- 勾股定理教案 推薦度:
- 勾股定理教案 推薦度:
- 相關(guān)推薦
勾股定理教案[合集]
作為一無名無私奉獻的教育工作者,就難以避免地要準備教案,教案是教學活動的總的組織綱領(lǐng)和行動方案。那么問題來了,教案應(yīng)該怎么寫?以下是小編精心整理的勾股定理教案,希望對大家有所幫助。
勾股定理教案1
教學目標
1、知識與技能目標
學會觀察圖形,勇于探索圖形間的關(guān)系,培養(yǎng)學生的空間觀念.
2、過程與方法
(1)經(jīng)歷一般規(guī)律的探索過程,發(fā)展學生的抽象思維能力.
(2)在將實際問題抽象成幾何圖形過程中,提高分析問題、解決問題的能力及滲透數(shù)學建模的思想.
3、情感態(tài)度與價值觀
(1)通過有趣的問題提高學習數(shù)學的興趣.
(2)在解決實際問題的`過程中,體驗數(shù)學學習的實用性.
教學重點:
探索、發(fā)現(xiàn)事物中隱含的勾股定理及其逆及理,并用它們解決生活實際問題.
教學難點:
利用數(shù)學中的建模思想構(gòu)造直角三角形,利用勾股定理及逆定理,解決實際問題.
教學準備:
多媒體
教學過程:
第一環(huán)節(jié):創(chuàng)設(shè)情境,引入新課(3分鐘,學生觀察、猜想)
情景:
如圖:在一個圓柱石凳上,若小明在吃東西時留下了一點食物在B處,恰好一只在A處的螞蟻捕捉到這一信息,于是它想從A處爬向B處,你們想一想,螞蟻怎么走最近?
第二環(huán)節(jié):合作探究(15分鐘,學生分組合作探究)
學生分為4人活動小組,合作探究螞蟻爬行的最短路線,充分討論后,匯總各小組的方案,在全班范圍內(nèi)討論每種方案的路線計算方法,通過具體計算,總結(jié)出最短路線。讓學生發(fā)現(xiàn):沿圓柱體母線剪開后展開得到矩形,研究“螞蟻怎么走最近”就是研究兩點連線最短問題,引導(dǎo)學生體會利用數(shù)學解決實際問題的方法:建立數(shù)學模型,構(gòu)圖,計算.
學生匯總了四種方案:
。ǎ保 (2) (3)(4)
學生很容易算出:情形(1)中A→B的路線長為:AA’+d,情形(2)中A→B的路線長為:AA’+πd/2所以情形(1)的路線比情形(2)要短.
學生在情形(3)和(4)的比較中出現(xiàn)困難,但還是有學生提出用剪刀沿母線AA’剪開圓柱得到矩形,前三種情形A→B是折線,而情形(4)是線段,故根據(jù)兩點之間線段最短可判斷(4)最短.
如圖:
。ǎ保┲蠥→B的路線長為:AA’+d;
。ǎ玻┲蠥→B的路線長為:AA’+A’B>AB;
。ǎ常┲蠥→B的路線長為:AO+OB>AB;
。ǎ矗┲蠥→B的路線長為:AB.
得出結(jié)論:利用展開圖中兩點之間,線段最短解決問題.在這個環(huán)節(jié)中,可讓學生沿母線剪開圓柱體,具體觀察.接下來后提問:怎樣計算AB?
在Rt△AA′B中,利用勾股定理可得,若已知圓柱體高為12c,底面半徑為3c,π取3,則.
第三環(huán)節(jié):做一做(7分鐘,學生合作探究)
教材23頁
李叔叔想要檢測雕塑底座正面的AD邊和BC邊是否分別垂直于底邊AB,但他隨身只帶了卷尺,
。1)你能替他想辦法完成任務(wù)嗎?
(2)李叔叔量得AD長是30厘米,AB長是40厘米,BD長是50厘米,AD邊垂直于AB邊嗎?為什么?
。3)小明隨身只有一個長度為20厘米的刻度尺,他能有辦法檢驗AD邊是否垂直于AB邊嗎?BC邊與AB邊呢?
第四環(huán)節(jié):鞏固練習(10分鐘,學生獨立完成)
1.甲、乙兩位探險者到沙漠進行探險,某日早晨8:00甲先出發(fā),他以6/h的速度向正東行走,1小時后乙出發(fā),他以5/h的速度向正北行走.上午10:00, 甲、乙兩人相距多遠?
2.如圖,臺階A處的螞蟻要爬到B處搬運食物,它怎么走最近?并求出最近距離.
3.有一個高為1.5米,半徑是1米的圓柱形油桶,在靠近邊的地方有一小孔,從孔中插入一鐵棒,已知鐵棒在油桶外的部分為0.5米,問這根鐵棒有多長?
第五環(huán)節(jié) 課堂小結(jié)(3分鐘,師生問答)
內(nèi)容:
1、如何利用勾股定理及逆定理解決最短路程問題?
第六 環(huán)節(jié):布置作業(yè)(2分鐘,學生分別記錄)
內(nèi)容:
作業(yè):1.課本習題1.5第1,2,3題.
要求:A組(學優(yōu)生):1、2、3
B組(中等生):1、2
C組(后三分之一生):1
板書設(shè)計:
教學反思:
勾股定理教案2
一、教學目標
(一)教學知識點
1.掌握勾股定理,了解利用拼圖驗證勾股定理的方法.
2.運用勾股解決一些實際問題.
(二)能力訓(xùn)練要求
1.學會用拼圖的方法驗證勾股定理,培養(yǎng)學生的創(chuàng)新能力和解決實際問題的能力.
2.在拼圖過程中,鼓勵學生大膽聯(lián)想,培養(yǎng)學生數(shù)形結(jié)合的意識.
(三)情感與價值觀要求
利用拼圖的方法驗證勾股定理,是我國古代數(shù)學家的一大貢獻.借助對學生進行愛國主義教育.并在拼圖的過程中獲得學習數(shù)學的快樂,提高學習數(shù)學的興趣.
二.教學重、難點
重點:勾股定理的證明及其應(yīng)用.
難點:勾股定理的證明.
三.教學方法
教師引導(dǎo)和學生自主探索相結(jié)合的方法.
在用拼圖的方法驗證勾股定理的過程中.教師要引導(dǎo)學生善于聯(lián)想,將形的問題與數(shù)的問題聯(lián)系起來,讓學生自主探索,大膽地聯(lián)系前面知識,推導(dǎo)出勾股定理,并自己嘗試用勾股定理解決實際問題.
四.教具準備
1.每個學生準備一張硬紙板;
2.投影片三張:
第一張:問題串(記作1.1.2 A);
第二張:議一議(記作1.1.2 B);
第三張:例題(記作1.1.2 C).
五.教學過程
Ⅰ.創(chuàng)設(shè)問題情景,引入新課
[師]我們曾學習過整式的'運算,其中平方差公式(a+b)(a-b)=a2-b2;完全平方公式(ab)2=a22ab+b2是非常重要的內(nèi)容.誰還能記得當時這兩個公式是如何推出的?
[生]利用多項式乘以多項式的法則從公式的左邊就可以推出右邊.例如(a+b)(a-b)=a2-ab+ab-b2=a2-b2,所以平方差公式是成立的.
[生]還可以用拼圖的方法來推出.例如:(a+b)2=a2+2ab+b2.我們可以用一個邊長為a的正方形,一個邊長為b的正方形,兩個長和寬分別為a和b的長方形可拼成如下圖所示的邊長為(a+b)的正方形,那么這個大的正方形的面積可以表示為(a+b)2;又可以表示為a2+2ab+b2.所以(a+b)2=a2+2ab+b2.
勾股定理教案3
在數(shù)學課程改革中,基于對數(shù)學課程標準基本理念的理解,我從多個方面、不同的角度將課改前后勾股定理的教學進行了對比與研究,以求從中明晰在今后的教學中亟待解決的問題,更加靠近課程改革的具體目標、
一、課程改革前對勾股定理的教學
。ㄒ唬┙虒W目標
1、使學生掌握勾股定理、
2、使學生能夠熟練地運用勾股定理,由已知直角三角形中的兩條邊長求出第三條邊長
。ǘ┙虒W內(nèi)容
1、關(guān)于勾股定理的數(shù)學史:《周髀算經(jīng)》中出現(xiàn)的“勾廣三,股修四,徑隅五”
2、給出勾股定理:直角三角形兩直角邊a,b的平方和,等于斜邊c的平方,即a2 + b2 = c2
3、用拼圖法推證勾股定理、
4、勾股定理的應(yīng)用:解決幾何計算、作圖及實際生產(chǎn)、生活的問題、
二、課程改革后對勾股定理的教學
。ㄒ唬┙虒W目標
1、認知目標:掌握直角三角形三邊之間的數(shù)量關(guān)系,學會用符號表示、通過數(shù)格子及割補等辦法探索勾股定理的形成過程,使學生體會數(shù)形結(jié)合的思想,體驗從特殊到一般的邏輯推理過程
2、能力目標:發(fā)展學生的合情推理能力,主動合作、探究的學習精神,感受數(shù)學思考過程的條理性,讓學生經(jīng)歷“觀察—猜想—歸納—驗證”的數(shù)學思想,并感受數(shù)形結(jié)合和由特殊到一般的思想方法
3、情感目標:通過數(shù)學史上對勾股定理的介紹,激發(fā)學生學數(shù)學、愛數(shù)學、做數(shù)學的情感,使學生在經(jīng)歷定理探索的過程中,感受數(shù)學之美、探究之趣
。ǘ┙虒W內(nèi)容
1、在方格紙上通過計算面積的方法探索勾股定理(或設(shè)計其他的探索情境)
2、由學生通過觀察、歸納、猜想確認勾股定理:如果直角三角形兩直角邊分別為a,b,斜邊為c,那么a2 + b2 = c2,即直角三角形兩直角邊的平方和等于斜邊的平方
3、勾股世界:介紹勾股定理的悠久歷史、重大意義及古代人民的聰明才智
4、探討利用拼圖法驗證勾股定理、
5、勾股定理的實際應(yīng)用、
三、兩種課堂教學的對比
。ㄒ唬┙虒W理念和教學內(nèi)容的不同
課改前傳統(tǒng)的勾股定理的教學,重在掌握定理和應(yīng)用定理、這種教學過分突出了勾股定理這一現(xiàn)成幾何知識結(jié)論的傳遞和接受,忽略了定理的發(fā)現(xiàn)過程、發(fā)現(xiàn)方法,導(dǎo)致學生的學習過程被異化為被動接受和單純的記憶定理、被動認知和機械訓(xùn)練變形及運算技能的過程、這種教學思想的弊病是“重結(jié)論而輕過程”,“厚知識運用而薄思想方法”
課改后勾股定理的教學從以下幾方面進行:
1、創(chuàng)設(shè)探索性的問題情境——學生歸納出直角三角形三邊之間的`一般規(guī)律
2、拼圖驗證定理——用數(shù)形結(jié)合的方法支持定理的認識
3、構(gòu)建數(shù)學模型——學生體驗由特例歸納猜想、由特例檢驗猜想
4、解決實際問題——熟練掌握定理,并形成運用定理的技能
5、勾股定理數(shù)學史——激發(fā)學生的民族自豪感,點燃熱愛數(shù)學的熱情
站在理論的角度,在這種設(shè)計中,使學生對知識的實際背景和對知識的直觀感知以及學生對收集、整理、分析數(shù)學信息的能力等方面得以加強、這充分反映了以未來社會對公民所需的數(shù)學思想方法為主線選擇和安排教學內(nèi)容,并以與學生年齡特征相適應(yīng)的大眾化、生活化的方式呈現(xiàn)教學內(nèi)容、不過,通過實際教學,要想真正的做到“以學生為本”,在短短的兩課時內(nèi)既要重點突出,又能不留死角地圓滿完成以上五個層面的學習,也確屬不易
。ǘ┙處焸湔n內(nèi)容的不同
教改前對勾股定理的備課,在把握教材內(nèi)容的同時,可在勾股定理的數(shù)學史和定理應(yīng)用兩方面加以調(diào)整、例如,增強民族自豪感:中國古代的大禹就是用勾股定理來確定兩地的地勢差,以治理洪水;激發(fā)學習興趣:勾股定理的證明方法已有400多種,給出這些證明方法的不但有數(shù)學家、物理學家,還不乏政界要人,像美國第20任總統(tǒng)加菲爾德、印度國王帕斯卡拉二世,都通過構(gòu)造圖形的方法給出了勾股定理的別致證法、
定理應(yīng)用這一課時,教材從純幾何問題、生活問題、生產(chǎn)問題等幾方面均有涉及,從提高學生興趣方面可靈活補充一道11世紀阿拉伯數(shù)學家給出的一道趣味題:小溪邊長著兩棵樹,隔岸相望、一棵樹高30肘尺(古代長度單位),另一棵高20肘尺,兩樹的樹干間的距離是50肘尺、每棵樹的樹頂上都停著一只鳥,兩只鳥同時看見樹間水面上游出的一條魚,它們立刻飛去抓魚,并且同時到到目標、問:這條魚出現(xiàn)的地方離較高的樹的樹根有多遠?
在實際教學中根據(jù)學生的理解情況及實際水平,在訓(xùn)練的形式、數(shù)量上與教材也有所區(qū)分:增加了一個隨堂檢測,以鞏固所學、由于當時所教班級為數(shù)學班,學生整體接受能力較強,就設(shè)計了一個請學生自編有關(guān)勾股定理應(yīng)用的題目,效果不錯、
教改后的備課,除了在上述兩方面有所選擇之外,重點放在了探索情境的設(shè)置上:利用下面圖中的任何一個或幾個都可從3個正方形的面積關(guān)系中得出直角三角形三邊關(guān)系,不同的班級可由學生不同的認知水平來設(shè)計認識層次、
為了保證教學重點,把利用拼圖驗證勾股定理的主要探討放在專門的課題學習中進行
。ㄈ⿲W生學習方式的不同
對于課改前勾股定理的學習,學生沿襲著“接受定理——強化訓(xùn)練——回味體會”的方式、這在一定程度上增強了學生對定理的熟悉程度,并在定理應(yīng)用上感到運用自如、但這種熟練僅僅是一種強化訓(xùn)練后的暫時現(xiàn)象,知識的本身及其遷移只保持在較短的時間內(nèi),不會給學習者留下長久的甚至是終生的印象
很明顯,課改后勾股定理的學習是從實際問題到數(shù)學問題,再回到實際問題的處理過程,學生眼中的勾股定理來源于熟悉的背景——正方形面積,又用于指導(dǎo)生產(chǎn)、生活、經(jīng)常用數(shù)學的眼光來審視生活,從生活中發(fā)現(xiàn)數(shù)學,學生才會逐步具有“數(shù)學建!钡哪芰,才能逐步感悟生活的數(shù)學性、這不僅是社會發(fā)展的需要,同時也是促進學生自身發(fā)展的需要、學生學習過程中對定理的探求、現(xiàn)代信息技術(shù)的發(fā)現(xiàn)及驗證過程無時不表現(xiàn)著其學習的主動性,定理的歸納、結(jié)論的自我認同又包含著合作與自由發(fā)展的和諧共鳴、利用課堂教學、利用教材培養(yǎng)學生良好的學習方式,便塑造了其良好的思維方式,促進了學生和諧、自由、全面、充分的發(fā)展
。ㄋ模┙虒W效果的不同(見下表)
四、兩種教學對比研究的結(jié)論
(一)新課程前后的教學各有優(yōu)勢與不足(見下表)
。ǘ┬抡n程中幾何教學需要注意的幾個方面
1、探究學習不是簡單地布置學生去探究、去學習,教師要發(fā)揮主導(dǎo)作用,要讓學生明確去探究什么,如何探究,要讓學生的探究活動是有效的、有意義的新教材中的很大一部分可采用勾股定理的探究方式:向?qū)W生提供探索情境,提出能提供必需信息的問題——學生采用多種方式尋求問題的答案,獲取信息——整理、歸納結(jié)論——設(shè)法驗證或解釋
2、學生學習過程中的主動參與要在教師指導(dǎo)督促中形成,不能過高估計學生的意志、興趣、例如,營造一種和諧、民主的課堂氣氛來提高全體學生的參與興趣;幫助學生制訂分段式的小目標來增強其成就感,強化其參與意識、
3、避免合作學習流于形式
。1)堅持“組間同質(zhì),組內(nèi)異質(zhì)”的分組方式,以保證人人有所發(fā)展
。2)教師要加強合作技能的指導(dǎo),指導(dǎo)學生進行小組分工,要求明確各自在完成共同的任務(wù)中個人承擔的責任
(3)及時協(xié)調(diào)組內(nèi)成員間的關(guān)系,有效解決組內(nèi)出現(xiàn)的不利問題
。4)正確評價組內(nèi)成員的成績,尋求個人和小集體共同提高的途徑
4、要注重教學活動目標的整體實現(xiàn)、新課程中注重對學生學習興趣的培養(yǎng)、能力的提升,注重知識形成過程的教學,但對一些基本的訓(xùn)練有些淡化,導(dǎo)致整體教學目標不夠均衡、為此,在勾股定理的教學中,不但要重過程、方法、能力,還要重視相關(guān)的計算和推理,并在計算和推理中學會數(shù)學思考,這樣才能把“知識技能”、“數(shù)學思考”、“問題解決”、“情感態(tài)度”多方面教學目標有機結(jié)合,達到整體實現(xiàn)教學目標
5、不能忽視雙基的教學,要注重學生對基礎(chǔ)知識、基本技能的理解和掌握、基礎(chǔ)知識不但是學生發(fā)展的基礎(chǔ)性目標,還是落實數(shù)學思想、方法、能力目標的載體、數(shù)學知識的教學,要注重知識的“生長點”與“延伸點”,把每堂課教學的知識置于整體知識的體系中,注重知識的結(jié)構(gòu)和體系
6、重視合情推理及演繹推理的教學和訓(xùn)練、推理教學要轉(zhuǎn)變并貫穿于數(shù)學教學的始終、教學中,教師要設(shè)計適當?shù)膶W習活動,引導(dǎo)學生通過觀察、估算、歸納、類比、畫圖等活動發(fā)現(xiàn)一些規(guī)律,猜想某些結(jié)論,發(fā)展合情推理能力、對于幾何的教學要加強演繹推理的教學訓(xùn)練,通過實例讓學生認識到,結(jié)論的正確與否需要演繹推理的證明、當然,不同年級可提出不同的要求,但要慢慢加強,訓(xùn)練不斷提高要求,最后形成較高的演繹推理能力
勾股定理教案4
學習目標
1、通過拼圖,用面積的方法說明勾股定理的正確性.
2.探索勾股定理的過程,發(fā)展合情推理的能力,體會數(shù)型結(jié)合的思想。
重點難點
或?qū)W習建議學習重點:用面積的方法說明勾股定理的正確.
學習難點:勾股定理的應(yīng)用.
學習過程教師
二次備課欄
自學準備與知識導(dǎo)學:
這是1955年希臘為紀念一位數(shù)學家曾經(jīng)發(fā)行的郵票。
郵票上的圖案是根據(jù)一個著名的數(shù)學定理設(shè)計的。
學習交流與問題研討:
1、探索
問題:分別以圖中的直角三角形三邊為邊向三角形外
作正方形,小方格的面積看做1,求這三個正方形的面積?
S正方形BCED=S正方形ACFG=S正方形ABHI=
發(fā)現(xiàn):
2、實驗
在下面的方格紙上,任意畫幾個頂點都在格點上的三角形;并分別以這個三角形的各邊為一邊向三角形外做正方形并計算出正方形的面積。
請完成下表:
S正方形BCEDS正方形ACFGS正方形ABHIS正方形BCED、S正方形ACFG、S正方形ABHI的關(guān)系
112
145
41620
91625
發(fā)現(xiàn):
如何用直角三角形的三邊長來表示這個結(jié)論?
這個結(jié)論就是我們今天要學習的勾股定理:
如圖:我國古代把直角三角形中,較短的直角邊叫做“勾”,較長的直角邊叫做“股”,斜邊叫做“弦”,所以勾股定理可表示為:弦股還可以表示為:或勾
練習檢測與拓展延伸:
練習1、求下列直角三角形中未知邊的長
練習2、下列各圖中所示的線段的'長度或正方形的面積為多少。
(注:下列各圖中的三角形均為直角三角形)
例1、如圖,在四邊形中,∠,∠,,求.
檢測:
1、在Rt△ABC中,∠C=90°(1)若a=5,b=12,則c=________;
(2)b=8,c=17,則S△ABC=________。
2、在Rt△ABC中,∠C=90,周長為60,斜邊與一條直角邊之比為13∶5,則這個三角形三邊長分別是()
A、5、4、3、;B、13、12、5;C、10、8、6;D、26、24、10
3、若等腰三角形中相等的兩邊長為10cm,第三邊長為16cm,那么第三邊上的高為()
A.12cmB.10cmC.8cmD.6cm
4、要登上8m高的建筑物,為了安全需要,需使梯子底端離建筑物6m,至少需要多長的梯子?(畫出示意圖)
5、飛機在空中水平飛行,某一時刻剛好飛到一個男孩頭頂正上方4千米處,過了20秒,飛機距離這個男孩5千米,飛機每小時飛行多少千米?
課后反思或經(jīng)驗總結(jié):
1、什么叫勾股定理;
2、什么樣的三角形的三邊滿足勾股定理;
3、用勾股定理解決一些實際問題。
勾股定理教案5
一、創(chuàng)設(shè)問屬情境,引入新課
活動1(1)總結(jié)直角三角形有哪些性質(zhì).(2)一個三角形,滿足什么條件是直角三角形?
設(shè)計意圖:通過對前面所學知識的歸納總結(jié),聯(lián)想到用三邊的關(guān)系是否可以判斷一個三角形為直角三角形,提高學生發(fā)現(xiàn)反思問題的能力.
師生行為學生分組討論,交流總結(jié);教師引導(dǎo)學生回憶.
本活動,教師應(yīng)重點關(guān)注學生:①能否積極主動地回憶,總結(jié)前面學過的舊知識;②能否“溫故知新”.
生:直角三角形有如下性質(zhì):(1)有一個角是直角;(2)兩個銳角互余,(3)兩直角邊的平方和等于斜邊的平方:(4)在含30°角的直角三角形中,30°的角所對的直角邊是斜邊的一半.
師:那么,一個三角形滿足什么條件,才能是直角三角形呢?
生:有一個內(nèi)角是90°,那么這個三角形就為直角三角形.
生:如果一個三角形,有兩個角的和是90°,那么這個三角形也是直角三角形.
師:前面我們剛學習了勾股定理,知道一個直角三角形的兩直角邊a,b斜邊c具有一定的數(shù)量關(guān)系即a2+b2=c2,我們是否可以不用角,而用三角形三邊的關(guān)系來判定它是否為直角三角形呢?我們來看一下古埃及人如何做?
二、講授新課
活動2問題:據(jù)說古埃及人用下圖的方法畫直角:把一根長蠅打上等距離的13個結(jié),然后以3個結(jié),4個結(jié)、5個結(jié)的長度為邊長,用木樁釘成一個三角形,其中一個角便是直角.
這個問題意味著,如果圍成的三角形的三邊分別為3、4、5.有下面的關(guān)系“32+42=52”.那么圍成的三角形是直角三角形.
畫畫看,如果三角形的三邊分別為2.5cm,6cm,6.5cm,有下面的關(guān)系,“2.52+62=6.52,畫出的三角形是直角三角形嗎?換成三邊分別為4cm、7.5cm、8.5cm.再試一試.
設(shè)計意圖:由特殊到一般,歸納猜想出“如果三角形三邊a,b,c滿足a2+b2=c2,那么這個三角形就為直免三角形的結(jié)論,培養(yǎng)學生動手操作能力和尋求解決數(shù)學問題的一般方法.
師生行為讓學生在小組內(nèi)共同合作,協(xié)手完成此活動.教師參與此活動,并給學生以提示、啟發(fā).在本活動中,教師應(yīng)重點關(guān)注學生:①能否積極動手參與.②能否從操作活動中,用數(shù)學語言歸納、猜想出結(jié)論.③學生是否有克服困難的`勇氣.
生:我們不難發(fā)現(xiàn)上圖中,第(1)個結(jié)到第(4)個結(jié)是3個單位長度即AC=3;同理BC=4,AB=5.因為32+42=52.我們圍成的三角形是直角三角形.
生:如果三角形的三邊分別是2.5cm,6cm,6.5cm.我們用尺規(guī)作圖的方法作此三角形,經(jīng)過測量后,發(fā)現(xiàn)6.5cm的邊所對的角是直角,并且2.52+62=6.52.
再換成三邊分別為4cm,7.5cm,8.5cm的三角形,目標可以發(fā)現(xiàn)8.5cm的邊所對的角是直角,且也有42+7.52=8.52.
是不是三角形的三邊只要有兩邊的平方和等于第三邊的平方,就能得到一個直角三角形呢?
活動3下面的三組數(shù)分別是一個三角形的三邊長?
勾股定理教案6
1、勾股定理
勾股定理:如果直角三角形兩直角邊分別為a,b,斜邊為c,那么a2+b2=c2.
即直角三角形兩直角的平方和等于斜邊的平方.
因此,在運用勾股定理計算三角形的邊長時,要注意如下三點:
。1)注意勾股定理的使用條件:只對直角三角形適用,而不適用于銳角三角形和鈍角三角形;
(2)注意分清斜邊和直角邊,避免盲目代入公式致錯;
。3)注意勾股定理公式的變形:在直角三角形中,已知任意兩邊,可求第三邊長.即c2=a2+b2,a2=c2-b2,b2=c2-a2.
2.學會用拼圖法驗證勾股定理
拼圖法驗證勾股定理的基本思想是:借助于圖形的面積來驗證,依據(jù)是對圖形經(jīng)過割補、拼接后面積不變的原理.
如,利用四個如圖1所示的直角三角形三角形,拼出如圖2所示的三個圖形.
請讀者證明.
如上圖示,在圖(1)中,利用圖1邊長為a,b,c的四個直角三角形拼成的一個以c為邊長的正方形,則圖2(1)中的小正方形的邊長為(b-a),面積為(b-a)2,四個直角三角形的面積為4×ab=2ab.
由圖(1)可知,大正方形的面積=四個直角三角形的`面積+小正方形的的面積,即c2=(b-a)2+2ab,則a2+b2=c2問題得證.
請同學們自己證明圖(2)、(3).
3.在數(shù)軸上表示無理數(shù)
將在數(shù)軸上表示無理數(shù)的問題轉(zhuǎn)化為化長為無理數(shù)的線段長問題.第一步:利用勾股定理拆分出哪兩條線段長的平方和等于所畫線段(斜邊)長的平方,注意一般其中一條線段的長是整數(shù);第二步:以數(shù)軸原點為直角三角形斜邊的頂點,構(gòu)造直角三角形;第三步:以數(shù)軸原點圓心,以斜邊長為半徑畫弧,即可在數(shù)軸上找到表示該無理數(shù)的點.
二、典例精析
例1如果直角三角形的斜邊與一條直角邊的長分別是13cm和5cm,那么這個直角三角形的面積是cm2.
分析:欲求直角三角形的面積,已知一直角三角形的斜邊與一條直角邊的長,則求得另一直角邊的長即可.根據(jù)勾股定理公式的變形,可求得.
解:由勾股定理,得
132-52=144,所以另一條直角邊的長為12.
所以這個直角三角形的面積是×12×5=30(cm2).
例2如圖3(1),一只螞蟻沿棱長為a的正方體表面從頂點A爬到
頂點B,則它走過的最短路程為()
A.B.C.3aD.分析:本題顯然與例2屬同種類型,思路相同.但正方體的
各棱長相等,因此只有一種展開圖.
解:將正方體側(cè)面展開
勾股定理教案7
教學目標
知識與技能:
了解勾股定理的一些證明方法,會簡單應(yīng)用勾股定理解決問題
過程與方法:
在充分觀察、歸納、猜想的基礎(chǔ)上,探究勾股定理,在探究的過程中,發(fā)展合情推理,體會數(shù)形結(jié)合、從特殊到一般等數(shù)學思想。
情感態(tài)度價值觀:
通過對我國古代研究勾股定理的成就介紹,培養(yǎng)學生的民族自豪感。
教學過程
1、創(chuàng)設(shè)情境
問題1國際數(shù)學家大會是最高水平的全球性數(shù)學學科學術(shù)會議,被譽為數(shù)學界的“奧運會”。2002年在北京召開了第24屆國際數(shù)學家大會。下圖就是大會會徽的圖案。你見過這個圖案嗎?它由哪些我們學習過的基本圖形組成?這個圖案有什么特別的含義?
師生活動:教師引導(dǎo)學生尋找圖形中的直角三角形和正方形等,并引導(dǎo)學生發(fā)現(xiàn)直角三角形的全等關(guān)系,指出通過今天的學習,就能理解會徽圖案的含義。
設(shè)計意圖:本節(jié)課是本章的起始課,重視引言教學,從國際數(shù)學家大會的`會徽說起,設(shè)置懸念,引入課題。
2、探究勾股定理
觀看洋蔥數(shù)學中關(guān)于勾股定理引入的視頻,讓我們一起走進神奇的數(shù)學世界
問題2相傳2500多年前,畢達哥拉斯有一次在朋友家作客時,發(fā)現(xiàn)朋友家用轉(zhuǎn)鋪成的地面圖案反應(yīng)了直角三角形三邊的某種數(shù)量關(guān)系,請你觀察下圖,你從中發(fā)現(xiàn)了什么數(shù)量關(guān)系?
師生活動:學生先獨立觀察思考一分鐘后,小組交流合作分析圖形中兩個藍色正方形與橙色正方形有哪些數(shù)量關(guān)系,教師參與學生的討論
追問:由這三個正方形的邊長構(gòu)成的等腰直角三角形三條邊長之間又有怎么樣的關(guān)系?
師生活動:教師引導(dǎo)學生發(fā)現(xiàn)正方形的面積等于邊長的平方,歸納出:等腰直角三角形兩條直角邊的平方和等于斜邊的平方。
設(shè)計意圖:從最特殊的等腰直角三角形入手,便于學生觀察得到結(jié)論
問題3:數(shù)學研究遵循從特殊到一般的數(shù)學思想,既然我們得到了等腰直角三角形三邊的這種特殊的數(shù)量關(guān)系,那我們不妨大膽猜測在一般的直角三角形(在下圖的方格紙中,每個方格的面積是1)中,這種特殊的數(shù)量關(guān)系也同樣成立。
師生活動:學生獨立思考后小組討論,難點是如何證明求以斜邊為邊長的正方形的面積,可由師生共同總結(jié)得出可以通過割、補兩種方法,求出其面積。
勾股定理教案8
一、教學目標
(一)知識目標
1、創(chuàng)設(shè)情境引出問題,激起學生探索直角三角形三邊的關(guān)系的興趣。
2、讓學生帶著問題體驗勾股定理的探索過程,并正確運用勾股定理解決相關(guān)問題。
(二)能力目標
1、培養(yǎng)學生學數(shù)學、用數(shù)學的意識和能力。
2、能把已有的數(shù)學知識運用于勾股定理的探索過程。
3、能熟練掌握勾股定理及其變形公式,并會根據(jù)圖形找出直角三角形及其三邊,從而正確運用勾股定理及其變形公式于圖形解決相關(guān)問題。 (三)情感目標
1、培養(yǎng)學生的自主探索精神,提高學生合作交流能力和解決問題的能力。
2、讓學生感受數(shù)學文化的價值和中國傳統(tǒng)數(shù)學的成就,激發(fā)學生的愛國熱情,培養(yǎng)學生的民族自豪感,教育學生奮發(fā)圖強、努力學習。
二、教學重點
通過圖形找出直角三角形三邊之間的關(guān)系,并正確運用勾股定理及其變形公式解決相關(guān)問題。
三、教學難點
運用已掌握的相關(guān)數(shù)學知識探索勾股定理。
四、教學過程
(一)創(chuàng)設(shè)情境,引出問題
想一想:
小明媽媽買了一部29英寸(74厘米)的電視機,小明量了電視機的屏幕后,發(fā)現(xiàn)屏幕只有58厘米長和46厘米寬,他覺得一定是售貨員搞錯了。你同意他的想法嗎?你能解釋這是為什么嗎?
要解決這個問題,必須掌握這節(jié)課的內(nèi)容。這節(jié)課我們要探討的是直角三角形的.三邊有什么關(guān)系。
- 1 -
(二) 探索交流,得出新知
探討之前我們一起來回憶一下直角三角形的三邊:
如圖,在Rt △ABC 中,∠C=90° ∠C 所對的邊AB :斜邊c ∠A 所對的邊BC :直角邊a ∠B 所對的邊AC :直角邊b
問題:在直角三角形中,a 、b 、c 三條邊之間到底存在著怎樣的關(guān)系呢? (1)我們先來探討等腰直角三角形的三邊之間的關(guān)系。
這個關(guān)系2500年前已經(jīng)有數(shù)學家發(fā)現(xiàn)了,今天我們把當時的情景重現(xiàn),A
C
a
B
請同學們也來看一看、找一找。
如圖
數(shù)學家畢達哥拉斯的發(fā)現(xiàn):S A +SB =SC
即:a 2+b2=c2
也就是說:在等腰直角三角形中,兩直角邊的平方和等于斜邊的平方。
議一議:如果是一般的直角三角形,兩直角邊的平方和是否還會等于斜邊的平方? 如圖
分析: SA +SB =SC 是否成立?
(1)正方形A 中含有 個小方格,即S A = 個單位面積。 (2)正方形B 中含有 個小方格,即S B = 個單位面積。 (3)由上可得:S A +SB = 個單位面積 問題:正方形C 的面積要如何求呢?與同伴進行交流。 方法一:
“補”成一個邊長為整數(shù)格的大正方形,再減去四個直角邊為整數(shù)格的三角形 方法二:分割成四個直角邊為整數(shù)格的三角形,再加上一個小方格。 綜上:
我們得出:S A +SB =SC
即:a +b=c
2
2
2
C
- 2 -
a
B
也就是說:在一般的直角三角形中,兩直角邊的平方和等于斜邊的平方。
概括:
勾股定理:在直角三角形中,兩直角邊的平方和等于斜邊的平方
數(shù)學語言描述:
如圖,在Rt △ABC 中,a 2+b2=c2
(用多媒體簡單介紹勾股定理的名稱由來、中國古代的數(shù)學成就及勾股定理的“無字證明”) (三)應(yīng)用新知,解決問題
例1:求出下列直角三角形中未知邊x 的長度 5
注意:要根據(jù)圖表找出未知邊是斜邊還是直角邊,勾股定理要用對。
從上面這兩道例題,我們知道了在直角三角形中,任意已知兩邊,可以求第三邊。 即勾股定理的變形公式: 如圖,在Rt △ABC 中
(1)若已知a ,b 則求c 的公式為:c =(2)若已知a ,c 則求b 的公式為:b =(3)若已知b ,c 則求a 的公式為:a =
a +b c -a c -b
22
22
2
C
a
B
2
例2: 如圖,在直角三角形ABC 中, ∠C=900, A
(1) 已知: a=5, b=12, 求c;
(2) 已知: b=8,c=10 , 求(3) 已知: a=
3, c=2, 求 請同學們利用這節(jié)課學到的勾股定理及推論解決我們課前提出的問題:
電視屏幕:
解:在Rt △ABC 中,AB=46厘米,BC=58厘米
由勾股定理得:AC=
?
D
A
46AB
2
+BC
2
2
=46+58
2
≈74(厘米)
∴不同意小明的想法。
- 3 -
58厘米
C
(四)歸納總結(jié)
(1)這節(jié)課你學到了什么知識?
①勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方。 ②在直角三角形中,任意已知兩邊,可以用勾股定理求第三邊。 (2) 運用“勾股定理”應(yīng)注意什么問題? ①要利用圖形找到未知邊所在的直角三角形; ②看清未知邊是所在直角三角形的哪一邊; ③勾股定理要用對。
(五)練習鞏固
(1)、如圖,受臺風“麥莎”影響,一棵樹在離地面8米處斷裂, 樹的頂部落在離樹跟底部6米處,這棵樹折斷前有多高?
(2)、學校有一塊長方形的花圃,經(jīng)常有同學為了少走幾步而走捷徑,于是在草坪上開辟了一條“新路”,他們這樣走少走了______步.
(每兩步約為1米) 3 (3)、已知:Rt △ABC 中,AB =4,AC =3, 則BC 的長為___________。 (六)作業(yè)
1. A、B 、C 組:課本第69、70頁,習題18.1 第1, 2,3題. 2. A、B :練習冊33、34頁
3.A :課本第71頁“閱讀與思考”,了解勾股定理的多種證法。
勾股定理教案9
學習目標:
1、通過拼圖,用面積的方法說明勾股定理的正確性.
2、通過實例應(yīng)用勾股定理,培養(yǎng)學生的知識應(yīng)用技能.
學習重點:
1.用面積的方法說明勾股定理的正確.
2. 勾股定理的應(yīng)用.
學習難點:
勾股定理的應(yīng)用.
學習過程:
一、學前準備:
1、閱讀課本第46頁到第47頁,完成下列問題:
(1)我國古代把直角三角形中較短的直角邊稱為勾,較長的稱為股,斜邊稱為弦。圖(1)稱為“弦圖”,最早是由三國時期的數(shù)學家趙爽在為《周髀算經(jīng)》作法時給出的。圖(2)是在北京召開的20xx年國際數(shù)學家大會(TCM-20xx)的.會標,其圖案正是“弦圖”,它標志著中國古代的數(shù)學成就. 你能用不同方法表示大正方形的面積嗎?
2、剪四個完全相同的直角三角形,然后將它們拼成如圖所示的圖形。大正方形的面積可以表示為_________________________,又可以表示為__________________________.對比兩種表示方法,看看能不能得到勾股定理的結(jié)論。用上面得到的完全相同的四個直角三角形,還可以拼成如下圖所示的圖形,與上面的方法類似,也能說明勾股定理是正確的方法(請逐一說明)
二、合作探究:
(一)自學、相信自己:
。ǘ┧妓鳌⒔涣鳎
拼圖填空:剪裁出若干個大小、形狀完全相同的直角三角形,三邊長分別記為a、b、c,如圖①.(1)拼圖一:分別用4張直角三角形紙片,拼成如圖②③的形狀,觀察圖②③可發(fā)現(xiàn),圖②中兩個小正方形的面積之和
。ㄈ⿷(yīng)用、探究:
1、如圖 ,為了求出湖兩岸的A、B兩點之間的距離,一個觀測者在點C設(shè)樁,使三角形ABC恰好為直角三角形.通過測量,得到AC長160米,BC長128米.問從點A穿過湖到點B有多遠?
(四)鞏固練習:
1、如圖,64、400分別為所在正方形的面積,則圖中字
母A所代表的正方形面積是 _________ 。
三.學習體會:
本節(jié)課我們進一步認識了勾股定理,并用兩種方法證明了這個定理,在應(yīng)用此定理解決問題時,應(yīng)注意只有直角三角形的三邊才有這樣的關(guān)系,如果不是直角三角形應(yīng)該構(gòu)造直角三角形來解決。
2②圖
四.自我測試:
五.自我提高:
勾股定理教案10
教學課題:
勾股定理的應(yīng)用
教學時間
。ㄈ掌、課時)
教材分析:
學情分析:
教 學目標:
能運用勾股定理及直角三角形的判定條件解決實際問題。
在運用勾股定理解決實際問題的過程中,感受數(shù)學的“轉(zhuǎn)化” 思想(把解斜三角形問題轉(zhuǎn)化為解直角三角形的問題),進一步發(fā)展有條理思考和有條理表達的能力,體會數(shù)學的應(yīng)用價值。
教學準備
《數(shù)學學與練》
集體備課意見和主要參考資料
頁邊批注
教學過程
一、 新課導(dǎo)入
本課時的教學內(nèi)容是勾股定理在實際中的應(yīng)用。除課本提供的情境外,教學中可以根據(jù)實際情況另行設(shè)計一些具體情境,也利用課本提供的素材組織數(shù)學活動。比如,把課本例2改編為開放式的問題情境:
一架長為10m的梯子斜靠在墻上,梯子的頂端距地面的垂直距離為8m。如果梯子的頂端下滑0.5m,你認為梯子的底端會發(fā)生什么變化?與同學交流 。
創(chuàng)設(shè)學生身邊的問題情境,為每一個學生提供探索的空間,有利于發(fā)揮學生的主體性;這樣的問題學生常常會從自己的`生活經(jīng)驗出發(fā),產(chǎn)生不同的思考方法和結(jié)論(教學中學生可能的結(jié)論有:底端也滑動 0.5m;如果梯子的頂端滑到地面 上,梯子的頂端則滑動8m,估計梯子底端的滑動小于8m,所以梯子的頂端 下滑0.5m,它的底端的滑動小于0.5m;構(gòu)造直角三角形,運用勾股定理計算梯子滑動前、后底端到墻的垂直距離的差,得出梯子底端滑動約0.61m的結(jié)論等);通過與同學交流,完善各自的.想法,有利于學生主動地把實際問題轉(zhuǎn)化為數(shù)學問題 ,從中感受用數(shù)學的眼光審視客觀世界的樂趣 。
二、新課講授
問題一 在上面的情境中,如果梯子的頂端下滑 1m,那么梯子的底端滑動多少米?
組織學生嘗試用勾股定理解決問題,對有困難的學生教師給予及時的幫助和指導(dǎo)。
問題二 從上面所獲得的信息中,你對梯子下滑的變化過程有進一步的思考嗎?與同學交流。
設(shè)計問題二促使學生能主動積 極地從數(shù)學的角度思考實際問題。教學中學生可能會有多種思考、比如,①這個變化過程中,梯子底端滑動的距離總比頂端下滑的距離大;②因為梯子頂端 下滑到地面時,頂端下滑了8m,而底端只滑動4m,所以這個變化過程中,梯子底端滑動的距離不一定比頂端下滑的距離大;③由勾股數(shù)可知,當梯子頂端下滑到離地面的垂直距離為6m,即頂端下滑2m時,底端到墻的垂直距離是8m,即底端電滑動2m等。教學中不要把尋找規(guī)律作為這個探索活動的目標,應(yīng)讓學生進行充分的交流,使學生逐步學會運用數(shù)學的眼光去審視客觀世界,從不同的角度去思考問題,獲得一些研究問題的經(jīng)驗和方法、
3、例題教學
課本的例1是勾股定理的簡單應(yīng)用,教學中可根據(jù)教學的實際情況補充一些實際應(yīng)用問題,把課本習題2.7第4題作為補充例題。通過這個問題的討論,把“32+b2=c2”看作一個方程,設(shè)折斷處離地面x尺,依據(jù)問題給出的條件就把它轉(zhuǎn)化為熟悉的會解的一元二次方程32+x2=(10—x)2,從中可以讓學生感受數(shù)學的“轉(zhuǎn)化”思想,進一步了解勾股定理的悠久歷史和我國古代人民的聰明才智、
三、鞏固練習
1、甲、乙兩人同時從同一地點出發(fā),甲往東走了4km,乙往南走了6km,這時甲、乙兩人相距__________km。
2、如圖,一圓柱高8cm,底面半徑2cm,一只螞蟻從點A爬到點B處吃食,要爬行的最短路程( 取3)是( )。
。ˋ)20cm (B)10cm (C)14cm (D)無法確定
3、如圖,一塊草坪的形狀為四邊形ABCD,其中∠B=90°,AB=3m,BC=4m,CD=12m,AD=13m。求這塊草坪的面積。
四、小結(jié)
我們知道勾股定理揭示了直角三角形的三邊之間的數(shù)量關(guān)系,已知直角 三角形中的任意兩邊就可以依據(jù)勾股定理求出第三邊。從應(yīng)用勾股定理解決實際問題中,我們進一步認識到把直角三角形中三邊關(guān)系“a2+b2=c2”看成一個方程,只要 依據(jù)問題的條件把它轉(zhuǎn)化為我們會解的方程,就把解實際問題轉(zhuǎn)化為解方程。
勾股定理教案11
【學習目標】
能運用勾股定理及直角三角形的判別條件解決簡單的實際問題.
【學習重點】
勾股定理及直角三角形的判別條件的運用.
【學習重點】
直角三角形模型的建立.
【學習過程】
一.課前復(fù)習
勾股定理及勾股定理逆定理的區(qū)別
二.新課學習
探究點一:螞蟻沿圓柱側(cè)面爬行的最短路徑問題
1.3如圖,有一個圓柱,它的高等于12cm,底面圓的周長是18cm.在圓柱下底面的A點有一只螞蟻,它想吃到上底面上與A點相對的B點處的食物,沿圓柱側(cè)面爬行的最短路程是多少?
思考:
1.利用學具,嘗試從A點到B點沿圓柱側(cè)面畫出幾條線路,你認為
這樣的線路有幾條?可分為幾類?
2.將右圖的圓柱側(cè)面剪開展開成一個長方形,B點在什么位置?從
A點到B點的最短路線是什么?你是如何畫的?
1.33.螞蟻從A點出發(fā),想吃到B點上的食物,它沿圓柱側(cè)面爬行的最短路程是多少?你是如何解答這個問題的?畫出圖形,寫出解答過程。
4.你是如何將這個實際問題轉(zhuǎn)化為數(shù)學問題的?
小結(jié):
你是如何解決圓柱體側(cè)面上兩點之間的最短距離問題的?
探究點二:利用勾股定理逆定理如何判斷兩線垂直?
1.31.31.3李叔叔想要檢測雕塑底座正面的AD邊和BC邊是否分別垂直底邊AB,
但他隨身只帶了卷尺。(參看P13頁雕塑圖1-13)
。1)你能替他想辦法完成任務(wù)嗎?
1.31.3(2)李叔叔量得AD的長是30cm,AB的長是40cm,
BD長是50cm.AD邊垂直于AB邊嗎?你是如何解決這個問題的?
。3)小明隨身只有一個長度為20cm的刻度尺,他能有辦法檢驗AD邊是否垂直于AB邊嗎?BC邊與AB邊呢?
小結(jié):通過本道例題的探索,判斷兩線垂直,你學會了什么方法?
探究點三:利用勾股定理的方程思想在實際問題中的應(yīng)用
例圖1-14是一個滑梯示意圖,若將滑道AC水平放置,則剛好與AB一樣長.已知滑梯的高度CE=3m,CD=1m,試求滑道AC的長.
1.3
思考:
1.求滑道AC的長的問題可以轉(zhuǎn)化為什么數(shù)學問題?
2.你是如何解決這個問題的?寫出解答過程。
小結(jié):
方程思想是勾股定理中的重要思想,勾股定理反應(yīng)的直角三角形三邊的關(guān)系正是構(gòu)建方程的基礎(chǔ).
四.課堂小結(jié):本節(jié)課你學到了什么?
三.新知應(yīng)用
1.如圖,臺階A處的螞蟻要爬到B處搬運食物,它怎么走最近?并求出最近距離.
1.3
2.如圖,在水池的正中央有一根蘆葦,池底長10尺,它高出水而1尺,如果把這根蘆葦拉向水池一邊,它的頂端恰好到達池邊的水面則這根蘆葦?shù)拈L度是()
1.3
五.作業(yè)布置:習題1.41,3,4題
【反思】
一、教師我的體會:
、、我根據(jù)學生實際情況認真?zhèn)湔n這節(jié)課,書本總共兩個例題,且兩個例題都很難,如果一節(jié)課就講這兩題難題,那一方面學生的學習效率會比較低,另一方面會使學生畏難情緒增加。所以,我簡化教材,使教材易于操作,讓學生易于學習,有利于學生學習新知識、接受新知識,降低學習難度。
把教材讀薄,
、、除了備教材外,還備學生。從教案及授課過程也可以看出,充分考慮到了學生的年齡特點:對新事物有好奇心,但對新知識的鉆研熱情又不夠高,這樣,造成教學難度較大,為了改變這一狀況,在處理教材時,把某些數(shù)學語言轉(zhuǎn)換成通俗文字來表達,把難度大的運用能力降低為難度稍細的理解能力,讓學生樂于面對奧妙而又有一定深度的`數(shù)學,樂于學習數(shù)學。
、、新課選用的例子、練習,都是經(jīng)過精心挑選的,運用性強,貼近生活,與生活實際緊密聯(lián)系,既達到學習、鞏固新知識的目的,同時,又充分展現(xiàn)出數(shù)學教學的重大特征:數(shù)學源于生活實際,又服務(wù)于生活實際。勾股定理源于生活,但同時它又能極大的為生活服務(wù)。
、、使用多媒體進行教學,使知識顯得形象直觀,充分發(fā)揮現(xiàn)代技術(shù)作用。
二、學生體會:
課前,我們也去查閱了一些資料,關(guān)于勾股定理的證明以及有關(guān)的一些應(yīng)用,通過這節(jié)課,真真發(fā)現(xiàn)勾股定理真真來源于生活,我們的幾何圖形和幾何計算對于勾股定理來說非常廣泛,而且以后更要用好它。對于勾股定理都應(yīng)用時,我覺得關(guān)鍵是找到相關(guān)的三角形,并且分清直角邊或斜邊,靈活機智地進行計算和一些推理。另外與同學間在數(shù)學課上有自主學習的機會,有相互之間的討論、爭辯等協(xié)作的機會,在合作學習的過程中共同提高我覺得都是難得的機會。鍛煉了能力,提高了思維品質(zhì),并且勾股定理的應(yīng)用中我覺得圖形很美,古代的數(shù)學家已經(jīng)有了很好的研究并作出了很大的貢獻,現(xiàn)代的藝術(shù)家們也在各方面用到很多,同時在課堂中漸漸地培養(yǎng)了我們的數(shù)學興趣和一定的思維能力。
不過課堂上老師在最后一題的畫圖中能放一放,讓我們有時間去思考怎么畫,那會更好些,自然思維也得到了發(fā)展。課上老師鼓勵我們嘗試不完善的甚至錯誤的意見,大膽發(fā)表自己的見解,體現(xiàn)了我們是學習的主人。數(shù)學課堂里充滿了智慧。
勾股定理教案12
一、回顧交流,合作學習
【活動方略】
活動設(shè)計:教師先將學生分成四人小組,交流各自的小結(jié),并結(jié)合課本P87的小結(jié)進行反思,教師巡視,并且不斷引導(dǎo)學生進入復(fù)習軌道.然后進行小組匯報,匯報時可借助投影儀,要求學生上臺匯報,最后教師歸納.
【問題探究1】(投影顯示)
飛機在空中水平飛行,某一時刻剛好飛到小明頭頂正上方4000米處,過了20秒,飛機距離小明頭頂5000米,問:飛機飛行了多少千米?
思路點撥:根據(jù)題意,可以先畫出符合題意的圖形,如右圖,圖中△ABC中的∠C=90°,AC=4000米,AB=5000米,要求出飛機這時飛行多少千米,就要知道飛機在20秒時間里飛行的路程,也就是圖中的BC長,在這個問題中,斜邊和一直角邊是已知的,這樣,我們可以根據(jù)勾股定理來計算出BC的長.(3000千米)
【活動方略】
教師活動:操作投影儀,引導(dǎo)學生解決問題,請兩位學生上臺演示,然后講評.
學生活動:獨立完成“問題探究1”,然后踴躍舉手,上臺演示或與同伴交流.
【問題探究2】(投影顯示)
一個零件的形狀如右圖,按規(guī)定這個零件中∠A與∠BDC都應(yīng)為直角,工人師傅量得零件各邊尺寸:AD=4,AB=3,DB=5,DC=12,BC=13,請你判斷這個零件符合要求嗎?為什么?
思路點撥:要檢驗這個零件是否符合要求,只要判斷△ADB和△DBA是否為直角三角形,這樣可以通過勾股定理的逆定理予以解決:
AB2+AD2=32+42=9+16=25=BD2,得∠A=90°,同理可得∠CDB=90°,因此,這個零件符合要求.
【活動方略】
教師活動:操作投影儀,關(guān)注學生的`思維,請兩位學生上講臺演示之后再評講.
學生活動:思考后,完成“問題探究2”,小結(jié)方法.
解:在△ABC中,AB2+AD2=32+42=9+16=25=BD2,
∴△ABD為直角三角形,∠A=90°.
在△BDC中,BD2+DC2=52+122=25+144=169=132=BC2.
∴△BDC是直角三角形,∠CDB=90°
因此這個零件符合要求.
【問題探究3】
甲、乙兩位探險者在沙漠進行探險,某日早晨8:00甲先出發(fā),他以6千米/時的速度向東行走,1小時后乙出發(fā),他以5千米/時的速度向北行進,上午10:00,甲、乙兩人相距多遠?
思路點撥:要求甲、乙兩人的距離,就要確定甲、乙兩人在平面的位置關(guān)系,由于甲往東、乙往北,所以甲所走的路線與乙所走的路線互相垂直,然后求出甲、乙走的路程,利用勾股定理,即可求出甲、乙兩人的距離.(13千米)
【活動方略】
教師活動:操作投影儀,巡視、關(guān)注學生訓(xùn)練,并請兩位學生上講臺“板演”.
學生活動:課堂練習,與同伴交流或舉手爭取上臺演示
勾股定理教案13
教學目標:
1、知識目標:
(1)掌握勾股定理;
。2)學會利用勾股定理進行計算、證明與作圖;
。3)了解有關(guān)勾股定理的歷史.
2、能力目標:
。1)在定理的證明中培養(yǎng)學生的拼圖能力;
。2)通過問題的解決,提高學生的運算能力
3、情感目標:
(1)通過自主學習的發(fā)展體驗獲取數(shù)學知識的感受;
(2)通過有關(guān)勾股定理的歷史講解,對學生進行德育教育.
教學重點:勾股定理及其應(yīng)用
教學難點:通過有關(guān)勾股定理的歷史講解,對學生進行德育教育
教學用具:直尺,微機
教學方法:以學生為主體的討論探索法
教學過程():
1、新課背景知識復(fù)習
。1)三角形的三邊關(guān)系
。2)問題:(投影顯示)
直角三角形的三邊關(guān)系,除了滿足一般關(guān)系外,還有另外的特殊關(guān)系嗎?
2、定理的獲得
讓學生用文字語言將上述問題表述出來.
勾股定理:直角三角形兩直角邊 的平方和等于斜邊 的平方
強調(diào)說明:
。1)勾――最短的邊、股――較長的直角邊、弦――斜邊
。2)學生根據(jù)上述學習,提出自己的問題(待定)
學習完一個重要知識點,給學生留有一定的時間和機會,提出問題,然后大家共同分析討論.
3、定理的證明方法
方法一:將四個全等的直角三角形拼成如圖1所示的正方形.
方法二:將四個全等的直角三角形拼成如圖2所示的正方形,
方法三:“總統(tǒng)”法.如圖所示將兩個直角三角形拼成直角梯形
以上證明方法都由學生先分組討論獲得,教師只做指導(dǎo).最后總結(jié)說明
4、定理與逆定理的應(yīng)用
例1 已知:如圖,在△ABC中,∠ACB= ,AB=5cm,BC=3cm,CD⊥AB于D,求CD的長.
解:∵△ABC是直角三角形,AB=5,BC=3,由勾股定理有
∴ ∠2=∠C
又
∴
∴CD的長是2.4cm
例2 如圖,△ABC中,AB=AC,∠BAC= ,D是BC上任一點,
求證:
證法一:過點A作AE⊥BC于E
則在Rt△ADE中,
又∵AB=AC,∠BAC=
∴AE=BE=CE
即
證法二:過點D作DE⊥AB于E, DF⊥AC于F
則DE∥AC,DF∥AB
又∵AB=AC,∠BAC=
∴EB=ED,F(xiàn)D=FC=AE
在Rt△EBD和Rt△FDC中
在Rt△AED中,
∴
例3 設(shè)
求證:
證明:構(gòu)造一個邊長 的矩形ABCD,如圖
在Rt△ABE中
在Rt△BCF中
在Rt△DEF中
在△BEF中,BE+EF>BF
即
例4 國家電力總公司為了改善農(nóng)村用電電費過高的現(xiàn)狀,目前正在全國各地農(nóng)村進行電網(wǎng)改造,某村六組有四個村莊A、B、C、D正好位于一個正方形的四個頂點,現(xiàn)計劃在四個村莊聯(lián)合架設(shè)一條線路,他們設(shè)計了四種架設(shè)方案,如圖實線部分.請你幫助計算一下,哪種架設(shè)方案最省電線.
解:不妨設(shè)正方形的邊長為1,則圖1、圖2中的總線路長分別為
AD+AB+BC=3,AB+BC+CD=3
圖3中,在Rt△DGF中
同理
∴圖3中的路線長為
圖4中,延長EF交BC于H,則FH⊥BC,BH=CH
由∠FBH= 及勾股定理得:
EA=ED=FB=FC=
∴EF=1-2FH=1-
∴此圖中總線路的長為4EA+EF=
∵3>2.828>2.732
∴圖4的連接線路最短,即圖4的架設(shè)方案最省電線.
5、課堂小結(jié):
。1)勾股定理的內(nèi)容
。2)勾股定理的作用
已知直角三角形的兩邊求第三邊
已知直角三角形的一邊,求另兩邊的關(guān)系
6、布置作業(yè):
a、書面作業(yè)P130#1、2、3
b、上交作業(yè)P132#1、3
板書設(shè)計:
探究活動
臺風是一種自然災(zāi)害,它以臺風中心為圓心在周圍數(shù)十千米范圍內(nèi)形成氣旋風暴,有極強的破壞力,如圖,據(jù)氣象觀測,距沿海某城市A的`正南方向220千米B處有一臺風中心,其中心最大風力為12級,每遠離臺風中心20千米,風力就會減弱一級,該臺風中心現(xiàn)正以15千米/時的速度沿北偏東 方向往C移動,且臺風中心風力不變,若城市所受風力達到或走過四級,則稱為受臺風影響
。1)該城市是否會受到這交臺風的影響?請說明理由
(2)若會受到臺風影響,那么臺風影響該城市持續(xù)時間有多少?
(3)該城市受到臺風影響的最大風力為幾級?
解:(1)由點A作AD⊥BC于D,
則AD就為城市A距臺風中心的最短距離
在Rt△ABD中,∠B= ,AB=220
∴
由題意知,當A點距臺風(12-4)20=160(千米)時,將會受到臺風影響.
故該城市會受到這次臺風的影響.
(2)由題意知,當A點距臺風中心不超過60千米時,
將會受到臺風的影響,則AE=AF=160.當臺風中心從E到F處時,
該城市都會受到這次臺風的影響
由勾股定理得
∴EF=2DE=
因為這次臺風中心以15千米/時的速度移動
所以這次臺風影響該城市的持續(xù)時間為 小時
。3)當臺風中心位于D處時,A城市所受這次臺風的風力最大,其最大風力為 級.
勾股定理教案14
一、內(nèi)容和內(nèi)容解析
1。內(nèi)容
應(yīng)用勾股定理及勾股定理的逆定理解決實際問題。
2。內(nèi)容解析
運用勾股定理的逆定理可以從三角形邊的數(shù)量關(guān)系來識別三角形的形狀,它是用代數(shù)方法來研究幾何圖形,也是向?qū)W生滲透“數(shù)形結(jié)合”這一數(shù)學思想方法的很好素材。綜合運用勾股定理及其逆定理能幫助我們解決實際問題。
基于以上分析,可以確定本課的教學重點是靈活運用勾股定理的逆定理解決實際問題。
二、目標和目標解析
1。目標
。1)靈活應(yīng)用勾股定理及逆定理解決實際問題。
(2)進一步加深性質(zhì)定理與判定定理之間關(guān)系的認識。
2。目標解析
達成目標(1)的標志是學生通過合作、討論、動手實踐等方式,在應(yīng)用題中建立數(shù)學模型,準確畫出幾何圖形,再熟練運用勾股定理逆定理判斷三角形狀及求邊長、面積、角度等;
目標(2)能先用勾股定理的逆定理判斷一個三角形是直角三角形,再用勾股定理及直角三角形的性質(zhì)進行有關(guān)的計算和證明。
三、教學問題診斷分析
對于大部分學生將實際問題抽象成數(shù)學模型并進行解析與應(yīng)用,有一定的困難,所以在教學時應(yīng)該注意啟發(fā)引導(dǎo)學生從實際生活中所遇到的問題出發(fā),鼓勵學生以勾股定理及逆定理的知識為載體建立數(shù)學模型,利用數(shù)學模型去解決實際問題。
本課的教學難點是靈活運用勾股定理及逆定理解決實際問題。
四、教學過程設(shè)計
1。復(fù)習反思,引出課題
問題1 通過前面的'學習,我們對勾股定理及其逆定理的知識有一定的了解,請說出勾股定理及其逆定理的內(nèi)容。
師生活動:學生回答勾股定理的內(nèi)容“如果直角三角形的兩條直角邊長分別為,斜邊長為,那么;勾股定理的逆定理“如果三角形的三邊長滿足,那么這個三角形是直角三角形。
追問:你能用勾股定理及逆定理解決哪些問題?
師生活動:學生通過思考舉手回答,教師板書課題。
【設(shè)計意圖】通過復(fù)習勾股定理及其逆定理來引入本課時的學習任務(wù)——應(yīng)用勾股定理及逆定理解決有關(guān)實際問題。
2。 點擊范例,以練促思
問題2 某港口位于東西方向的海岸線上!斑h航”號、“海天”號輪船同時離開港口,各自沿一固定方向航行,“遠航”號每小時航行16海里,“海天”號每小時航行12海里。它們離開港口一個半小時后相距30海里。如果知道“遠航”號沿東北方向航行,能知道“海天”號沿哪個方向航行嗎?
師生活動:學生讀題,理解題意,弄清楚已知條件和需解決的問題,教師通過梯次性問題的展示,適時點撥,學生嘗試畫圖、估測、交流中分化難點完成解答。
追問1:請同學們認真審題,弄清已知是什么?解決的問題是什么?
師生活動:學生通過思考舉手回答,教師在黑板上列出:已知兩種船的航速,它們的航行時間以及相距的路程, “遠航”號的航向——東北方向;解決的問題是“海天”號的航向。
追問2:你能根據(jù)題意畫出圖形嗎?
師生活動:學生嘗試畫圖,教師在黑板上或多媒體中畫出示意圖。
追問3:在所畫的圖中哪個角可以表示“海天”號的航向?圖中知道哪個角的度數(shù)?
師生活動:學生小組討論交流回答問題“海天”號的航向只要能確定∠QPR的大小即可。組內(nèi)討論解答,小組代表展示解答過程,教師適時點評,多媒體展示規(guī)范解答過程。
解:根據(jù)題意,
因為
,即
,所以
由“遠航”號沿東北方向航行可知
。因此
,即“海天”號沿西北方向航行。
課堂練習1。 課本33頁練習第3題。
課堂練習2。 在
港有甲、乙兩艘漁船,若甲船沿北偏東
方向以每小時8海里速度前進,乙船沿南偏東某方向以每小時15海里速度前進,1小時后甲船到達
島,乙船到達
島,且
島與
島相距17海里,你能知道乙船沿哪個方向航行嗎?
【設(shè)計意圖】學生在規(guī)范化的解答過程及練習中,提升對勾股定理逆定理的認識以及實際應(yīng)用的能力。
3。 補充訓(xùn)練,鞏固新知
問題3 實驗中學有一塊四邊形的空地
若每平方米草皮需要200元,問學校需要投入多少資金購買草皮?
師生活動:先由學生獨立思考。若學生有想法,則由學生先說思路,然后教師追問:你是怎么想到的?對學生思路中的合理成分進行總結(jié);若學生沒有思路,教師可引導(dǎo)學生分析:從所要求的結(jié)果出發(fā)是要知道四邊形的面積,而四邊形被它的一條對角線分成兩個三角形,求出兩個三角形的面積和即可。啟發(fā)學生形成思路,最后由學生演板完成。
【設(shè)計意圖】引導(dǎo)學生利用輔助線解決問題,進一步養(yǎng)成利用勾股定理的逆定理解決實際問題的意識。
4。 反思小結(jié),觀點提煉
教師引導(dǎo)學生參照下面兩個方面,回顧本節(jié)課所學的主要內(nèi)容,進行相互交流:
。1)知識總結(jié):勾股定理以及逆定理的實際應(yīng)用;
。2)方法歸納:數(shù)學建模的思想。
【設(shè)計意圖】通過小結(jié),梳理本節(jié)課所學內(nèi)容,總結(jié)方法,體會思想。
5。布置作業(yè)
教科書34頁習題17。2第3題,第4題,第5題,第6題。
五、目標檢測設(shè)計
1。小明在學校運動會上負責聯(lián)絡(luò),他先從檢錄處走了75米到達起點,又從起點向東走了100米到達終點,最后從終點走了125米,回到檢錄處,則他開始走的方向是(假設(shè)小明走的每段都是直線) ( )
A。南北 B。東西 C。東北 D。西北
【設(shè)計意圖】考查運用勾股定理的逆定理解決實際生活問題。
2。甲、乙兩船同時從
港出發(fā),甲船沿北偏東
的方向,以每小時9海里的速度向
島駛?cè)ィ掖亓硪粋方向,以每小時12海里的速度向
島駛?cè)ィ?小時后兩船同時到達了目的地。如果兩船航行的速度不變,且
兩島相距45海里,那么乙船航行的方向是南偏東多少度?
【設(shè)計意圖】考查建立數(shù)學模型,準確畫出幾何圖形,運用勾股定理的逆定理解決實際生活問題。
3。如圖是一塊四邊形的菜地,已知
求這塊菜地的面積。
【設(shè)計意圖】考查利用勾股定理及逆定理將不規(guī)則圖形轉(zhuǎn)化為直角三角形,巧妙地求解。
勾股定理教案15
[教學分析]
勾股定理是揭示三角形三條邊數(shù)量關(guān)系的一條非常重要的性質(zhì),也是幾何中最重要的定理之一。它是解直角三角形的主要依據(jù)之一,同時在實際生活中具有廣泛的用途,“數(shù)學源于生活,又用于生活”正是這章書所體現(xiàn)的主要思想。教材在編寫時注意培養(yǎng)學生的動手操作能力和分析問題的能力,通過實際操作,使學生獲得較為直觀的印象;通過聯(lián)系比較、探索、歸納,幫助學生理解勾股定理,以利于進行正確的應(yīng)用。
本節(jié)教科書從畢達哥拉斯觀察地面發(fā)現(xiàn)勾股定理的傳說談起,讓學生通過觀察計算一些以直角三角形兩條直角邊為邊長的小正方形的面積與以斜邊為邊長的正方形的面積的關(guān)系,發(fā)現(xiàn)兩直角邊為邊長的小正方形的面積的和,等于以斜邊為邊長的正方形的面積,從而發(fā)現(xiàn)勾股定理,這時教科書以命題的形式呈現(xiàn)了勾股定理。關(guān)于勾股定理的證明方法有很多,教科書正文中介紹了我國古人趙爽的證法。之后,通過三個探究欄目,研究了勾股定理在解決實際問題和解決數(shù)學問題中的應(yīng)用,使學生對勾股定理的作用有一定的認識。
[教學目標]
一、 知識與技能
1、探索直角三角形三邊關(guān)系,掌握勾股定理,發(fā)展幾何思維。
2、應(yīng)用勾股定理解決簡單的實際問題
3學會簡單的合情推理與數(shù)學說理
二、 過程與方法
引入兩段中西關(guān)于勾股定理的史料,激發(fā)同學們的興趣,引發(fā)同學們的思考。通過動手操作探索與發(fā)現(xiàn)直角三角形三邊關(guān)系,經(jīng)歷小組協(xié)作與討論,進一步發(fā)展合作交流能力和數(shù)學表達能力,并感受勾股定理的應(yīng)用知識。
三、 情感與態(tài)度目標
通過對勾股定理歷史的.了解,感受數(shù)學文化,激發(fā)學習興趣;在探究活動中,學生親自動手對勾股定理進行探索與驗證,培養(yǎng)學生的合作交流意識和探索精神,以及自主學習的能力。
四、 重點與難點
1、探索和證明勾股定理
2熟練運用勾股定理
[教學過程]
一、創(chuàng)設(shè)情景,揭示課題
1、教師展示圖片并介紹第一情景
以中國最早的一部數(shù)學著作——《周髀算經(jīng)》的開頭為引,介紹周公向商高請教數(shù)學知識時的對話,為勾股定理的出現(xiàn)埋下伏筆。
周公問:“竊聞乎大夫善數(shù)也,請問古者包犧立周天歷度.夫天不可階而升,地不可得尺寸而度,請問數(shù)安從出?”商高答:“數(shù)之法出于圓方,圓出于方,方出于矩,矩出九九八十一,故折矩以為勾廣三,股修四,徑隅五。既方其外,半之一矩,環(huán)而共盤.得成三、四、五,兩矩共長二十有五,是謂積矩。故禹之所以治天下者,此數(shù)之所由生也!
2、教師展示圖片并介紹第二情景
畢達哥拉斯是古希臘著名的數(shù)學家。相傳在2500年以前,他在朋友家做客時,發(fā)現(xiàn)朋友家用地磚鋪成的地面反映了直角三角形的某種特性。
二、師生協(xié)作,探究問題
1、現(xiàn)在請你也動手數(shù)一下格子,你能有什么發(fā)現(xiàn)嗎?
2、等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也有這樣的特點呢?
3、你能得到什么結(jié)論嗎?
三、得出命題
勾股定理:如果直角三角形的兩直角邊長分別為a、b,斜邊長為c,那么,即直角三角形兩直角邊的平方和等于斜邊的平方。解釋: 由于我國古代把直角三角形中較短的直角邊稱為勾,較長的邊稱為股,斜邊稱為弦,所以,把它叫做勾股定理。
四、勾股定理的證明
趙爽弦圖的證法(圖2)
第一種方法:邊長為 的正方形可以看作是由4個直角邊分別為 、 ,斜邊為 的直角三角形圍在外面形成的。因為邊長為 的正方形面積加上4個直角三角形的面積等于外圍正方形的面積,所以可以列出等式 ,化簡得 。
第二種方法:邊長為 的正方形可以看作是由4個直角邊分別為 、 ,斜邊為 的
角三角形拼接形成的(虛線表示),不過中間缺出一個邊長為 的正方形“小洞”。
因為邊長為 的正方形面積等于4個直角三角形的面積加上正方形“小洞”的面積,所以可以列出等式 ,化簡得 。
這種證明方法很簡明,很直觀,它表現(xiàn)了我國古代數(shù)學家趙爽高超的證題思想和對數(shù)學的鉆研精神,是我們中華民族的驕傲。
五、應(yīng)用舉例,拓展訓(xùn)練,鞏固反饋。
勾股定理的靈活運用勾股定理在實際的生產(chǎn)生活當中有著廣泛的應(yīng)用。勾股定理的發(fā)現(xiàn)和使用解決了許多生活中的問題,今天我們就來運用勾股定理解決一些問題,你可以嗎?試一試。
例題:小明媽媽買了一部29英寸(74厘米)的電視機,小明量了電視機的屏幕后,發(fā)現(xiàn)屏幕只有58厘長和46厘米寬,他覺得一定是售貨員搞錯了,你同意他的想法嗎?你能解釋這是為什么嗎?
六、歸納總結(jié)1、內(nèi)容總結(jié):探索直角三角形兩直角邊的平方和等于斜邊的平方,利于勾股定理,解決實際問題
2、方法歸納:數(shù)方格看圖找關(guān)系,利用面積不變的方法。用直角三角形三邊表示正方形的面積觀察歸納注意畫一個直角三角形表示正方形面積,再次驗證自己的發(fā)現(xiàn)。
七、討論交流
讓學生發(fā)表自己的意見,提出他們模糊不清的概念,給他們一個梳理知識的機會,通過提示性的引導(dǎo),讓學生對勾股定理的概念豁然開朗,為后面勾股定理的應(yīng)用打下基礎(chǔ)。
我們班的同學很聰明。大家很快就通過數(shù)格子發(fā)現(xiàn)了勾股定理的規(guī)律。還有什么地方不懂的嗎?跟大家一起來交流一下。請同學們課后在反思天地中都發(fā)表一下自己的學習心得。
【勾股定理教案】相關(guān)文章:
勾股定理的教案12-11
勾股定理教案05-30
數(shù)學勾股定理教案11-02
《勾股定理應(yīng)用》教案08-28
勾股定理的說課稿,勾股定理說課稿范文05-06
《勾股定理》的說課稿06-08
勾股定理說課稿07-05
《勾股定理》說課稿12-16
探索《勾股定理》說課稿01-04
探索勾股定理說課稿12-06