- 一元二次方程復(fù)習(xí)教案 推薦度:
- 相關(guān)推薦
一元二次方程復(fù)習(xí)教案
作為一名人民教師,往往需要進行教案編寫工作,教案是教學(xué)藍圖,可以有效提高教學(xué)效率。那么問題來了,教案應(yīng)該怎么寫?下面是小編幫大家整理的一元二次方程復(fù)習(xí)教案,僅供參考,歡迎大家閱讀。
一元二次方程復(fù)習(xí)教案1
復(fù)習(xí)目標:
1、能說出一元二次方程及其相關(guān)概念。
2、能熟練應(yīng)用配方法、公式法、分解因式法解簡單的一元二次方程,并在解一元二次方程的過程中體會轉(zhuǎn)化等數(shù)學(xué)思想。
復(fù)習(xí)重難點:一元二次方程的解法
教學(xué)過程
一、情景導(dǎo)入
前面我們復(fù)習(xí)了一元一次方程與二元一次方程組的解法,大家掌握得很不錯,請同學(xué)解方程x(x-1)=1,(學(xué)生略作思考后,示意不會做)忘了吧?看來好多學(xué)生都已經(jīng)忘了如何解一元二次方程呢?那么這節(jié)課我們就一起來復(fù)習(xí)一元二次方程的'解法(板書課題)
二、復(fù)習(xí)指導(dǎo)(學(xué)生按照復(fù)習(xí)提綱解決問題,師做簡單的板書準備后,巡視指導(dǎo),特別要注意幫助有困難的同學(xué),了解學(xué)生的情況,為展示歸納做準備。)
復(fù)習(xí)提綱
1.-元二次方程的定義:只含有_______叫做一元二次方程。
2.一元二次方程的一般形式是________(a_______0),其中ax2叫做_______項,a是_______,bx叫做_______,b是_______,c叫做_______項。
3.一元二次方程的解法:
(1)用直接開平方法解方程(2x+1)2=9
形如x2=p(p≥0)的方程的根為________。
(2)用配方法解方程x2+2x=3
用配方法解方程步驟: , , , 。
(3)用求根公式法解方程x2-3x-5=0 ,x2-3x+5=0。
一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=________,根x= 。
(1)當(dāng)△>0時,方程有兩個_______的實數(shù)根。
(2)當(dāng)△=0時,方程有兩個_______的實數(shù)根。
(3)當(dāng)△<0時,_______。
三、展示歸納
1、教師抽有困難的學(xué)生逐題匯報復(fù)習(xí)結(jié)果,學(xué)生說教師板書。
2、教師發(fā)動全班學(xué)生進行評價,補充,完善。
3、教師畫龍點睛的強調(diào)。
四、變式練習(xí)(1、2、4題讓學(xué)生說出理由,3題讓學(xué)生觀察方程的特點可發(fā)現(xiàn):(1)可用直接開平方法;(2)用配方法或公式法;(3)可用公式法;(4)方程都有共同的因式(x-3),故可用因式分解法。)
1、判斷下列哪些方程是一元二次方程?
(1)4x2-16x+15=0 (2) 2x2-3=0 (3)ax2+bx+c=0
2、請將方程(x+1)(2-x)=1化為一般形式_______。
3、解下列方程:
(1) (x-3)2-9=0; (2) x2-2x=5;
(3) x2-4x+2=0; (4) 2(x-3)=3x(x-3)。
4、不解方程,判斷下列方程根的情況。
。1)2x2-5x-3=0 (2)x2+6x+9=0 (3)x2-4x+5=0
五、課堂總結(jié)
請談?wù)劚竟?jié)課的收獲與困惑。(學(xué)生自主小結(jié)歸納,將本章知識內(nèi)化為自己的東西,并提高歸納小結(jié)的能力。)
六、布置作業(yè)
一元二次方程復(fù)習(xí)教案2
1、復(fù)習(xí)一元二次方程,一元二次方程的解的概念;
2、復(fù)習(xí)4種方法解簡單的一元二次方程;
3、會建立一元二次方程的模型解決簡單的實際問題。
[學(xué)習(xí)過程]
一、回顧知識點
1、一元二次方程具有三個顯著特點,它們是①_________________;②_________________;③_________________。
2、一元二次方程的一般形式是_______________________________。
3、一元二次方程的解法有____________、____________、____________、____________。
4、一元二次方程ax2+bx+c=0(a≠0)的根的判別式為△=b2-4ac。
、佼(dāng)△0時,方程有__________;
、诋(dāng)△=0時,方程有__________;
、郛(dāng)△0時,方程有__________。
5. 一元二次方程 的兩根為 , 則兩根與方程系數(shù)之間有如下關(guān)系:
二鞏固練習(xí)
二、填空題:
1、在下列方程①2x+1=0;②y2+x=1;③x2+1=0;④ +x2=1中,是一元一次方程的是_____。
2、已知x=1是一元二次方程x2-2mx+1=0的一個解,則m=______。
3、若關(guān)于x的一元二次方程(m-1)x2+5x+m2-3m+2=0的常項為0,則m=________。
4、關(guān)于x的一元二次方程x2-mx+m-2=0的根的情況是__________。
5、寫出兩個一元二次方程,使每個方程都有一根為0,并且二次項系數(shù)都為1:________;______________。
6、三角形的每條邊的長都是方程x2-6x+8=0的根,則三角形的周長是___________。
7、解方程5(x- )2=2(x- )最適當(dāng)?shù)姆椒ㄊ莀____________。二、填空題:(每題3分,共24分)
8.一元二次方程 的二次項系數(shù)為 ,一次項系數(shù)為 ,常數(shù)項為 ;
9. 方程 的解為
10.已知關(guān)于x一元二次方程 有一個根為1,則
11.當(dāng)代數(shù)式 的值等于7時,代數(shù)式 的.值是 ;
12.關(guān)于 實數(shù)根(注:填“有”或“沒有”)。
13.一個兩位數(shù),個位數(shù)字比十位數(shù)字大3,個位數(shù)字的平方剛好等于這個兩位數(shù),則這個兩位數(shù)為 ;
14.已知一元二次方程 的一個根為 ,則 .
15. 閱讀材料:設(shè)一元二次方程 的兩根為 , ,則兩根與方程系數(shù)之間有如下
關(guān)系:根據(jù)該材料填空:已知 , 是方程 的兩實數(shù)根,則 的值為______ .
三、選擇題:(每題3分,共30分)
1、關(guān)于x的方程 是一元二次方程,則
A、a0 B、a≠0 C、a=0 D、a≥0
2.用配方法解下列方程,其中應(yīng)在左右兩邊同時加上4的是
A、 B、 C、 D、
3.方程 的根是
A、 B、 C、 D、
4.下列方程中,關(guān)于x的一元二次方程的是
A、 B、 C、 D、
5.關(guān)于x的一元二次方程x2+kx-1=0的根的情況是
A、有兩個不相等實數(shù)根 B、沒有實數(shù)根
C、有兩個相等的實數(shù)根D、不能確定
6.已知x=1是一元二次方程x2-2mx+1=0的一個解,則m的值是
A、1 B、0 C、0或1 D、0或-1
7.為執(zhí)行“兩免一補”政策,某地區(qū)2008年投入教育經(jīng)費2500萬元,預(yù)計2010年投入3600萬元.設(shè)這兩年投入教育經(jīng)費的年平均增長百分率為 ,則下列方程正確的是
A、 B、
C、 D、
8. 已知 、 是方程 的兩個根,則代數(shù)式 的值
A、37 B、26 C、13 D、10
9.等腰三角形的底和腰是方程 的兩個根,則這個三角形的周長是
A、8 B、10 C、8或10 D、不能確定
10.一元二次方程 化為一般形式為
A、 B、 C、 D、
四、解答題:(共46分)
19、解方程(每題4分,共16分)
(1) (2)
22、已知a、b、c均為實數(shù),且 ,求方程
的根。(8分)
23.在北京2008年第29屆奧運會前夕,某超市在銷售中發(fā)現(xiàn):奧運會吉祥物“福娃”平均每天可售出20套,
每件盈利40元。為了迎接奧運會,商場決定采取適當(dāng)?shù)慕祪r措施,擴大銷售量,增加盈利,盡快減少庫存。
經(jīng)市場調(diào)查發(fā)現(xiàn):如果每套降價1元,那么平均每天就可多售出2套。要想平均每天在銷售吉祥物上盈利
1200元,那么每套應(yīng)降價多少?(10分)
24.美化城市,改善人們的居住環(huán)境已成為城市建設(shè)的一項重要內(nèi)容,某市城區(qū)近幾來,通過拆遷舊房,植草。
栽樹,修公園等措施,使城區(qū)綠地面積不斷增加(如圖)(12分)
(1)根據(jù)圖中所提供的信息,回答下列的問題:2003年的綠地面積為______公頃,比2002年增加了________
公頃。在2001年,2002年,2003年這三年中,綠地面積增加最多的是___________年。
(2)為了滿足城市發(fā)展的需要,計劃到2005年使城區(qū)綠地總面積達到72.6公頃,試求這兩年(2003~2005年)
綠地面積的年平均增長率.
一元二次方程復(fù)習(xí)教案3
試講人:XXX
知識點:二元一次方程的概念及一般形式,二次項系數(shù)、一次項系數(shù)、常數(shù)項、判別式、一元二次方程解法
重點、難點:二元一次方程四種解法,直接開平方、配方法、公式法、因式分解法
教學(xué)形式:例題演示,加深印象!學(xué)完即用,鞏固記憶!你問我答,有來有往!
1、自我介紹:30s
大家下午好!我叫XXX,20xx年畢業(yè)于暨南大學(xué),學(xué)的行政管理,現(xiàn)在教的是初中數(shù)學(xué),希望能與大家有一個愉快的下午!
2、一元二次方程概念、系數(shù)、根的判別式:8min30s
我們今天的課堂內(nèi)容是復(fù)習(xí)一元二次方程。首先請同學(xué)們看黑板上的這4個等式,請判斷等式是否是一元二次方程,如果是請說出該一元二次方程的二次項系數(shù)、一次項系數(shù)以及常數(shù)項:
(1)x -10x+9=0 是 1 -10 9
(2)x +2=0 是 1 0 2
(3)ax +bx+c=0 不是 a必須不等于0(追問為什么)
(4)3x -5x=3x 不是 整理式子得-5x=0所以為一元一次方程(追問為什么) 好,同學(xué)們都回答得非常好!那么我們所說的一元二次方程究竟是什么呢?我們從它的名字可以得出它的定義!
一元:只含一個未知數(shù)
二次:含未知數(shù)項的最高次數(shù)為2
方程:一個等式
一元二次方程的一般形式為:ax +bx+c=0 (a ≠0)其中,a 為二次項系數(shù)、b 為一次項系數(shù)、c 為常數(shù)項。記住,a 一定不為0,b 、c 都有可能等于0,一元二次方程的形式多種多樣,所以大家要注意找系數(shù)時先將一元二次方程化為一般式! 至于一個一元二次方程有沒有根怎么判斷,有同學(xué)能告訴老師嗎?(沒有就自己講),好非常好!我們知道Δ是等于2-4ac 的`,當(dāng)Δ>0時,方程有2個不相同的實數(shù)根;當(dāng)Δ=0時,方程有兩個相同的實數(shù)根;當(dāng)Δ<0時,方程無實根。 那我們在求方程根之前先利用Δ判斷一下根的情況,如果小于0,那么就直接判斷無解,如果大于等于0,則需要進一步求方程根。
3、一元二次方程的解法:20min
那說到求方程的根我們究竟學(xué)了幾種求一元二次方程根的方法呢?我知道同學(xué)們肯定心里有答案,就讓老師為你們一一梳理~
(1)直接開方法
遇到形如x =n的二元一次方程,可以直接使用開方法來求解。若n <0,方程無解;若n=0,則x=0,若n >0, 則x=±n 。同學(xué)們能明白嗎?
(2)配方法
大家覺得直接開平方好不好用?簡不簡單?那大家肯定都想用直接開方法來做題,是吧?當(dāng)然,中考題簡單也不至于這么簡單~但是我們可以通過配方法來將方程往完全平方形式變化。配方法我們通過2道例題來鞏固一下:
簡單的一眼看出來的:x -2x+1=0 (x-1)=0(讓同學(xué)回答)
需要變換的:2x +4x-8=0
步驟:將二次項系數(shù)化為1,左右同除2得:x +2x-4=0
將常數(shù)項移到等號右邊得:x +2x=4
左右同時加上一次項系數(shù)一半的平方得:x +2x+1=4+1
所以有方程為:(x+1)=5 形似 x=n
然后用直接開平方解得x+1=±5 x=±5-1
大家能聽懂嗎?現(xiàn)在我們一起來做一道練習(xí)題,2min 時間,大家一起報個答案給我!
題目:1/2x-5x-1=0 答案:x=±+5
大家都會做嗎?還需要講解詳細步驟嗎?
(3)講完了直接開方法、配方法之后我們來講一個萬能的公式法。只要知道abc ,沒有公式法求不出來的解,當(dāng)然啦,除非是無解~
首先,公式法里面的公式大家還記得嗎?
x=(-b ±2-4ac )/2a
這個公式是怎么來的呢?有同學(xué)知道的嗎?就是將一般式配方法得到的x 的表達式,大家記住,會用就可以了,如果有興趣可以課后試著用配方法進行推導(dǎo),也歡迎課后找我探討~這個公式法用起來非常簡單,一找數(shù)、二代入、三化簡。 我們來做一道簡單的例題:
3x -2x-4=0
其中a=3,b=-2,c=-4
帶入公式得:x=((-(-2))± 2) 2-4*(-4)*3/(2*3)
化簡得:x1=(1-)/3 x2=(1+)/3
同學(xué)們你們解對了嗎?
使用公式法時要注意的點:系數(shù)的符號要看準、代入和化簡要細心,不要馬失前蹄哈~
(4)今天的第四種解方程的方法叫因式分解法。因式分解大家會嗎?好那今天由我來帶大家一起見識一下因式分解的魅力!
簡單來說,因式分解就是將多項式化為式子的乘積形式。
比如說ab+ab 可以化成ab (1+a)的乘積形式。
那么對于二元一次方程,我們的目標是要將其化成(mx+a)*(nx+b)=0 這樣就可以解出x=-a/m x=-b/n
我們一起做一個例題鞏固一下:4x +5x+1=0
則可以化成4x +x+4x+1=0 x(4x+1)+(4x+1)=0 (x+1)(4x+1)=0
所以有x=-1 x=-1/4
同學(xué)們都能明白嗎?就是找出公因式,將多項式化為因式的乘積形式從而求解。 練習(xí)題:x -5x+6=0 x=2 x=3
x-9=0 x=3 x=-3
4、總結(jié):1min
好,復(fù)習(xí)完了二元一次方程我們熟知它的概念。只含有一個未知數(shù)且未知數(shù)項最高次數(shù)為2的等式,叫做二元一次方程。我們還要會找abc 系數(shù),會用Δ=b-4ac 來判別方程實根的情況。還需要熟悉四種方程的解法,這是中考的重點考察內(nèi)容。當(dāng)然,具體用哪一種解題方法就需要結(jié)合具體的題目來選擇了。如果形式簡單可以直接用開平方則直接用開平方,否則首選因式分解法,再者選擇配方法,最后的底線是公式法~當(dāng)然每個人的習(xí)慣不一樣,熟悉的方法也不一樣,同學(xué)們可以自行選擇萬無一失的方法,像老師不到萬不得已絕對不用公式法,哈哈哈哈~好啦,上完這一個復(fù)習(xí)課希望大家都能有收獲!
一元二次方程復(fù)習(xí)教案4
一、復(fù)習(xí)目標:
1、能說出一元二次方程及其相關(guān)概念,;
2、能熟練應(yīng)用配方法、公式法、分解因式法解簡單的一元二次方程,并在解一元二次方程的過程中體會轉(zhuǎn)化等數(shù)學(xué)思想。
3、能靈活應(yīng)用一元二次方程的知識解決相關(guān)問題,能根據(jù)具體問題的實際意義檢驗結(jié)果的合理性,進一步培養(yǎng)學(xué)生分析問題、解決問題的意識和能力。
二、復(fù)習(xí)重難點:
重點:一元二次方程的解法和應(yīng)用.
難點:應(yīng)用一元二次方程解決實際問題的方法.
三、知識回顧:
1、一元二次方程的定義:
2、一元二次方程的常用解法有:
配方法的一般過程是怎樣的?
3、一元二次方程在生活中有哪些應(yīng)用?請舉例說明。
4、利用方程解決實際問題的關(guān)鍵是。
在解決實際問題的過程中,怎樣判斷求得的結(jié)果是否合理?請舉例說明。
四、例題解析:
例1、填空
1、當(dāng)m時,關(guān)于x的'方程(m-1)+5+mx=0是一元二次方程.
2、方程(m2-1)x2+(m-1)x+1=0,當(dāng)m時,是一元二次方程;當(dāng)m時,是一元一次方程.
3、將一元二次方程x2-2x-2=0化成(x+a)2=b的形式是;此方程的根是.
4、用配方法解方程x2+8x+9=0時,應(yīng)將方程變形為()
A.(x+4)2=7B.(x+4)2=-9
C.(x+4)2=25D.(x+4)2=-7
學(xué)習(xí)內(nèi)容學(xué)習(xí)隨記
例2、解下列一元二次方程
(1)4x2-16x+15=0(用配方法解)(2)9-x2=2x2-6x(用分解因式法解)
(3)(x+1)(2-x)=1(選擇適當(dāng)?shù)姆椒ń?
例3、1、新竹文具店以16元/支的價格購進一批鋼筆,根據(jù)市場調(diào)查,如果以20元/支的價格銷售,每月可以售出200支;而這種鋼筆的售價每上漲1元就少賣10支.現(xiàn)在商店店主希望銷售該種鋼筆月利潤為1350元,則該種鋼筆該如何漲價?此時店主該進貨多少?
2、如圖,在Rt△ACB中,∠C=90°,AC=6m,BC=8m,點P、Q同時由A、B兩點出發(fā)分別沿AC,BC方向向點C勻速運動,它們的速度都是1m/s,幾秒后△PCQ的面積為Rt△ACB面積的一半?
【一元二次方程復(fù)習(xí)教案】相關(guān)文章:
一元二次方程復(fù)習(xí)教案03-12
一元二次方程教案(通用12篇)01-07
有關(guān)《一元二次方程》教案3篇05-16
實際問題與一元二次方程教案02-24
《一元二次方程》教學(xué)反思03-30
一元二次方程教學(xué)反思04-04
數(shù)學(xué)《一元二次方程》教案設(shè)計9篇04-06
解一元二次方程教學(xué)反思04-01
一元二次方程的概念教學(xué)反思04-07
一元二次方程的解法教學(xué)反思02-23