì)與推測的性質(zhì)之間越相關(guān),那么類比

  得出的命題越可靠.

  考點二演繹推理(俗稱三段論)

  由一般性的命題推出特殊命題的過程,這種推理稱為演繹推理.

  考點三數(shù)學歸納法

  1.它是一個遞推的數(shù)學論證方法.

  2.步驟:A.命題在n=1(或n0)時成立,這是遞推的基礎(chǔ);B.假設(shè)在n=k時命題成立C.證明n=k+1時命題也成立,

  完成這兩步,就可以斷定對任何自然數(shù)(或n>=n0,且nN)結(jié)論都成立。考點三證明1.反證法:2.分析法:3.綜合法:

  第一章數(shù)系的擴充和復數(shù)的概念考點一:復數(shù)的概念

  (1)復數(shù):形如abi(aR,bR)的數(shù)叫做復數(shù),a和b分別叫它的實部和虛部.

  (2)分類:復數(shù)abi(aR,bR)中,當b0,就是實數(shù);b0,叫做虛數(shù);當a0,b0時,

  叫做純虛數(shù).

  (3)復數(shù)相等:如果兩個復數(shù)實部相等且虛部相等就說這兩個復數(shù)相等.

  (4)共軛復數(shù):當兩個復數(shù)實部相等,虛部互為相反數(shù)時,這兩個復數(shù)互為共軛復數(shù).(5)復平面:建立直角坐標系來表示復數(shù)的平面叫做復平面,x軸叫做實軸,y軸除去原點的部

  分叫做虛軸。

  (6)兩個實數(shù)可以比較大小,但兩個復數(shù)如果不全是實數(shù)就不能比較大小。

  考點二:復數(shù)的運算

  1.復數(shù)的加,減,乘,除按以下法則進行設(shè)z1abi,z2cdi(a,b,c,dR)則

  z1z2(ac)(bd)iz1z2(acbd)(adbc)i

  z1z2(acbd)(adbc)icd22(z20)

  2,幾個重要的結(jié)論

  2222(1)|z1z2||z1z2|2(|z1||z2|)

  (2)zz|z|2|z|2(3)若z為虛數(shù),則|z|z3.運算律

  (1)zmznzmn;(2)(z)zmnmnnnn;(3)(z1z2)z1z2(m,nR)

  224.關(guān)于虛數(shù)單位i的一些固定結(jié)論:

  (1)i1(2)ii(3)i1(2)ii234nn2in3in

  擴展閱讀:高中數(shù)學文科選修1-2知識點總結(jié)

  高中數(shù)學選修1-2知識點總結(jié)

  第一章統(tǒng)計案例

  1.線性回歸方程①變量之間的兩類關(guān)系:函數(shù)關(guān)系與相關(guān)關(guān)系;②制作散點圖,判斷線性相關(guān)關(guān)系

 、劬性回歸方程:ybxa(最小二乘法)

  nxiyinxyi1bn2其中,2xinxi1aybx注意:線性回歸直線經(jīng)過定點(x,y).

  2.相關(guān)系數(shù)(判定兩個變量線性相關(guān)性):r(xi1nix)(yiy)2

  (xi1nix)(yi1niy)2注:⑴r>0時,變量x,y正相關(guān);r第二章框圖

  1.流程圖

  流程圖是由一些圖形符號和文字說明構(gòu)成的圖示.流程圖是表述工作方式、工藝流程的一種常用手段,它的特點是直觀、清晰.3.結(jié)構(gòu)圖

  一些事物之間不是先后順序關(guān)系,而是存在某種邏輯關(guān)系,像這樣的關(guān)系可以用結(jié)構(gòu)圖來描述.常用的結(jié)構(gòu)圖一般包括層次結(jié)構(gòu)圖,分類結(jié)構(gòu)圖及知識結(jié)構(gòu)圖等.

  第三章推理與證明

  1.推理⑴合情推理:

  歸納推理和類比推理都是根據(jù)已有事實,經(jīng)過觀察、分析、比較、聯(lián)想,在進行歸納、類比,然后提出猜想的推理,我們把它們稱為合情推理。①歸納推理

  由某類食物的部分對象具有某些特征,推出該類事物的全部對象都具有這些特征的推理,或者有個別事實概括出一般結(jié)論的推理,稱為歸納推理,簡稱歸納。歸納推理是由部分到整體,由個別到一般的推理。②類比推理

  由兩類對象具有類似和其中一類對象的某些已知特征,推出另一類對象也具有這些特征的推理,稱為類比推理,簡稱類比。類比推理是特殊到特殊的推理。⑵演繹推理

  從一般的原理出發(fā),推出某個特殊情況下的結(jié)論,這種推理叫演繹推理。演繹推理是由一般到特殊的推理。

  “三段論”是演繹推理的一般模式,包括:⑴大前提---------已知的一般結(jié)論;⑵小前提---------所研究的特殊情況;⑶結(jié)論---------根據(jù)一般原理,對特殊情況得出的判斷。

  2

  2.證明

  (1)直接證明①綜合法

  一般地,利用已知條件和某些數(shù)學定義、定理、公理等,經(jīng)過一系列的推理論證,最后推導出所要證明的結(jié)論成立,這種證明方法叫做綜合法。綜合法又叫順推法或由因?qū)Ч。②分析?/p>

  一般地,從要證明的結(jié)論出發(fā),逐步尋求使它成立的充分條件,直至最后,把要證明的結(jié)論歸結(jié)為判定一個明顯成立的條件(已知條件、定義、定理、公理等),這種證明的方法叫分析法。分析法又叫逆推證法或執(zhí)果索因法。(2)間接證明……反證法

  一般地,假設(shè)原命題不成立,經(jīng)過正確的推理,最后得出矛盾,因此說明假設(shè)錯誤,從而證明原命題成立,這種證明方法叫反證法。

  第四章復數(shù)

  1.復數(shù)的有關(guān)概念

  (1)把平方等于-1的數(shù)用符號i表示,規(guī)定i2=-1,把i叫作虛數(shù)單位.

  (2)形如a+bi的數(shù)叫作復數(shù)(a,b是實數(shù),i是虛數(shù)單位).通常表示為z=a+bi(a,b∈R).(3)對于復數(shù)z=a+bi,a與b分別叫作復數(shù)z的______與______,并且分別用Rez與Imz表示.2.數(shù)集之間的關(guān)系

  復數(shù)的全體組成的集合叫作_____________,記作C.3.復數(shù)的分類

  實數(shù)(b=0)

  復數(shù)a+bi

  純虛數(shù)(a=0)(a,b∈R)虛數(shù)(b≠0)

  非純虛數(shù)(a≠0)

  4.兩個復數(shù)相等的充要條件

  設(shè)a,b,c,d都是實數(shù),則a+bi=c+di,當且僅當_________

  3

  5.復平面

  (1)定義:當用__________________的點來表示復數(shù)時,我們稱這個直角坐標平面為復平面.(2)實軸:_______稱為實軸.虛軸:_________稱為虛軸.6.復數(shù)的模

  若z=a+bi(a,b∈R),則_______________.7.共軛復數(shù)

  (1)定義:當兩個復數(shù)的實部________,虛部互為___________時,這樣的兩個復數(shù)叫作互為共軛復數(shù).復數(shù)z的共軛復數(shù)用______表示,即若z=a+bi,則z-=__________.2)性質(zhì):==___________.

  必背結(jié)論

  1.(1)z=a+bi∈Rb=0(a,b∈R)z=zz2≥0;(2)z=a+bi是虛數(shù)b≠0(a,b∈R);

  (3)z=a+bi是純虛數(shù)a=0且b≠0(a,b∈R)z+z=0(z≠0)z2

高中數(shù)學知識點總結(jié)7

  一、集合有關(guān)概念

  1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。

  2、集合的中元素的三個特性:

  1)元素的確定性;

  2)元素的互異性;

  3)元素的無序性。

  說明:(1)對于一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素。

  (2)任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素。

 。3)集合中的元素是平等的,沒有先后順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。

  (4)集合元素的三個特性使集合本身具有了確定性和整體性。

  3、集合的表示:{…}如{我校的籃球隊員},{太平洋大西洋印度洋北冰洋}

  1)用拉丁字母表示集合:A={我校的籃球隊員}B={12345}。

  2)集合的表示方法:列舉法與描述法。

  注意。撼S脭(shù)集及其記法:

  非負整數(shù)集(即自然數(shù)集)記作:N

  正整數(shù)集N_或N+整數(shù)集Z有理數(shù)集Q實數(shù)集R

  關(guān)于“屬于”的概念

  集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬于集合A記作a∈A,相反,a不屬于集合A記作a:A。

  列舉法:把集合中的元素一一列舉出來,然后用一個大括號括上。

  描述法:將集合中的元素的公共屬性描述出來,寫在大括號內(nèi)表示集合的方法。用確定的條件表示某些對象是否屬于這個集合的'方法。

  ①語言描述法:例:{不是直角三角形的三角形}

  ②數(shù)學式子描述法:例:不等式x—3>2的解集是{x?R|x—3>2}或{x|x—3>2}

  4、集合的分類:

  1)有限集含有有限個元素的集合。

  2)無限集含有無限個元素的集合。

  3)空集不含任何元素的集合例:{x|x2=—5}。

  二、集合間的基本關(guān)系

  1、“包含”關(guān)系子集

  注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

  反之:集合A不包含于集合B或集合B不包含集合A記作AB或BA。

  2、“相等”關(guān)系(5≥5,且5≤5,則5=5)

  實例:設(shè)A={x|x2—1=0}B={—11}“元素相同”

  結(jié)論:對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時集合B的任何一個元素都是集合A的元素,我們就說集合A等于集合B,即:A=B。

  ①任何一個集合是它本身的子集。AA

  ②真子集:如果A?B且A?B那就說集合A是集合B的真子集,記作AB(或BA)

 、廴绻鸄BBC那么AC

 、苋绻鸄B同時BA那么A=B

  3、不含任何元素的集合叫做空集,記為Φ。

  規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。

  三、集合的運算

  1、交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合叫做AB的交集。

  記作A∩B(讀作”A交B”),即A∩B={x|x∈A,且x∈B}。

  2、并集的定義:一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做AB的并集。記作:A∪B(讀作”A并B”),即A∪B={x|x∈A,或x∈B}。

  3、交集與并集的性質(zhì):A∩A=AA∩φ=φA∩B=B∩A,A∪A=A,A∪φ=AA∪B=B∪A。

  4、全集與補集

 。1)補集:設(shè)S是一個集合,A是S的一個子集(即),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集)

  記作:CSA即CSA={x?x?S且x?A}。

  (2)全集:如果集合S含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集。通常用U來表示。

 。3)性質(zhì):⑴CU(CUA)=A⑵(CUA)∩A=Φ⑶(CUA)∪A=U。

高中數(shù)學知識點總結(jié)8

 。1)不等關(guān)系

  感受在現(xiàn)實世界和日常生活中存在著大量的不等關(guān)系,了解不等式(組)的實際背景。

  (2)一元二次不等式

 、俳(jīng)歷從實際情境中抽象出一元二次不等式模型的過程。

 、谕ㄟ^函數(shù)圖象了解一元二次不等式與相應(yīng)函數(shù)、方程的`聯(lián)系。

 、蹠庖辉尾坏仁,對給定的一元二次不等式,嘗試設(shè)計求解的程序框圖。

  (3)二元一次不等式組與簡單線性規(guī)劃問題

 、購膶嶋H情境中抽象出二元一次不等式組。

  ②了解二元一次不等式的幾何意義,能用平面區(qū)域表示二元一次不等式組(參見例2)。

 、蹚膶嶋H情境中抽象出一些簡單的二元線性規(guī)劃問題,并能加以解決(參見例3)。

 。4)基本不等式

  ①探索并了解基本不等式的證明過程。

 、跁没静坏仁浇鉀Q簡單的(小)值問題。

高中數(shù)學知識點總結(jié)9

  高中數(shù)學(文)包含5本必修、2本選修,(理)包含5本必修、3本選修,每學期學**兩本書。

  必修一:1、集合與函數(shù)的概念 (這部分知識抽象,較難理解)2、基本的初等函數(shù)(指數(shù)函數(shù)、對數(shù)函數(shù))3、函數(shù)的性質(zhì)及應(yīng)用 (比較抽象,較難理解)

  必修二:1、立體幾何(1)、證明:垂直(多考查面面垂直)、平行(2)、求解:主要是夾角問題,包括線面角和面面角

  這部分知識是高一學生的難點,比如:一個角實際上是一個銳角,但是在圖中顯示的鈍角等等一些問題,需要學生的立體意識較強。這部分知識高考占22---27分

  2、直線方程:高考時不單獨命題,易和圓錐曲線結(jié)合命題

  3、圓方程:

  必修三:1、算法初步:高考必考內(nèi)容,5分(選擇或填空)2、統(tǒng)計:3、概率:高考必考內(nèi)容,09年理科占到15分,文科數(shù)學占到5分

  必修四:1、三角函數(shù):(圖像、性質(zhì)、高中重難點,)必考大題:15---20分,并且經(jīng)常和其他函數(shù)混合起來考查

  2、平面向量:高考不單獨命題,易和三角函數(shù)、圓錐曲線結(jié)合命題。09年理科占到5分,文科占到13分

  必修五:1、解三角形:(正、余弦定理、三角恒等變換)高考中理科占到22分左右,文科數(shù)學占到13分左右2、數(shù)列:高考必考,17---22分3、不等式:(線性規(guī)劃,聽課時易理解,但做題較復雜,應(yīng)掌握技巧。高考必考5分)不等式不單獨命題,一般和函數(shù)結(jié)合求最值、解集。

  文科:選修1—1、1—2

  選修1--1:重點:高考占30分

  1、邏輯用語:一般不考,若考也是和集合放一塊考2、圓錐曲線:3、導數(shù)、導數(shù)的應(yīng)用(高考必考)

  選修1--2:1、統(tǒng)計:2、推理證明:一般不考,若考會是填空題3、復數(shù):(新課標比老課本難的多,高考必考內(nèi)容)

  理科:選修2—1、2—2、2—3

  選修2--1:1、邏輯用語2、圓錐曲線3、空間向量:(利用空間向量可以把立體幾何做題簡便化)

  選修2--2:1、導數(shù)與微積分2、推理證明:一般不考3、復數(shù)

  選修2--3:1、計數(shù)原理:(排列組合、二項式定理)掌握這部分知識點需要大量做題找規(guī)律,無技巧。高考必考,10分2、隨機變量及其分布:不單獨命題3、統(tǒng)計:

  高考的知識板塊

  集合與簡單邏輯:5分或不考

  函數(shù):高考60分:①、指數(shù)函數(shù) ②對數(shù)函數(shù) ③二次函數(shù) ④三次函數(shù) ⑤三角函數(shù) ⑥抽象函數(shù)(無函數(shù)表達式,不易理解,難點)

  平面向量與解三角形

  立體幾何:22分左右

  不等式:(線性規(guī)則)5分必考

  數(shù)列:17分 (一道大題+一道選擇或填空)易和函數(shù)結(jié)合命題

  平面解析幾何:(30分左右)

  計算原理:10分左右

  概率統(tǒng)計:12分----17分

  復數(shù):5分

  推理證明

  一般高考大題分布

  1、17題:三角函數(shù)

  2、18、19、20 三題:立體幾何 、概率 、數(shù)列

  3、21、22 題:函數(shù)、圓錐曲線

  成績不理想一般是以下幾種情況:

  做題不細心,(會做,做不對)

  基礎(chǔ)知識沒有掌握

  解決問題不全面,知識的運用沒有系統(tǒng)化(如:一道題綜合了多個知識點)

  心理素質(zhì)不好

  總之學**數(shù)學一定要掌握科學的學**方法:1、筆記:記老師講的課本上沒有的知識點,尤其是數(shù)列性質(zhì),課本上沒有,但做題經(jīng)常用到 2、錯題收集、歸納總結(jié)

  高一年級

  必修一

  第一章 集合與函數(shù)概念

  第二章 基本初等函數(shù)(Ⅰ)

  第三章 函數(shù)的應(yīng)用

  必修二

  第一章 空間幾何體

  第二章 點、直線、平面之間的位置關(guān)系

  第三章 直線與方程

  必修三

  第一章 算法初步

  第二章 統(tǒng)計

  第三章 概率

  必修四

  第一章 三角函數(shù)

  第二章 平面向量

  第三章 三角恒等變換

  (二)教學要求

  在教學中,由于集合、函數(shù)等內(nèi)容比較抽象,三角函數(shù)在高考中占據(jù)重要地位,平面向量又是高考中數(shù)學必考內(nèi)容,教師在備課組協(xié)作的基礎(chǔ)上應(yīng)注意對各章知識的重難點的講解和釋疑,減輕學生自學的壓力,增強學生學好數(shù)學的信心。

  首先,在高中數(shù)學中,集合的初步知識以及與其它內(nèi)容的密切聯(lián)系。它們是學**、掌握和使用數(shù)學語言的基礎(chǔ),是高中數(shù)學學**的出發(fā)點。在教學中,應(yīng)注重引導學生更好的理解數(shù)學中出現(xiàn)的集合語言,使學生更好的使用集合語言表述數(shù)學問題,并且可以使學生運用集合的觀點,研究、處理數(shù)學問題。因此集合的基本概念、函數(shù)等有關(guān)內(nèi)容是教師重點講解的內(nèi)容。

  其次,函數(shù)作為中學數(shù)學中最重要的基本概念之一,教師應(yīng)注意運用有關(guān)的概念和函數(shù)的性質(zhì),培養(yǎng)學生的思維能力;通過指數(shù)與對數(shù),指數(shù)函數(shù)與對數(shù)函數(shù)之間的內(nèi)在聯(lián)系,對學生進行辯證唯物主義觀點的教育;通過聯(lián)系實際的引入問題和解決帶有實際意義的某些問題,培養(yǎng)學生的實踐能力和創(chuàng)新意識。

  第三,通過對三角函數(shù)的學**,學生將進一步了解符號與變元、集合與對應(yīng)、數(shù)形結(jié)合等基本的數(shù)學思想在研究三角函數(shù)時所起的重要作用,在式子與圖形的變化中,教師應(yīng)引導學生通過分析、探索、劃歸、類比、平行移動、伸長和縮短等常用的基本方法的學**,使學生在學**數(shù)學和應(yīng)用數(shù)學方面達到一個新的層次。

  第四,學**平面向量,不但應(yīng)注意平面向量基本知識的講解,更要充分挖掘平面向量的`工具作用,提高學生應(yīng)用數(shù)學知識解決實際問題的能力和實際操作的能力,使學生學會提出問題,明確研究方向,使學生學會交流,體驗數(shù)學活動的過程,培養(yǎng)創(chuàng)新精神和應(yīng)用能力。

  第五、在學**空間幾何體、點、直線、平面之間的位置關(guān)系時,重點要幫助學生逐步形成空間想象能力,嚴格遵循從整體到局部,從具體到抽象的原則,逐步掌握解決空間幾何體的相關(guān)問題。

  第六、要在平面解析幾何初步教學中,幫助學生經(jīng)歷如下的過程:首先將幾何問題代數(shù)化,用代數(shù)的語言描述幾何要素及其關(guān)系,進而將幾何問題轉(zhuǎn)化為代數(shù)問題;處理代數(shù)問題;分析代數(shù)結(jié)果的幾何含義,最終解決幾何問題。這種思想應(yīng)貫穿平面解析幾何教學的始終,幫助學生不斷地體會“數(shù)形結(jié)合”的思想方法。

  第七、在學**算法初步、統(tǒng)計等內(nèi)容的時候,要注意順序漸進,不可追求一步到位,特別要注意其思想的重要性。

  高二年級

  必修五

  第一章 解三角形

  第二章 數(shù)列

  第三章 不等式

  選修1-1

  第一章 常用邏輯用語

  第二章 圓錐曲線與方程

  第三章 導數(shù)及其應(yīng)用

  選修1-2

  第一章 統(tǒng)計案例

  第二章 推理與證明

  第三章 數(shù)系的擴充與復數(shù)的引入

  第四章 框圖

  選修2-1

  第一章 常用邏輯用語

  第二章 圓錐曲線與方程

  第三章 空間向量與立體幾何

  選修2-2

  第一章 導數(shù)及其應(yīng)用

  第二章 推理與證明

  第三章 數(shù)系的擴充與復數(shù)的引入

  選修2-3

  第一章 計數(shù)原理

  第二章 隨機變量及其分布

  第三章 統(tǒng)計案例

  (二)教學要求

  高二上

  必修5

  學生將在已有知識的基礎(chǔ)上,通過對任意三角形邊角關(guān)系的探究,發(fā)現(xiàn)并掌握三角形中的邊長與角度之間的數(shù)量關(guān)系,并認識到運用它們可以解決一些與測量和幾何計算有關(guān)的實際問題。

  數(shù)列作為一種特殊的函數(shù),是反映自然規(guī)律的基本數(shù)學模型。在本模塊中,學生將通過對日常生活中大量實際問題的分析,建立等差數(shù)列和等比數(shù)列這兩種數(shù)列模型,探索并掌握它們的一些基本數(shù)量關(guān)系,感受這兩種數(shù)列模型的廣泛應(yīng)用,并利用它們解決一些實際問題。

  不等關(guān)系與相等關(guān)系都是客觀事物的基本數(shù)量關(guān)系,是數(shù)學研究的重要內(nèi)容。建立不等觀念、處理不等關(guān)系與處理等量問題是同樣重要的。在本模塊中,學生將通過具體情境,感受在現(xiàn)實世界和日常生活中存在著大量的不等關(guān)系,理解不等式(組)對于刻畫不等關(guān)系的意義和價值;掌握求解一元二次不等式的基本方法,并能解決一些實際問題;能用二元一次不等式組表示平面區(qū)域,并嘗試解決一些簡單的二元線性規(guī)劃問題;認識基本不等式及其簡單應(yīng)用;體會不等式、方程及函數(shù)之間的聯(lián)系。

  選修1—1(文科)

  在本模塊中,學生將在義務(wù)教育階段的基礎(chǔ)上,學**常用邏輯用語,體會邏輯用語在表述和論證中的作用,利用這些邏輯用語準確地表達數(shù)學內(nèi)容,更好地進行交流。

  在必修課程學**平面解析幾何初步的基礎(chǔ)上,在本模塊中,學生將學**圓錐曲線與方程,了解圓錐曲線與二次方程的關(guān)系,掌握圓錐曲線的基本幾何性質(zhì),感受圓錐曲線在刻畫現(xiàn)實世界和解決實際問題中的作用,進一步體會數(shù)形結(jié)合的思想。

  在本模塊中,學生將通過大量實例,經(jīng)歷由平均變化率到瞬時變化率的過程,刻畫現(xiàn)實問題,理解導數(shù)的含義,體會導數(shù)的思想及其內(nèi)涵;應(yīng)用導數(shù)探索函數(shù)的單調(diào)、極值等性質(zhì)及其在實際中的應(yīng)用,感受導數(shù)在解決數(shù)學問題和實際問題中的作用,體會微積分的產(chǎn)生對人類文化發(fā)展的價值。

  選修2-1(理科)

  在本模塊中,學生將學**常用邏輯用語、圓錐曲線與方程、空間中的向量(簡稱空間向量)與立體幾何。

  在本模塊中,學生將在義務(wù)教育階段的基礎(chǔ)上,學**常用邏輯用語,體會邏輯用語在表述和論證中的作用,利用這些邏輯用語準確地表達數(shù)學內(nèi)容,從而更好地進行交流。

  在必修階段學**平面解析幾何初步的基礎(chǔ)上,在本模塊中,學生將學**圓錐曲線與方程,了解圓錐曲線與二次方程的關(guān)系,掌握圓錐曲線的基本幾何性質(zhì),感受圓錐曲線在刻畫現(xiàn)實世界和解決實際問題中的作用。結(jié)合已學過的曲線及其方程的實例,了解曲線與方程的對應(yīng)關(guān)系,進一步體會數(shù)形結(jié)合的思想。

  在本模塊中,學生將在學**平面向量的基礎(chǔ)上,把平面向量及其運算推廣到空間,運用空間向量解決有關(guān)直線、平面位置關(guān)系的問題,體會向量方法在研究幾何圖形中的作用,進一步發(fā)展空間想像能力和幾何直觀能力。

高中數(shù)學知識點總結(jié)10

  第一講相似三角形的判定及有關(guān)性質(zhì)1.平行線等分線段定理

  平行線等分線段定理:如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等。

  推理1:經(jīng)過三角形一邊的中點與另一邊平行的直線必平分第三邊。推理2:經(jīng)過梯形一腰的中點,且與底邊平行的直線平分另一腰。

  2.平分線分線段成比例定理

  平分線分線段成比例定理:三條平行線截兩條直線,所得的對應(yīng)線段成比例。

  推論:平行于三角形一邊的直線截其他兩邊(或兩邊的延長線)所得的對應(yīng)線段成比例。

  3.相似三角形的判定及性質(zhì)

  相似三角形的判定:

  定義:對應(yīng)角相等,對應(yīng)邊成比例的兩個三角形叫做相似三角形。相似三角形對應(yīng)邊的比值叫做相似比(或相似系數(shù))。

  由于從定義出發(fā)判斷兩個三角形是否相似,需考慮6個元素,即三組對應(yīng)角是否分別相等,三組對應(yīng)邊是否分別成比例,顯然比較麻煩。所以我們曾經(jīng)給出過如下幾個判定兩個三角形相似的簡單方法:

 。1)兩角對應(yīng)相等,兩三角形相似;

 。2)兩邊對應(yīng)成比例且夾角相等,兩三角形相似;(3)三邊對應(yīng)成比例,兩三角形相似。

  預備定理:平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與三角形相似。

  判定定理1:對于任意兩個三角形,如果一個三角形的兩個角與另一個三角形的兩個角對應(yīng)相等,那么這兩個三角形相似。簡述為:兩角對應(yīng)相等,兩三角形相似。

  判定定理2:對于任意兩個三角形,如果一個三角形的兩邊和另一個三角形的兩邊對應(yīng)成比例,并且夾角相等,那么這兩個三角形相似。簡述為:兩邊對應(yīng)成比例且夾角相等,兩三角形相似。

  判定定理3:對于任意兩個三角形,如果一個三角形的三條邊和另一個三角形的三條邊對應(yīng)成比例,那么這兩個三角形相似。簡述為:三邊對應(yīng)成比例,兩三角形相似。

  引理:如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應(yīng)線段成比例,那么這條直線平行于三角形的第三邊。定理:(1)如果兩個直角三角形有一個銳角對應(yīng)相等,那么它們相似;

 。2)如果兩個直角三角形的兩條直角邊對應(yīng)成比例,那么它們相似。

  定理:如果一個直角三角形的斜邊和一條直角邊與另一個三角形的斜邊和直角邊對應(yīng)成比例,那么這兩個直角三角形相似。相似三角形的性質(zhì):

  (1)相似三角形對應(yīng)高的比、對應(yīng)中線的比和對應(yīng)平分線的比都等于相似比;(2)相似三角形周長的比等于相似比;

  (3)相似三角形面積的比等于相似比的平方。

  相似三角形外接圓的直徑比、周長比等于相似比,外接圓的面積比等于相似比的平方。

  4.直角三角形的射影定理

  射影定理:直角三角形斜邊上的高是兩直角邊在斜邊上射影的比例中項;兩直角邊分別是它們在斜邊上射影與斜邊的比例中項。

  第二講直線與圓的位置關(guān)系1.圓周定理

  圓周角定理:圓上一條弧所對的圓周角等于它所對的圓周角的一半。圓心角定理:圓心角的度數(shù)等于它所對弧的度數(shù)。

  推論1:同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧相等。推論2:半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑。

  2.圓內(nèi)接四邊形的性質(zhì)與判定定理

  定理1:圓的內(nèi)接四邊形的對角互補。

  定理2:圓內(nèi)接四邊形的外角等于它的內(nèi)角的對角。

  圓內(nèi)接四邊形判定定理:如果一個四邊形的對角互補,那么這個四邊形的`四個頂點共圓。推論:如果四邊形的一個外角等于它的內(nèi)角的對角,那么這個四邊形的四個頂點共圓。

  3.圓的切線的性質(zhì)及判定定理

  切線的性質(zhì)定理:圓的切線垂直于經(jīng)過切點的半徑。推論1:經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點。推論2:經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心。

  切線的判定定理:經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線。

  4.弦切角的性質(zhì)

  弦切角定理:弦切角等于它所夾的弧所對的圓周角。

  5.與圓有關(guān)的比例線段

  相交弦定理:圓內(nèi)的兩條相交弦,被交點分成的兩條線段長的積相等。

  割線定理:從園外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等。

  切割線定理:從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項。

  切線長定理:從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角。

  6.垂徑定理

  垂直于弦的直徑平分這條弦,并且平分弦所對的兩條弧。

  7.三角形的五心

  (1)內(nèi)心:三條角平分線的交點,也是三角形內(nèi)切圓的圓心。性質(zhì):到三邊距離相等。(2)外心:三條中垂線的交點,也是三角形外接圓的圓心。性質(zhì):到三個頂點距離相等。(3)重心:三條中線的交點。性質(zhì):三條中線的三等分點,到頂點距離為到對邊中點距離的2倍。

  (4)垂心:三條高所在直線的交點。

  (5)旁心:三角形任意兩角的外角平分線和第三個角的內(nèi)角平分線的交點。性質(zhì):到三邊的

  距離相等

  第三講圓錐曲線性質(zhì)的探究1.平面與圓柱面的截線:

  當平面與圓柱的兩底面平行時,截面是個圓;當平面與圓柱的兩底面不平行時,截面是個橢

  圓;定理1:圓柱形物體的斜截口是橢圓。

  定理2:在空間中,取直線l為軸,直線l’與l相交于O點,夾角為α,l’圍繞l旋轉(zhuǎn)得

  到以O(shè)為頂點,l’為母線的圓錐面,任取平面π,若它與軸l的夾角為β(當π與l平行時,記β=0),則截面不過頂點時:

  (1)β>α,平面π與圓錐的交線為橢圓;(2)β=α,平面π與圓錐的交線為拋物線;(3)

  β<α,平面π與圓錐的交線為雙曲線;截面過頂點時:(1)截面和圓錐面只相交于頂點,交線為一個點。

  (2)截面和圓錐面相交于兩條母線,交線為兩條相交曲線。(3)截面和圓錐面相切,交線為兩

高中數(shù)學知識點總結(jié)11

  函數(shù)的表示方法

  1.函數(shù)的三種表示方法列表法圖象法解析法

  2.分段函數(shù):定義域的不同部分,有不同的對應(yīng)法則的函數(shù)。注意兩點:

 、俜侄魏瘮(shù)是一個函數(shù),不要誤認為是幾個函數(shù)。

 、诜侄魏瘮(shù)的定義域是各段定義域的并集,值域是各段值域的并集。

  求定義域的幾種情況

  ①若f(x)是整式,則函數(shù)的定義域是實數(shù)集R;

 、谌鬴(x)是分式,則函數(shù)的定義域是使分母不等于0的實數(shù)集;

 、廴鬴(x)是二次根式,則函數(shù)的定義域是使根號內(nèi)的式子大于或等于0的實數(shù)集合;

 、苋鬴(x)是對數(shù)函數(shù),真數(shù)應(yīng)大于零。

  ⑤因為零的'零次冪沒有意義,所以底數(shù)和指數(shù)不能同時為零。

  ⑥若f(x)是由幾個部分的數(shù)學式子構(gòu)成的,則函數(shù)的定義域是使各部分式子都有意義的實數(shù)集合;

  ⑦若f(x)是由實際問題抽象出來的函數(shù),則函數(shù)的定義域應(yīng)符合實際問題

高中數(shù)學知識點總結(jié)12

  平均值等于每個小長方形面積(即概率)乘每組橫坐標的中點,然后加和。

  平均數(shù),首先得直方圖應(yīng)該歸一化,也就是說所有矩形的面積之和為1,然后每個矩形的面積代表其底邊中點橫坐標的數(shù)的頻率,那么面積乘以橫坐標就相當于頻率乘以橫坐標,得到的當然是平均數(shù)。

  頻率直方圖中是沒有樣本數(shù)據(jù)的在某一個分組里,分布在這個分組的樣本數(shù)據(jù)沒法找得出來,然后也分布不均勻,所以就用這個組的中點的橫坐標來表示這個分組的樣本數(shù)據(jù)的`平均值。

  而每一個小長方形的面積是表示相應(yīng)的頻率,(相當于相應(yīng)數(shù)據(jù)的百分比)所以平均數(shù)等于每個小長方形的面積乘以相應(yīng)的分組的底邊中點橫坐標的之和。

  頻率分布直方圖的運用

  頻率分布直方圖能清楚顯示各組頻數(shù)分布情況又易于顯示各組之間頻數(shù)的差別。它主要是為了將我們獲取的數(shù)據(jù)直觀、形象地表示出來,讓我們能夠更好了解數(shù)據(jù)的分布情況,因此其中組距、組數(shù)起關(guān)鍵作用。

  分組過少,數(shù)據(jù)就非常集中;分組過多,數(shù)據(jù)就非常分散,這就掩蓋了分布的特征。當數(shù)據(jù)在100以內(nèi)時,一般分5~12組為宜。

  從頻率分布直方圖可以估計出的幾個數(shù)據(jù):

  眾數(shù):頻率分布直方圖中最高矩形的底邊中點的橫坐標 。

  算術(shù)平均數(shù):頻率分布直方圖每組數(shù)值的中間值乘以頻率后相加。

  加權(quán)平均數(shù):加權(quán)平均數(shù)就是所有的頻率乘以數(shù)值后的和相加。

  中位數(shù):把頻率分布直方圖分成兩個面積相等部分的平行于Y軸的直線橫坐標。

高中數(shù)學知識點總結(jié)13

  1過兩點有且只有一條直線2兩點之間線段最短3同角或等角的補角相等?4同角或等角的余角相等

  5過一點有且只有一條直線和已知直線垂直6直線外一點與直線上各點連接的所有線段中,垂線段最短7平行公理經(jīng)過直線外一點,有且只有一條直線與這條直線平行8如果兩條直線都和第三條直線平行,這兩條直線也互相平行9同位角相等,兩直線平行10內(nèi)錯角相等,兩直線平行11同旁內(nèi)角互補,兩直線平行12兩直線平行,同位角相等13兩直線平行,內(nèi)錯角相等14兩直線平行,同旁內(nèi)角互補

  15定理三角形兩邊的和大于第三邊16推論三角形兩邊的差小于第三邊17三角形內(nèi)角和定理三角形三個內(nèi)角的和等于180°18推論1直角三角形的兩個銳角互余19推論2三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和20推論3三角形的一個外角大于任何一個和它不相鄰的內(nèi)角21全等三角形的對應(yīng)邊、對應(yīng)角相等

  22邊角邊公理(SAS)有兩邊和它們的夾角對應(yīng)相等的兩個三角形全等23角邊角公理(ASA)有兩角和它們的夾邊對應(yīng)相等的兩個三角形全等24推論(AAS)有兩角和其中一角的對邊對應(yīng)相等的兩個三角形全等25邊邊邊公理(SSS)有三邊對應(yīng)相等的兩個三角形全等26斜邊、直角邊公理(HL)有斜邊和一條直角邊對應(yīng)相等的兩個直角三角形全等27定理1在角的平分線上的點到這個角的兩邊的距離相等

  28定理2到一個角的兩邊的距離相同的點,在這個角的平分線上29角的平分線是到角的兩邊距離相等的所有點的集合

  30等腰三角形的性質(zhì)定理等腰三角形的兩個底角相等(即等邊對等角)31推論1等腰三角形頂角的平分線平分底邊并且垂直于底邊

  32等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合33推論3等邊三角形的各角都相等,并且每一個角都等于60°34等腰三角形的判定定理如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)35推論1三個角都相等的三角形是等邊三角形36推論2有一個角等于60°的等腰三角形是等邊三角形

  37在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半38直角三角形斜邊上的中線等于斜邊上的一半

  39定理線段垂直平分線上的點和這條線段兩個端點的距離相等

  40逆定理和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上41線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合42定理1關(guān)于某條直線對稱的兩個圖形是全等形43定理2如果兩個圖形關(guān)于某直線對稱,那么對稱軸是對應(yīng)點連線的垂直平分線44定理3兩個圖形關(guān)于某直線對稱,如果它們的對應(yīng)線段或延長線相交,那么交點在對稱軸上45逆定理如果兩個圖形的對應(yīng)點連線被同一條直線垂直平分,那么這兩個圖形關(guān)于這條直線對稱46勾股定理直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三邊長a、b、c有關(guān)系a^2+b^2=c^2,那么這個三角形是直角三角形48定理四邊形的內(nèi)角和等于360°49四邊形的外角和等于360°

  50多邊形內(nèi)角和定理n邊形的內(nèi)角的和等于(n-2)×180°51推論任意多邊的外角和等于360°52平行四邊形性質(zhì)定理1平行四邊形的對角相等53平行四邊形性質(zhì)定理2平行四邊形的對邊相等54推論夾在兩條平行線間的平行線段相等55平行四邊形性質(zhì)定理3平行四邊形的對角線互相平分

  56平行四邊形判定定理1兩組對角分別相等的四邊形是平行四邊形57平行四邊形判定定理2兩組對邊分別相等的四邊形是平行四邊形58平行四邊形判定定理3對角線互相平分的四邊形是平行四邊形59平行四邊形判定定理4一組對邊平行相等的四邊形是平行四邊形

  60矩形性質(zhì)定理1矩形的四個角都是直角61矩形性質(zhì)定理2矩形的對角線相等

  62矩形判定定理1有三個角是直角的四邊形是矩形63矩形判定定理2對角線相等的平行四邊形是矩形64菱形性質(zhì)定理1菱形的四條邊都相等

  65菱形性質(zhì)定理2菱形的對角線互相垂直,并且每一條對角線平分一組對角66菱形面積=對角線乘積的一半,即S=(a×b)÷267菱形判定定理1四邊都相等的四邊形是菱形

  68菱形判定定理2對角線互相垂直的平行四邊形是菱形

  69正方形性質(zhì)定理1正方形的四個角都是直角,四條邊都相等

  70正方形性質(zhì)定理2正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角71定理1關(guān)于中心對稱的兩個圖形是全等的

  72定理2關(guān)于中心對稱的兩個圖形,對稱點連線都經(jīng)過對稱中心,并且被對稱中心平分73逆定理如果兩個圖形的對應(yīng)點連線都經(jīng)過某一點,并且被這一點平分,那么這兩個圖形關(guān)于這一點對稱74等腰梯形性質(zhì)定理等腰梯形在同一底上的兩個角相等75等腰梯形的兩條對角線相等

  76等腰梯形判定定理在同一底上的兩個角相等的梯形是等腰梯形77對角線相等的梯形是等腰梯形

  78平行線等分線段定理如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等

  79推論1經(jīng)過梯形一腰的中點與底平行的'直線,必平分另一腰

  80推論2經(jīng)過三角形一邊的中點與另一邊平行的直線,必平分第三邊81三角形中位線定理三角形的中位線平行于第三邊,并且等于它的一半82梯形中位線定理梯形的中位線平行于兩底,并且等于兩底和的一半L=(a+b)÷2S=L×h

  83(1)比例的基本性質(zhì)如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:dwc/S??

  84(2)合比性質(zhì)如果a/b=c/d,那么(a±b)/b=(c±d)/d85(3)等比性質(zhì)如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b

  86平行線分線段成比例定理三條平行線截兩條直線,所得的對應(yīng)線段成比例87推論平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應(yīng)線段成比例

  88定理如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應(yīng)線段成比例,那么這條直線平行于三角形的第三邊

  89平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應(yīng)成比例90定理平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似

  91相似三角形判定定理1兩角對應(yīng)相等,兩三角形相似(ASA)92直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似93判定定理2兩邊對應(yīng)成比例且夾角相等,兩三角形相似(SAS)94判定定理3三邊對應(yīng)成比例,兩三角形相似(SSS)

  95定理如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應(yīng)成比例,那么這兩個直角三角形相似

  96性質(zhì)定理1相似三角形對應(yīng)高的比,對應(yīng)中線的比與對應(yīng)角平分線的比都等于相似比

  97性質(zhì)定理2相似三角形周長的比等于相似比

  98性質(zhì)定理3相似三角形面積的比等于相似比的平方99任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值

  100任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值

  101圓是定點的距離等于定長的點的集合

  102圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合103圓的外部可以看作是圓心的距離大于半徑的點的集合104同圓或等圓的半徑相等

  105到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓106和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線107到已知角的兩邊距離相等的點的軌跡,是這個角的平分線

  108到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線

  109定理不在同一直線上的三點確定一個圓。

  110垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

  111推論1①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條、谙业拇怪逼椒志經(jīng)過圓心,并且平分弦所對的兩條弧

 、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧112推論2圓的兩條平行弦所夾的弧相等113圓是以圓心為對稱中心的中心對稱圖形

  114定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

  115推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等

  116定理一條弧所對的圓周角等于它所對的圓心角的一半117推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等

  118推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑

  119推論3如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形

  120定理圓的內(nèi)接四邊形的對角互補,并且任何一個外角都等于它的內(nèi)對角121①直線L和⊙O相交d<r②直線L和⊙O相切d=r③直線L和⊙O相離d>r

  122切線的判定定理經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線123切線的性質(zhì)定理圓的切線垂直于經(jīng)過切點的半徑124推論1經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點125推論2經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心

  126切線長定理從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角

  127圓的外切四邊形的兩組對邊的和相等

  128弦切角定理弦切角等于它所夾的弧對的圓周角

  129推論如果兩個弦切角所夾的弧相等,那么這兩個弦切角也相等

  130相交弦定理圓內(nèi)的兩條相交弦,被交點分成的兩條線段長的積相等131推論如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項

  132切割線定理從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項

  133推論從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等

  134如果兩個圓相切,那么切點一定在連心線上135①兩圓外離d>R+r②兩圓外切d=R+r③兩圓相交R-r<d<R+r(R>r)

  ④兩圓內(nèi)切d=R-r(R>r)⑤兩圓內(nèi)含d<R-r(R>r)136定理相交兩圓的連心線垂直平分兩圓的公*弦137定理把圓分成n(n≥3):

 、乓来芜B結(jié)各分點所得的多邊形是這個圓的內(nèi)接正n邊形⑵經(jīng)過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形

  138定理任何正多邊形都有一個外接圓和一個內(nèi)切圓,這兩個圓是同心圓139正n邊形的每個內(nèi)角都等于(n-2)×180°/n

  140定理正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形141正n邊形的面積Sn=pnrn/2p表示正n邊形的周長142正三角形面積√3a/4a表示邊長

  143如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應(yīng)為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4144弧長撲愎劍=n兀R/180

  145扇形面積公式:S扇形=n兀R^2/360=LR/2146內(nèi)公切線長=d-(R-r)外公切線長=d-(R+r)(還有一些,大家?guī)脱a充吧)實用工具:常用數(shù)學公式公式分類公式表達式

  乘法與因式分解a^2-b^2=(a+b)(a-b)a^3+b^3=(a+b)(a^2-ab+b^2)a^3-b^3=(a-b(a^2+ab+b^2)

  三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|

  一元二次方程的解-b+√(b^2-4ac)/2a-b-√(b^2-4ac)/2a根與系數(shù)的關(guān)系X1+X2=-b/aX1*X2=c/a注:韋達定理判別式

  b^2-4ac=0注:方程有兩個相等的實根b^2-4ac>0注:方程有兩個不等的實根b^2-4ac拋物線標準方程y^2=2pxy^2=-2pxx^2=2pyx^2=-2py直棱柱側(cè)面積S=c*h斜棱柱側(cè)面積S=c"*h

  正棱錐側(cè)面積S=1/2c*h"正棱臺側(cè)面積S=1/2(c+c")h"圓臺側(cè)面積S=1/2(c+c")l=pi(R+r)l球的表面積S=4pi*r2圓柱側(cè)面積S=c*h=2pi*h圓錐側(cè)面積S=1/2*c*l=pi*r*l

  弧長公式l=a*ra是圓心角的弧度數(shù)r>0扇形面積公式s=1/2*l*r錐體體積公式V=1/3*S*H圓錐體體積公式V=1/3*pi*r2h斜棱柱體積V=S"L注:其中,S"是直截面面積,L是側(cè)棱長柱體體積公式V=s*h圓柱體V=pi*r2h

高中數(shù)學知識點總結(jié)14

  1、命題的四種形式及其相互關(guān)系是什么?

 。ɑ槟娣耜P(guān)系的命題是等價命題。)

  原命題與逆否命題同真、同假;逆命題與否命題同真同假。

  2、對映射的概念了解嗎?映射f:A→B,是否注意到A中元素的'任意性和B中與之對應(yīng)元素的唯一性,哪幾種對應(yīng)能構(gòu)成映射?

 。ㄒ粚σ,多對一,允許B中有元素無原象。)

  3、函數(shù)的三要素是什么?如何比較兩個函數(shù)是否相同?

  (定義域、對應(yīng)法則、值域)

  4、反函數(shù)存在的條件是什么?

  (一一對應(yīng)函數(shù))

  求反函數(shù)的步驟掌握了嗎?

  (①反解x;②互換x、y;③注明定義域)

  5、反函數(shù)的性質(zhì)有哪些?

 、倩榉春瘮(shù)的圖象關(guān)于直線y=x對稱;

 、诒4媪嗽瓉砗瘮(shù)的單調(diào)性、奇函數(shù)性;

  6、函數(shù)f(x)具有奇偶性的必要(非充分)條件是什么?

 。╢(x)定義域關(guān)于原點對稱)

高中數(shù)學知識點總結(jié)15

  1、一元二次方程的解

  -b+√(b2-4ac)/2a-b-√(b2-4ac)/2a

  根與系數(shù)的關(guān)系x1+x2=-b/ax1x2=c/a注:韋達定理

  判別式b2-4a=0注:方程有相等的兩實根

  b2-4ac>0注:方程有兩個不相等的個實根

  b2-4ac<0注:方程有共軛復數(shù)根

  2、立體圖形及平面圖形的'公式

  圓的標準方程(x-a)2+(y-b)2=r2注:(a,b)是圓心坐標

  圓的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0

  拋物線標準方程y2=2pxy2=-2px2=2pyx2=-2py

  直棱柱側(cè)面積S=cxh斜棱柱側(cè)面積S=c'xh

  正棱錐側(cè)面積S=1/2cxh'正棱臺側(cè)面積S=1/2(c+c')h'

  圓臺側(cè)面積S=1/2(c+c')l=pi(R+r)l球的表面積S=4pixr2

  圓柱側(cè)面積S=cxh=2pixh圓錐側(cè)面積S=1/2xcxl=pixrxl

  弧長公式l=axra是圓心角的弧度數(shù)r>0扇形面積公式s=1/2xlxr

  錐體體積公式V=1/3xSxH圓錐體體積公式V=1/3xpixr2h

  斜棱柱體積V=S'L注:其中,S'是直截面面積,L是側(cè)棱長

  柱體體積公式V=sxh圓柱體V=pixr2h

  3、圖形周長、面積、體積公式

  長方形的周長=(長+寬)×2

  正方形的周長=邊長×4

  長方形的面積=長×寬

  正方形的面積=邊長×邊長

  三角形的面積

  已知三角形底a,高h,則S=ah/2

  已知三角形三邊a,b,c,半周長p,則S=√[p(p-a)(p-b)(p-c)](海倫公式)(p=(a+b+c)/2)

  和:(a+b+c)x(a+b-c)x1/4

  已知三角形兩邊a,b,這兩邊夾角C,則S=absinC/2

  設(shè)三角形三邊分別為a、b、c,內(nèi)切圓半徑為r

  則三角形面積=(a+b+c)r/2

  設(shè)三角形三邊分別為a、b、c,外接圓半徑為r

  則三角形面積=abc/4r

  常用的三角函數(shù)公式

  兩角和公式

  sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA

  cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB

  tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)

  ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

  倍角公式

  tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga

  cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

  半角公式

  sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)

  cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)

  tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))

  ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))

  和差化積

  2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)

  2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)

  sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

  tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB

  ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB

【高中數(shù)學知識點總結(jié)】相關(guān)文章:

高中數(shù)學知識點的總結(jié)03-07

高中數(shù)學統(tǒng)計知識點總結(jié)10-21

高中數(shù)學導數(shù)知識點總結(jié)04-10

高中數(shù)學復數(shù)知識點總結(jié)05-10

高中數(shù)學知識點總結(jié)05-15

高中數(shù)學基本的知識點總結(jié)05-17

高中數(shù)學重點知識點總結(jié)11-18

高中數(shù)學必修2知識點總結(jié)11-22

高中數(shù)學求切線知識點總結(jié)10-27

高中數(shù)學基本的知識點總結(jié)[精華]05-17