當前位置:育文網(wǎng)>高中>高中數(shù)學> 高中數(shù)學知識點

高中數(shù)學知識點

時間:2023-07-25 21:05:19 賽賽 高中數(shù)學 我要投稿

高中數(shù)學知識點

  在平凡的學習生活中,看到知識點,都是先收藏再說吧!知識點是傳遞信息的基本單位,知識點對提高學習導航具有重要的作用。想要一份整理好的知識點嗎?以下是小編為大家整理的高中數(shù)學知識點,希望能夠幫助到大家。

高中數(shù)學知識點

  高中數(shù)學知識點

  一、排列

  1、定義

  (1)從n個不同元素中取出m個元素,按照一定的順序排成一列,叫做從n個不同元素中取出m個元素的一排列。

 。2)從n個不同元素中取出m個元素的所有排列的個數(shù),叫做從n個不同元素中取出m個元素的排列數(shù),記為 Amn.

  2 排列數(shù)的公式與性質

  (1)排列數(shù)的公式: Amn=n(n-1)(n-2)…(n-m+1)

  特例:當m=n時, Amn=n!=n(n-1)(n-2)…321

  規(guī)定:0!=1

  二、組合

  1、定義

 。1)從n個不同元素中取出 m個元素并成一組,叫做從n個不同元素中取出m個元素的一個組合

  (2)從n個不同元素中取出m個元素的所有組合的個數(shù),叫做從n個不同元素中取出m個元素的組合數(shù),用符號 Cmn表示。

  2、比較與鑒別

  由排列與組合的定義知,獲得一個排列需要“取出元素”和“對取出元素按一定順序排成一列”兩個過程,而獲得一個組合只需要“取出元素”,不管怎樣的順序并成一組這一個步驟。

  排列與組合的區(qū)別在于組合僅與選取的元素有關,而排列不僅與選取的元素有關,而且還與取出元素的順序有關。因此,所給問題是否與取出元素的順序有關,是判斷這一問題是排列問題還是組合問題的理論依據(jù)。

  函數(shù)點總結

  (1)高中函數(shù)公式的變量:因變量,自變量。 在用圖象表示變量之間的關系時,通常用水平方向的數(shù)軸上的點自變量,用豎直方向的數(shù)軸上的點表示因變量。

  (2)一次函數(shù):

 、偃魞蓚變量,間的關系式可以表示成(為常數(shù),不等于0)的形式,則稱是的一次函數(shù)。

 、诋=0時,稱是的正比例函數(shù)。

 。3)高中函數(shù)的一次函數(shù)的圖象及性:

  質①把一個函數(shù)的自變量與對應的因變量的值分別作為點的橫坐標與縱坐標,在直角坐標系內描出它的對應點,所有這些點組成的圖形叫做該函數(shù)的圖象。

 、谡壤瘮(shù)=的圖象是經過原點的一條直線。

 、墼谝淮魏瘮(shù)中,當0,O,則經2、3、4象限;當0,0時,則經1、2、4象限;當0,0時,則經1、3、4象限;當0,0時,則經1、2、3象限。④當0時,的值隨值的增大而增大,當0時,的值隨值的增大而減少。

 。4)高中函數(shù)的二次函數(shù):

 、僖话闶剑(),對稱軸是頂點是;

  ②頂點式:(),對稱軸是頂點是;

 、劢稽c式:(),其中(),()是拋物線與x軸的交點

  (5)高中函數(shù)的二次函數(shù)的性質①

  函數(shù)的圖象關于直線對稱。

 、跁r,在對稱軸 ()左側,值隨值的增大而減少;在對稱軸()右側;的值隨值的增大而增大。當時,取得最小值

  ③時,在對稱軸 ()左側,值隨值的增大而增大;在對稱軸()右側;的值隨值的增大而減少。當時,取得最大值9 高中函數(shù)的圖形的對稱

 。1)軸對稱圖形:

 、偃绻粋圖形沿一條直線折疊后,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形,這條直線叫做對稱軸。

 、谳S對稱圖形上關于對稱軸對稱的兩點確定的線段被對稱軸垂直平分。

 。2)中心對稱圖形:

 、僭谄矫鎯龋粋圖形繞某個點旋轉180度,如果旋轉前后的圖形互相重合,那么這個圖形叫做中心對稱圖形,這個點叫做他的對稱中心。

  ②中心對稱圖形上的每一對對應點所連成的線段都被對稱中心平分。

  圓的知識點

  1、圓的定義:

  平面內到一定點的距離等于定長的點的集合叫圓,定點為圓心,定長為圓的半徑。

  2、圓的方程

 。1)標準方程,圓心,半徑為r;

 。2)一般方程

  當時,方程表示圓,此時圓心為,半徑為

  當時,表示一個點;當時,方程不表示任何圖形。

  (3)求圓方程的方法:

  一般都采用待定系數(shù)法:先設后求。確定一個圓需要三個獨立條件,若利用圓的標準方程,

  需求出a,b,r;若利用一般方程,需要求出D,E,F(xiàn);

  另外要注意多利用圓的幾何性質:如弦的中垂線必經過原點,以此來確定圓心的位置。

  3、直線與圓的位置關系:

  直線與圓的位置關系有相離,相切,相交三種情況:

 。1)設直線,圓,圓心到l的距離為,則有:

  (2)過圓外一點的切線:

 、賙不存在,驗證是否成立。

 、趉存在,設點斜式方程,用圓心到該直線距離=半徑,求解k,得到方程。

 。3)過圓上一點的切線方程:圓(x—a)2+(y—b)2=r2,圓上一點為(x0,y0),則過此點的切線方程為(x0—a)(x—a)+(y0—b)(y—b)=r2

  4、圓與圓的位置關系:

  通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。

  設圓,

  兩圓的位置關系常通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。

  當時兩圓外離,此時有公切線四條;

  當時兩圓外切,連心線過切點,有外公切線兩條,內公切線一條;

  當時兩圓相交,連心線垂直平分公共弦,有兩條外公切線;

  當時,兩圓內切,連心線經過切點,只有一條公切線;

  當時,兩圓內含;當時,為同心圓。

  注意:已知圓上兩點,圓心必在中垂線上;已知兩圓相切,兩圓心與切點共線。

  圓的輔助線一般為連圓心與切線或者連圓心與弦中點

  函數(shù)知識點

  一、函數(shù)的定義域的常用求法:

  1、分式的分母不等于零;

  2、偶次方根的被開方數(shù)大于等于零;

  3、對數(shù)的真數(shù)大于零;

  4、指數(shù)函數(shù)和對數(shù)函數(shù)的底數(shù)大于零且不等于1;

  5、三角函數(shù)正切函數(shù)y=tan_中_≠kπ+π/2;

  6、如果函數(shù)是由實際意義確定的解析式,應依據(jù)自變量的實際意義確定其取值范圍。

  二、函數(shù)的解析式的常用求法:

  1、定義法;

  2、換元法;

  3、待定系數(shù)法;

  4、函數(shù)方程法;

  5、參數(shù)法;

  6、配方法

  三、函數(shù)的值域的常用求法:

  1、換元法;

  2、配方法;

  3、判別式法;

  4、幾何法;

  5、不等式法;

  6、單調性法;

  7、直接法

  四、函數(shù)的最值的常用求法:

  1、配方法;

  2、換元法;

  3、不等式法;

  4、幾何法;

  5、單調性法

  高中數(shù)學三角函數(shù)和平面向量知識點

  一、定比分點

  定比分點公式(向量P1P=λ向量PP2)

  設P1、P2是直線上的兩點,P是l上不同于P1、P2的任意一點。則存在一個實數(shù)λ,使向量P1P=λ向量PP2,λ叫做點P分有向線段P1P2所成的比。

  若P1(_1,y1),P2(_2,y2),P(_,y),則有

  OP=(OP1+λOP2)(1+λ);(定比分點向量公式)

  _=(_1+λ_2)/(1+λ),

  y=(y1+λy2)/(1+λ)。(定比分點坐標公式)

  我們把上面的式子叫做有向線段P1P2的定比分點公式。

  二、三點共線定理

  若OC=λOA+μOB,且λ+μ=1,則A、B、C三點共線。

  三、三角形重心判斷式

  在△ABC中,若GA+GB+GC=O,則G為△ABC的重心。

  四、向量共線的重要條件

  若b≠0,則a//b的重要條件是存在唯一實數(shù)λ,使a=λb。

  a//b的重要條件是_y—_y=0。

  零向量0平行于任何向量。

  五、向量垂直的充要條件

  a⊥b的充要條件是ab=0。

  a⊥b的充要條件是__+yy=0。

  零向量0垂直于任何向量。

  設a=(_,y),b=(_,y)。

  六、向量的運算

  1、向量的加法

  向量的加法滿足平行四邊形法則和三角形法則。

  AB+BC=AC。

  a+b=(_+_,y+y)。

  a+0=0+a=a。

  向量加法的運算律:

  交換律:a+b=b+a;

  結合律:(a+b)+c=a+(b+c)。

  2、向量的減法

  如果a、b是互為相反的向量,那么a=—b,b=—a,a+b=0。0的反向量為0

  AB—AC=CB。即“共同起點,指向被減”

  a=(_,y) b=(_,y)則a—b=(_—_,y—y)。

  4、數(shù)乘向量

  實數(shù)λ和向量a的乘積是一個向量,記作λa,且∣λa∣=∣λ∣∣a∣。

  當λ>0時,λa與a同方向;

  當λ<0時,λa與a反方向;

  當λ=0時,λa=0,方向任意。

  當a=0時,對于任意實數(shù)λ,都有λa=0。

  注:按定義知,如果λa=0,那么λ=0或a=0。

  實數(shù)λ叫做向量a的系數(shù),乘數(shù)向量λa的幾何意義就是將表示向量a的有向線段伸長或壓縮。

  當∣λ∣>1時,表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上伸長為原來的∣λ∣倍;

  當∣λ∣<1時,表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上縮短為原來的∣λ∣倍。

  5、數(shù)與向量的乘法滿足下面的運算律

  結合律:(λa)b=λ(ab)=(aλb)。

  向量對于數(shù)的分配律(第一分配律):(λ+μ)a=λa+μa。

  數(shù)對于向量的分配律(第二分配律):λ(a+b)=λa+λb。

  數(shù)乘向量的消去律:

  ①如果實數(shù)λ≠0且λa=λb,那么a=b。

  ②如果a≠0且λa=μa,那么λ=μ。

  6、向量的的數(shù)量積

  定義:已知兩個非零向量a,b。作OA=a,OB=b,則角AOB稱作向量a和向量b的夾角,記作〈a,b〉并規(guī)定0≤〈a,b〉≤π

  定義:兩個向量的數(shù)量積(內積、點積)是一個數(shù)量,記作ab。若a、b不共線,則ab=|a||b|cos〈a,b〉;若a、b共線,則ab=+—∣a∣∣b∣。

  向量的數(shù)量積的坐標表示:ab=__+yy。

  7、向量的數(shù)量積的運算律

  ab=ba(交換律);

  (λa)b=λ(ab)(關于數(shù)乘法的結合律);

  (a+b)c=ac+bc(分配律);

  向量的數(shù)量積的性質

  aa=|a|的平方。

  a⊥b〈=〉ab=0。

  |ab|≤|a||b|。

  8、向量的數(shù)量積與實數(shù)運算的主要不同點

  8.1向量的數(shù)量積不滿足結合律,即:(ab)c≠a(bc);例如:(ab)^2≠a^2b^2。

  8.2向量的數(shù)量積不滿足消去律,即:由ab=ac(a≠0),推不出b=c。

  8.3|ab|≠|a||b|

  8.4由a|=|b|,推不出a=b或a=—b。

  七、向量的向量積

  1、定義:兩個向量a和b的向量積(外積、叉積)是一個向量,記作a×b。若a、b不共線,則a×b的模是:∣a×b∣=|a||b|sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按這個次序構成右手系。若a、b共線,則a×b=0。

  2、向量的向量積性質:

  ∣a×b∣是以a和b為邊的平行四邊形面積。

  a×a=0。

  a‖b〈=〉a×b=0。

  3、向量的向量積運算律

  a×b=—b×a;

  (λa)×b=λ(a×b)=a×(λb);

  (a+b)×c=a×c+b×c。

  注:向量沒有除法,“向量AB/向量CD”是沒有意義的。

  4、向量的三角形不等式

  1、∣∣a∣—∣b∣∣≤∣a+b∣≤∣a∣+∣b∣;

 、佼斍覂H當a、b反向時,左邊取等號;

 、诋斍覂H當a、b同向時,右邊取等號。

  2、∣∣a∣—∣b∣∣≤∣a—b∣≤∣a∣+∣b∣。

 、佼斍覂H當a、b同向時,左邊取等號;

 、诋斍覂H當a、b反向時,右邊取等號。

  高考數(shù)學導數(shù)知識點

 。ㄒ唬⿲(shù)第一定義

  設函數(shù)y = f(x)在點x0的某個領域內有定義,當自變量x在x0處有增量△x(x0 + △x也在該鄰域內)時,相應地函數(shù)取得增量△y = f(x0 + △x)— f(x0);如果△y與△x之比當△x→0時極限存在,則稱函數(shù)y = f(x)在點x0處可導,并稱這個極限值為函數(shù)y = f(x)在點x0處的導數(shù)記為f(x0),即導數(shù)第一定義

 。ǘ⿲(shù)第二定義

  設函數(shù)y = f(x)在點x0的某個領域內有定義,當自變量x在x0處有變化△x(x — x0也在該鄰域內)時,相應地函數(shù)變化△y = f(x)— f(x0);如果△y與△x之比當△x→0時極限存在,則稱函數(shù)y = f(x)在點x0處可導,并稱這個極限值為函數(shù)y = f(x)在點x0處的導數(shù)記為f(x0),即導數(shù)第二定義

 。ㄈ⿲Ш瘮(shù)與導數(shù)

  如果函數(shù)y = f(x)在開區(qū)間I內每一點都可導,就稱函數(shù)f(x)在區(qū)間I內可導。這時函數(shù)y = f(x)對于區(qū)間I內的每一個確定的x值,都對應著一個確定的導數(shù),這就構成一個新的函數(shù),稱這個函數(shù)為原來函數(shù)y = f(x)的導函數(shù),記作y,f(x),dy/dx,df(x)/dx。導函數(shù)簡稱導數(shù)。

  (四)單調性及其應用

  1、利用導數(shù)研究多項式函數(shù)單調性的一般步驟

  (1)求f¢(x)

 。2)確定f¢(x)在(a,b)內符號(3)若f¢(x)>0在(a,b)上恒成立,則f(x)在(a,b)上是增函數(shù);若f¢(x)<0在(a,b)上恒成立,則f(x)在(a,b)上是減函數(shù)

  2、用導數(shù)求多項式函數(shù)單調區(qū)間的一般步驟

  (1)求f¢(x)

 。2)f¢(x)>0的解集與定義域的交集的對應區(qū)間為增區(qū)間;f¢(x)<0的解集與定義域的交集的對應區(qū)間為減區(qū)間

  冪函數(shù)的性質:

  對于a的取值為非零有理數(shù),有必要分成幾種情況來討論各自的特性:

  首先我們知道如果a=p/q,q和p都是整數(shù),則x^(p/q)=q次根號(x的p次方),如果q是奇數(shù),函數(shù)的定義域是R,如果q是偶數(shù),函數(shù)的定義域是[0,+∞)。當指數(shù)n是負整數(shù)時,設a=—k,則x=1/(x^k),顯然x≠0,函數(shù)的定義域是(—∞,0)∪(0,+∞)。因此可以看到x所受到的限制來源于兩點,一是有可能作為分母而不能是0,一是有可能在偶數(shù)次的根號下而不能為負數(shù),那么我們就可以知道:

  排除了為0與負數(shù)兩種可能,即對于x>0,則a可以是任意實數(shù);

  排除了為0這種可能,即對于x<0x="">0的所有實數(shù),q不能是偶數(shù);

  排除了為負數(shù)這種可能,即對于x為大于且等于0的所有實數(shù),a就不能是負數(shù)。

  總結起來,就可以得到當a為不同的數(shù)值時,冪函數(shù)的定義域的不同情況如下:如果a為任意實數(shù),則函數(shù)的定義域為大于0的所有實數(shù);

  如果a為負數(shù),則x肯定不能為0,不過這時函數(shù)的定義域還必須根據(jù)q的奇偶性來確定,即如果同時q為偶數(shù),則x不能小于0,這時函數(shù)的定義域為大于0的所有實數(shù);如果同時q為奇數(shù),則函數(shù)的定義域為不等于0的所有實數(shù)。

  在x大于0時,函數(shù)的值域總是大于0的實數(shù)。

  在x小于0時,則只有同時q為奇數(shù),函數(shù)的值域為非零的實數(shù)。

  而只有a為正數(shù),0才進入函數(shù)的值域。

  由于x大于0是對a的任意取值都有意義的,因此下面給出冪函數(shù)在第一象限的各自情況。

  可以看到:

 。1)所有的圖形都通過(1,1)這點。

 。2)當a大于0時,冪函數(shù)為單調遞增的,而a小于0時,冪函數(shù)為單調遞減函數(shù)。

 。3)當a大于1時,冪函數(shù)圖形下凹;當a小于1大于0時,冪函數(shù)圖形上凸。

  (4)當a小于0時,a越小,圖形傾斜程度越大。

 。5)a大于0,函數(shù)過(0,0);a小于0,函數(shù)不過(0,0)點。

  (6)顯然冪函數(shù)無界。

  解題方法:換元法

  解數(shù)學題時,把某個式子看成一個整體,用一個變量去代替它,從而使問題得到簡化,這種方法叫換元法。換元的實質是轉化,關鍵是構造元和設元,理論依據(jù)是等量代換,目的是變換研究對象,將問題移至新對象的知識背景中去研究,從而使非標準型問題標準化、復雜問題簡單化,變得容易處理。

  換元法又稱輔助元素法、變量代換法。通過引進新的變量,可以把分散的條件聯(lián)系起來,隱含的條件顯露出來,或者把條件與結論聯(lián)系起來;蛘咦?yōu)槭煜さ男问剑褟碗s的計算和推證簡化。

  它可以化高次為低次、化分式為整式、化無理式為有理式、化超越式為代數(shù)式,在研究方程、不等式、函數(shù)、數(shù)列、三角等問題中有廣泛的應用。

  函數(shù)知識點

  指數(shù)函數(shù)

  (1)指數(shù)函數(shù)的定義域為所有實數(shù)的集合,這里的前提是a大于0,對于a不大于0的情況,則必然使得函數(shù)的定義域不存在連續(xù)的區(qū)間,因此我們不予考慮。

  (2)指數(shù)函數(shù)的值域為大于0的實數(shù)集合。

  (3)函數(shù)圖形都是下凹的。

  (4)a大于1,則指數(shù)函數(shù)單調遞增;a小于1大于0,則為單調遞減的。

  (5)可以看到一個顯然的規(guī)律,就是當a從0趨向于無窮大的過程中(當然不能等于0),函數(shù)的曲線從分別接近于Y軸與X軸的正半軸的單調遞減函數(shù)的位置,趨向分別接近于Y軸的正半軸與X軸的負半軸的單調遞增函數(shù)的位置。其中水平直線y=1是從遞減到遞增的一個過渡位置。

  (6)函數(shù)總是在某一個方向上無限趨向于X軸,永不相交。

  (7)函數(shù)總是通過(0,1)這點。

  (8)顯然指數(shù)函數(shù)。

  反比例函數(shù)

  形如y=k/x(k為常數(shù)且k≠0)的函數(shù),叫做反比例函數(shù)。

  自變量x的取值范圍是不等于0的一切實數(shù)。

  反比例函數(shù)圖像性質:

  反比例函數(shù)的圖像為雙曲線。

  由于反比例函數(shù)屬于奇函數(shù),有f(-x)=-f(x),圖像關于原點對稱。

  另外,從反比例函數(shù)的解析式可以得出,在反比例函數(shù)的圖像上任取一點,向兩個坐標軸作垂線,這點、兩個垂足及原點所圍成的矩形面積是定值,為∣k∣。

  k分別為正和負(2和-2)時的函數(shù)圖像。

  當K>0時,反比例函數(shù)圖像經過一,三象限,是減函數(shù)

  當K<0時,反比例函數(shù)圖像經過二,四象限,是增函數(shù)

  反比例函數(shù)圖像只能無限趨向于坐標軸,無法和坐標軸相交。

  知識點:

  1.過反比例函數(shù)圖象上任意一點作兩坐標軸的垂線段,這兩條垂線段與坐標軸圍成的矩形的面積為|k|。

  2.對于雙曲線y=k/x,若在分母上加減任意一個實數(shù)(即y=k/(x±m(xù))m為常數(shù)),就相當于將雙曲線圖象向左或右平移一個單位。(加一個數(shù)時向左平移,減一個數(shù)時向右平移)

  函數(shù)的值域與最值

  1、函數(shù)的值域取決于定義域和對應法則,不論采用何種方法求函數(shù)值域都應先考慮其定義域,求函數(shù)值域常用方法如下:

  (1)直接法:亦稱觀察法,對于結構較為簡單的函數(shù),可由函數(shù)的解析式應用不等式的性質,直接觀察得出函數(shù)的值域。

  (2)換元法:運用代數(shù)式或三角換元將所給的復雜函數(shù)轉化成另一種簡單函數(shù)再求值域,若函數(shù)解析式中含有根式,當根式里一次式時用代數(shù)換元,當根式里是二次式時,用三角換元。

 。3)反函數(shù)法:利用函數(shù)f(x)與其反函數(shù)f—1(x)的定義域和值域間的關系,通過求反函數(shù)的定義域而得到原函數(shù)的值域,形如(a≠0)的函數(shù)值域可采用此法求得。

  (4)配方法:對于二次函數(shù)或二次函數(shù)有關的函數(shù)的值域問題可考慮用配方法。

 。5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函數(shù)的值域,不過應注意條件“一正二定三相等”有時需用到平方等技巧。

 。6)判別式法:把y=f(x)變形為關于x的一元二次方程,利用“△≥0”求值域。其題型特征是解析式中含有根式或分式。

 。7)利用函數(shù)的單調性求值域:當能確定函數(shù)在其定義域上(或某個定義域的子集上)的單調性,可采用單調性法求出函數(shù)的值域。

 。8)數(shù)形結合法求函數(shù)的值域:利用函數(shù)所表示的幾何意義,借助于幾何方法或圖象,求出函數(shù)的值域,即以數(shù)形結合求函數(shù)的值域。

  2、求函數(shù)的最值與值域的區(qū)別和聯(lián)系

  求函數(shù)最值的常用方法和求函數(shù)值域的方法基本上是相同的,事實上,如果在函數(shù)的值域中存在一個最。ù螅⿺(shù),這個數(shù)就是函數(shù)的最。ù螅┲。因此求函數(shù)的最值與值域,其實質是相同的,只是提問的角度不同,因而答題的方式就有所相異。

  如函數(shù)的值域是(0,16],值是16,無最小值。再如函數(shù)的值域是(—∞,—2]∪[2,+∞),但此函數(shù)無值和最小值,只有在改變函數(shù)定義域后,如x>0時,函數(shù)的最小值為2?梢姸x域對函數(shù)的值域或最值的影響。

  3、函數(shù)的最值在實際問題中的

  應用

  函數(shù)的最值的應用主要體現(xiàn)在用函數(shù)知識求解實際問題上,從文字表述上常常表現(xiàn)為“工程造價最低”,“利潤”或“面積(體積)(最。钡戎T多現(xiàn)實問題上,求解時要特別關注實際意義對自變量的制約,以便能正確求得最值。

  空間幾何體表面積體積公式:

  1、圓柱體:表面積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高)

  2、圓錐體:表面積:πR2+πR[(h2+R2)的]體積:πR2h/3(r為圓錐體低圓半徑,h為其高,

  3、a—邊長,S=6a2,V=a3

  4、長方體a—長,b—寬,c—高S=2(ab+ac+bc)V=abc

  5、棱柱S—h—高V=Sh

  6、棱錐S—h—高V=Sh/3

  7、S1和S2—上、下h—高V=h[S1+S2+(S1S2)^1/2]/3

  8、S1—上底面積,S2—下底面積,S0—中h—高,V=h(S1+S2+4S0)/6

  9、圓柱r—底半徑,h—高,C—底面周長S底—底面積,S側—,S表—表面積C=2πrS底=πr2,S側=Ch,S表=Ch+2S底,V=S底h=πr2h

  10、空心圓柱R—外圓半徑,r—內圓半徑h—高V=πh(R^2—r^2)

  11、r—底半徑h—高V=πr^2h/3

  12、r—上底半徑,R—下底半徑,h—高V=πh(R2+Rr+r2)/313、球r—半徑d—直徑V=4/3πr^3=πd^3/6

  14、球缺h—球缺高,r—球半徑,a—球缺底半徑V=πh(3a2+h2)/6=πh2(3r—h)/3

  15、球臺r1和r2—球臺上、下底半徑h—高V=πh[3(r12+r22)+h2]/6

  16、圓環(huán)體R—環(huán)體半徑D—環(huán)體直徑r—環(huán)體截面半徑d—環(huán)體截面直徑V=2π2Rr2=π2Dd2/4

  17、桶狀體D—桶腹直徑d—桶底直徑h—桶高V=πh(2D2+d2)/12,(母線是圓弧形,圓心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母線是拋物線形)

  立體幾何初步

  1、柱、錐、臺、球的結構特征

  (1)棱柱:

  定義:有兩個面互相平行,其余各面都是四邊形,且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體。

  分類:以底面多邊形的邊數(shù)作為分類的標準分為三棱柱、四棱柱、五棱柱等。

  表示:用各頂點字母,如五棱柱或用對角線的端點字母,如五棱柱。

  幾何特征:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行于底面的截面是與底面全等的多邊形。

  (2)棱錐

  定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,由這些面所圍成的幾何體。

  分類:以底面多邊形的邊數(shù)作為分類的標準分為三棱錐、四棱錐、五棱錐等

  表示:用各頂點字母,如五棱錐

  幾何特征:側面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到截面距離與高的比的平方。

  (3)棱臺:

  定義:用一個平行于棱錐底面的平面去截棱錐,截面和底面之間的部分。

  分類:以底面多邊形的邊數(shù)作為分類的標準分為三棱態(tài)、四棱臺、五棱臺等

  表示:用各頂點字母,如五棱臺

  幾何特征:

 、偕舷碌酌媸窍嗨频钠叫卸噙呅

 、趥让媸翘菪

 、蹅壤饨挥谠忮F的頂點

  (4)圓柱:

  定義:以矩形的一邊所在的直線為軸旋轉,其余三邊旋轉所成的曲面所圍成的幾何體。

  幾何特征:

 、俚酌媸侨鹊膱A;

 、谀妇與軸平行;

 、圯S與底面圓的半徑垂直;

 、軅让嬲归_圖是一個矩形。

  (5)圓錐:

  定義:以直角三角形的一條直角邊為旋轉軸,旋轉一周所成的曲面所圍成的幾何體。

  幾何特征:

 、俚酌媸且粋圓;

  ②母線交于圓錐的頂點;

  ③側面展開圖是一個扇形。

  (6)圓臺:

  定義:用一個平行于圓錐底面的平面去截圓錐,截面和底面之間的部分

  幾何特征:

 、偕舷碌酌媸莾蓚圓;

 、趥让婺妇交于原圓錐的頂點;

 、蹅让嬲归_圖是一個弓形。

  (7)球體:

  定義:以半圓的直徑所在直線為旋轉軸,半圓面旋轉一周形成的幾何體

  幾何特征:

  ①球的截面是圓;

 、谇蛎嫔先我庖稽c到球心的距離等于半徑。

  2、空間幾何體的三視圖

  定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側視圖(從左向右)、俯視圖(從上向下)

  注:正視圖反映了物體上下、左右的位置關系,即反映了物體的高度和長度;

  俯視圖反映了物體左右、前后的位置關系,即反映了物體的長度和寬度;

  側視圖反映了物體上下、前后的位置關系,即反映了物體的高度和寬度。

  3、空間幾何體的直觀圖——斜二測畫法

  斜二測畫法特點:

  ①原來與x軸平行的線段仍然與x平行且長度不變;

  ②原來與y軸平行的線段仍然與y平行,長度為原來的一半。

【高中數(shù)學知識點】相關文章:

高中數(shù)學數(shù)列知識點03-17

高中數(shù)學必修知識點11-08

高中數(shù)學知識點11-03

高中數(shù)學橢圓知識點06-15

高中數(shù)學復習知識點03-19

高中數(shù)學知識點總結04-07

高中數(shù)學必背知識點03-05

高中數(shù)學知識點總結11-12

高中數(shù)學導數(shù)知識點總結05-09

高中數(shù)學圓的知識點歸納04-14