- 因式分解教案 推薦度:
- 因式分解教案 推薦度:
- 因式分解教案 推薦度:
- 相關(guān)推薦
因式分解教案
作為一位優(yōu)秀的人民教師,時(shí)常需要編寫教案,教案有助于順利而有效地開展教學(xué)活動(dòng)。我們應(yīng)該怎么寫教案呢?以下是小編幫大家整理的因式分解教案,歡迎大家借鑒與參考,希望對(duì)大家有所幫助。
因式分解教案1
教學(xué)目標(biāo):
1、進(jìn)一步鞏固因式分解的概念;
2、鞏固因式分解常用的三種方法
3、選擇恰當(dāng)?shù)姆椒ㄟM(jìn)行因式分解4、應(yīng)用因式分解來解決一些實(shí)際問題
5、體驗(yàn)應(yīng)用知識(shí)解決問題的樂趣
教學(xué)重點(diǎn):靈活運(yùn)用因式分解解決問題
教學(xué)難點(diǎn):靈活運(yùn)用恰當(dāng)?shù)囊蚴椒纸獾姆椒,拓展練?xí)2、3
教學(xué)過程:
一、創(chuàng)設(shè)情景:若a=101,b=99,求a2—b2的值
利用因式分解往往能將一些復(fù)雜的運(yùn)算簡(jiǎn)單化,那么我們先來回顧一下什么是因式分解和怎樣來因式分解。
二、知識(shí)回顧
1、因式分解定義:把一個(gè)多項(xiàng)式化成幾個(gè)整式積的形式,這種變形叫做把這個(gè)多項(xiàng)式分解因式。
判斷下列各式哪些是因式分解?(讓學(xué)生先思考,教師提問講解,讓學(xué)生明確因式分解的概念以及與乘法的關(guān)系)
。1)、x2—4y2=(x+2y)(x—2y)因式分解
。2)、2x(x—3y)=2x2—6xy整式乘法
(3)、(5a—1)2=25a2—10a+1整式乘法
。4)、x2+4x+4=(x+2)2因式分解
。5)、(a—3)(a+3)=a2—9整式乘法
(6)、m2—4=(m+4)(m—4)因式分解
。7)、2πR+2πr=2π(R+r)因式分解
2、規(guī)律總結(jié)(教師講解):分解因式與整式乘法是互逆過程。
分解因式要注意以下幾點(diǎn):
。1)分解的對(duì)象必須是多項(xiàng)式。
。2)分解的結(jié)果一定是幾個(gè)整式的乘積的形式。
(3)要分解到不能分解為止。
3、因式分解的方法
提取公因式法:—6x2+6xy+3x=—3x(2x—2y—1)公因式的概念;公因式的求法
公式法:平方差公式:a2—b2=(a+b)(a—b)完全平方公式:a2+2ab+b2=(a+b)2
4、強(qiáng)化訓(xùn)練
教學(xué)引入
師:教材在《四邊形》這一章《引言》里有這樣一句話:把一個(gè)長(zhǎng)方形折疊就可以得到一個(gè)正方形,F(xiàn)在請(qǐng)同學(xué)們拿出一個(gè)長(zhǎng)方形紙條,按動(dòng)畫所示進(jìn)行折疊處理。
動(dòng)畫演示:
場(chǎng)景一:正方形折疊演示
師:這就是我們得到的正方形。下面請(qǐng)同學(xué)們拿出三角板(刻度尺)和圓規(guī),我們來研究正方形的幾何性質(zhì)—邊、角以及對(duì)角線之間的關(guān)系。請(qǐng)大家測(cè)量各邊的長(zhǎng)度、各角的`大小、對(duì)角線的長(zhǎng)度以及對(duì)角線交點(diǎn)到各頂點(diǎn)的長(zhǎng)度。
[學(xué)生活動(dòng):各自測(cè)量。]
鼓勵(lì)學(xué)生將測(cè)量結(jié)果與鄰近同學(xué)進(jìn)行比較,找出共同點(diǎn)。
講授新課
找一兩個(gè)學(xué)生表述其結(jié)論,表述是要注意糾正其語言的規(guī)范性。
動(dòng)畫演示:
場(chǎng)景二:正方形的性質(zhì)
師:這些性質(zhì)里那些是矩形的性質(zhì)?
[學(xué)生活動(dòng):尋找矩形性質(zhì)。]
動(dòng)畫演示:
場(chǎng)景三:矩形的性質(zhì)
師:同樣在這些性質(zhì)里尋找屬于菱形的性質(zhì)。
[學(xué)生活動(dòng);尋找菱形性質(zhì)。]
動(dòng)畫演示:
場(chǎng)景四:菱形的性質(zhì)
師:這說明正方形具有矩形和菱形的全部性質(zhì)。
及時(shí)提出問題,引導(dǎo)學(xué)生進(jìn)行思考。
師:根據(jù)這些性質(zhì),我們能不能給正方形下一個(gè)定義?怎么樣給正方形下一個(gè)準(zhǔn)確的定義?
[學(xué)生活動(dòng):積極思考,有同學(xué)做躍躍欲試狀。]
師:請(qǐng)同學(xué)們回想矩形與菱形的定義,可以根據(jù)矩形與菱形的定義類似的給出正方形的定義。
學(xué)生應(yīng)能夠向出十種左右的定義方式,其余作相應(yīng)鼓勵(lì),把以下三種板書:
“有一組鄰邊相等的矩形叫做正方形!
“有一個(gè)角是直角的菱形叫做正方形!
“有一個(gè)角是直角且有一組鄰邊相等的平行四邊形叫做正方形!
[學(xué)生活動(dòng):討論這三個(gè)定義正確不正確?三個(gè)定義之間有什么共同和不同的地方?這出教材中采用的是第三種定義方式。]
師:根據(jù)定義,我們把平行四邊形、矩形、菱形和正方形它們之間的關(guān)系梳理一下。
試一試把下列各式因式分解:
。1)1—x2=(1+x)(1—x)
(2)4a2+4a+1=(2a+1)2
。3)4x2—8x=4x(x—2)
。4)2x2y—6xy2=2xy(x—3y)
三、例題講解
例1、分解因式
(1)—x3y3+x2y+xy
。2)6(x—2)+2x(2—x)
。3)(4)y2+y+
例2、分解因式
1、a3—ab2=
2、(a—b)(x—y)—(b—a)(x+y)=
3、(a+b)2+2(a+b)—15=
4、—1—2a—a2=5、x2—6x+9—y26、x2—4y2+x+2y=
例3、分解因式
1、72—2(13x—7)22、8a2b2—2a4b—8b3
四、知識(shí)應(yīng)用
1、(4x2—9y2)÷(2x+3y)
2、(a2b—ab2)÷(b—a)
3、解方程:
。1)x2=5x
。2)(x—2)2=(2x+1)2
4、。若x=—3,求20x2—60x的值。
5、1993—199能被200整除嗎?還能被哪些整數(shù)整除?
五、拓展應(yīng)用
1、計(jì)算:7652×17—2352×17解:7652×17—2352×17=17(7652—2352)=17(765+235)(765—235)
2、20042+2004被2005整除嗎?
3、若n是整數(shù),證明(2n+1)2—(2n—1)2是8的倍數(shù)。
五、課堂小結(jié)
今天你對(duì)因式分解又有哪些新的認(rèn)識(shí)?
因式分解教案2
一、案例背景
現(xiàn)代教育理論認(rèn)為,教師為主導(dǎo),學(xué)生為主體,教師應(yīng)當(dāng)充分調(diào)動(dòng)學(xué)生的學(xué)習(xí)用心性,使之主動(dòng)地探索、研究,讓學(xué)生都參與到課堂活動(dòng)中,透過學(xué)生自我感受,培養(yǎng)學(xué)生觀察、分析、歸納的潛力,逐步提高自學(xué)潛力,獨(dú)立思考的潛力,發(fā)現(xiàn)問題和解決問題的潛力,逐漸養(yǎng)成良好的個(gè)性品質(zhì)。
因式分解是代數(shù)式的一種重要恒等變形。它是學(xué)習(xí)分式的基礎(chǔ),又在恒等變形、代數(shù)式的運(yùn)算、解方程、函數(shù)中有廣泛的應(yīng)用。
二、案例分析
教學(xué)過程設(shè)計(jì)
(一)『情境引入』
情境一:如何計(jì)算375×2.8+375×4.9+375×2.3你是怎樣想的
問題:為什么375×2.8+375×4.9+375×2.3能夠?qū)懗?75×(2.4+4.9+2.3)依據(jù)是什么
【評(píng)析】:
。1)、復(fù)習(xí)舊知,加深記憶,同時(shí)為下面的學(xué)習(xí)作鋪墊。
。2)、學(xué)生對(duì)這樣的問題有興趣,能迅速找出一些不同的速算方法,很快想出乘法分配律的逆向變形,設(shè)置這樣的情境,由數(shù)推廣到式,效率較高。還為新課資料的學(xué)習(xí)創(chuàng)設(shè)了良好的情緒和氛圍。
情境二:分析比較
把單項(xiàng)式乘多項(xiàng)式的乘法法則
a(b+c+d)=ab+ac+ad①
反過來,就得到
ab+ac+ad=a(b+c+d)②
思考(1)你是怎樣認(rèn)識(shí)①式和②式之間的關(guān)系的
。2)②式左邊的多項(xiàng)式的每一項(xiàng)有相同的因式嗎你能說出這個(gè)因式嗎
【評(píng)析】:
。1)、探索因式分解的方法,事實(shí)上是對(duì)整式乘法的再認(rèn)識(shí),因此,在教學(xué)過程中,教師要借助學(xué)生已有的整式乘法運(yùn)算的基礎(chǔ),給他們留下充分探索與交流的時(shí)間和空間,讓他們經(jīng)歷從整式乘法到因式分解的這種互逆變形的過程。
。2)、本題注重培養(yǎng)學(xué)生觀察、分析、歸納的潛力,并向?qū)W生滲透比較、類比的數(shù)學(xué)思想方法。
(二)『探究因式分解』
1、認(rèn)識(shí)公因式
。1)、【概念1】:多項(xiàng)式ab+ac+ad的各項(xiàng)ab、ac、ad都內(nèi)含相同的因式a,稱為多項(xiàng)式各項(xiàng)的公因式。
。2)、議一議
下列多項(xiàng)式的各項(xiàng)是否有公因式如果有,試找出公因式。
、俣囗(xiàng)式a2b+ab2的公因式是ab,公因式是字母;
、诙囗(xiàng)式3x2—3y的公因式是3,公因式是數(shù)字系數(shù);
、鄱囗(xiàng)式3x2—6x3的公因式是3x2,公因式是數(shù)學(xué)系數(shù)與字母的乘積。
分析并猜想
確定一個(gè)多項(xiàng)式的公因式時(shí),要從和兩方面,分別進(jìn)行思考。
、偃绾未_定公因式的數(shù)字系數(shù)
②如何確定公因式的字母字母的指數(shù)怎樣定
練一練:寫出下列多項(xiàng)式各項(xiàng)的公因式
。1)8x—16(2)2a2b—ab2
。3)4x2—2x(4)6m2n—4m3n3—2mn
【評(píng)析】:(1)、教師不要直接給出找多項(xiàng)式公因式的方法和解釋,而是鼓勵(lì)學(xué)生自主探索,根據(jù)自己的體驗(yàn)來積累找公因式的方法和經(jīng)驗(yàn),并能透過相互間的交流來糾正解題中的常見錯(cuò)誤。
。2)、對(duì)公因式的理解是因式分解的基礎(chǔ),所以在解決這個(gè)問題時(shí)要注意配以練習(xí),個(gè)性是多次方及系數(shù)的公因式,要讓學(xué)生注意。
(3)、找公因式的一般步驟可歸納為:一看系數(shù)二看字母三看指數(shù)。
2、認(rèn)識(shí)因式分解
【概念2】:把一個(gè)多項(xiàng)式化成幾個(gè)整式積的形式的叫做把這個(gè)多項(xiàng)式因式分解。
。ㄕn本)P71練一練第1題
。1)、下列各式由左邊到右邊的變形,哪些是因式分解,哪些不是
、。ab+ac+d=a(b+c)+d
、凇2—1=(a+1)(a—1)
、。(a+1)(a—1)=a2—1
。2)、你認(rèn)為提公因式法分解因式和單項(xiàng)式乘多項(xiàng)式這兩種變形是怎樣的關(guān)系從中你得到什么啟發(fā)
【評(píng)析】:(1)、本題主要是為了加深學(xué)生對(duì)因式分解概念的'理解,使學(xué)生清楚因式分解的結(jié)果應(yīng)是整式乘積的形式。
。2)、教師安排本題意圖就是引導(dǎo)學(xué)生進(jìn)行分析討論,鼓勵(lì)學(xué)生勤于思考,各抒己見,培養(yǎng)學(xué)生的邏輯思維潛力和表達(dá)、交流潛力。讓學(xué)生在主動(dòng)學(xué)習(xí)中掌握了因式分解是整式乘法的互逆的過程,以及理解利用它們之間的關(guān)系進(jìn)行因式分解的這種思想,從而降低了本節(jié)課的難點(diǎn)。
(三)『例題研究』
例1:把下列各式分解因式
。1)6a3b—9a2b2c(2)—2m3+8m2—12m
解:(1)6a3b—9a2b2c
=3a2b·2a—3a2b·3bc(找公因式,把各項(xiàng)分成公因式與一個(gè)單項(xiàng)式的乘積的形式)
=3a2b(2a—3bc)(提取公因式)
。2)—2m3+8m2—12m
=—(2m·m2—2m·4m+2m·6)(首項(xiàng)符號(hào)為負(fù),先將多項(xiàng)式放在帶負(fù)號(hào)的括號(hào)內(nèi),注意放入括號(hào)中各項(xiàng)符號(hào)的變化。)
=—2m(m2—4m+6)(提取公因式)
【評(píng)析】:(1)、因式分解的概念和好處需要學(xué)生多層次的感受,教師不要期望一次透徹的講解和分析就能讓學(xué)生完全掌握。這時(shí)先讓學(xué)生進(jìn)行初步的感受,再透過不同形式的練習(xí)增強(qiáng)對(duì)概念的理解例。
。2)、教師在講解例題時(shí),應(yīng)鼓勵(lì)學(xué)生自己動(dòng)手找公因式,讓學(xué)生透過動(dòng)手動(dòng)腦、實(shí)際操作,教師可在下面收集錯(cuò)誤,再加以點(diǎn)評(píng),加深對(duì)因式分解方法的理解。
。3)、教學(xué)中教師不能簡(jiǎn)單地要求學(xué)生記憶運(yùn)算法則,更要重視學(xué)生對(duì)算理的理解,讓學(xué)生嘗試說出每一步運(yùn)算的道理,有意識(shí)地培養(yǎng)學(xué)生有條理地思考和語言表達(dá)潛力。
本題的易錯(cuò)點(diǎn):
(1)、漏項(xiàng):提公因式后括號(hào)中的項(xiàng)數(shù)應(yīng)與原多項(xiàng)式的項(xiàng)數(shù)一樣,這樣可檢查是否漏項(xiàng)。
(2)、符號(hào):由于添括號(hào)法則在上學(xué)期沒有涉及,所以有必要在此處強(qiáng)調(diào),添括號(hào)法則:括號(hào)前面是“+”號(hào),括到括號(hào)里的各項(xiàng)都不變號(hào);括號(hào)前面是“—”號(hào),括到括號(hào)里的各項(xiàng)都要變號(hào)。
。ㄋ模红柟叹毩(xí)』
練一練:辨別下列因式分解的正誤
。1)8a3b2—12ab4+4ab=4ab(2a2b—3b3)
(2)4x2—12x3=2x2(2—6x)
。3)a3—a2=a2(a—1)=a3—a2
解(1)錯(cuò)誤,分解因式后,括號(hào)內(nèi)的多項(xiàng)式的項(xiàng)數(shù)漏掉了一項(xiàng)。
。2)錯(cuò)誤,分解因式后,括號(hào)內(nèi)的多項(xiàng)式中仍有公因式。
。3)錯(cuò)誤,分解因式后,又回到到了整式的乘法。
【評(píng)析】:
(1)、這些多是學(xué)生易錯(cuò)的,本題設(shè)置的目的是讓學(xué)生運(yùn)用例1的成果準(zhǔn)確辨別因式分解中的常見錯(cuò)誤,對(duì)因式分解的認(rèn)識(shí)更加清晰。本例仍采用小組討論、交流的方式,讓學(xué)生都參與到課堂活動(dòng)中。
。2)、當(dāng)多項(xiàng)式的某一項(xiàng)恰好是公因式時(shí),這一項(xiàng)應(yīng)看成它與1的乘積,提公因式后剩下的應(yīng)是1。1作為項(xiàng)的系數(shù)通?墒÷,但如果單獨(dú)成一項(xiàng)時(shí),它在因式分解時(shí)不能漏項(xiàng)。
(3)、進(jìn)行多項(xiàng)式分解因式時(shí),務(wù)必把每一個(gè)因式都分解到不能分解為止。
。4)、教師安排這一過程,完全放手讓學(xué)生自主進(jìn)行,充分暴露學(xué)生的思維過程,展現(xiàn)學(xué)生生動(dòng)活潑、主動(dòng)求知和富有的個(gè)性,使學(xué)生真正成為學(xué)習(xí)的主體,使因式分解與整式的乘法的關(guān)系得到真正強(qiáng)化,也分散了本節(jié)課的難點(diǎn)。
(五)『想一想』:
如何把多項(xiàng)式3a(x+y)—2b(x+y)分解因式
解:3a(x+y)—2b(x+y)=(x+y)(3a—2b)
評(píng)析:公因式(x+y)是多項(xiàng)式,屬較高要求,當(dāng)多項(xiàng)式中有相同的整體(多項(xiàng)式)時(shí),不要把它拆開,提取公因式時(shí)把它整體提出來,有時(shí)還需要做適當(dāng)變形,如:(2—a)=—(a—2),教學(xué)時(shí)可初步滲透換元思想,將換元思想引入因式分解,可使問題化繁為簡(jiǎn)。
【概念3】把多項(xiàng)式化成公因式與另一個(gè)多項(xiàng)式的積的形式,這種分解因式的方法叫做提公因式法。
初中因式分解教學(xué)反思
1、本節(jié)課根據(jù)學(xué)生的知識(shí)結(jié)構(gòu),采用的教學(xué)流程是:提出問題、實(shí)際操作、歸納方法、課堂練習(xí)、課堂小結(jié)、布置作業(yè)六部分,這一流程體現(xiàn)了知識(shí)發(fā)生、構(gòu)成和發(fā)展的過程,讓學(xué)生進(jìn)一步發(fā)展觀察、歸納、類比、概括、逆向思考等潛力,發(fā)展有條理思考及語言表達(dá)潛力;
2、分解因式是一種變形,變形的結(jié)果應(yīng)是整式的積的形式,分解因式與整式的乘法是互逆關(guān)系,即把分解因式看作是一個(gè)變形的過程,那么整式乘法又是分解因式的逆過程,這種互逆關(guān)系一方面體現(xiàn)二者之間的密切聯(lián)系,另一方面又說明了二者之間的根本區(qū)別。探索因式分解的方法,事實(shí)上是對(duì)整式乘法的再認(rèn)識(shí),因此,在教學(xué)過程中,教師要借助學(xué)生已有的整式乘法運(yùn)算的基礎(chǔ),給學(xué)生帶給豐富搞笑的問題情境,并給他們留下充分探索與交流的時(shí)間和空間,讓他們經(jīng)歷從整式乘法到因式分解的這種互逆變形的過程;
3、在提公因式方面,學(xué)生對(duì)公因式的認(rèn)識(shí)不足,對(duì)提公因式的要求不清楚,造成了學(xué)生在做分解因式時(shí)出現(xiàn)了以下錯(cuò)誤:
。1)公因式找錯(cuò);
。2)公因式找不完整(如:漏掉公因式的系數(shù)(或系數(shù)不是取各項(xiàng)系數(shù)的最大公約數(shù))、公因式中內(nèi)含多項(xiàng)式時(shí),漏掉系數(shù)或字母因數(shù)),導(dǎo)致因式分解不徹底;
4、由于在七年級(jí)上冊(cè)教材中沒有涉及添括號(hào)法則,所以學(xué)生在分解第一項(xiàng)系數(shù)是負(fù)數(shù)的多項(xiàng)式時(shí),出現(xiàn)了很多符號(hào)錯(cuò)誤;
因式分解是一個(gè)重點(diǎn),也是一個(gè)難點(diǎn),以上存在問題在以后的教學(xué)中有待進(jìn)一步加強(qiáng)。
因式分解教案3
知識(shí)點(diǎn):
因式分解定義,提取公因式、應(yīng)用公式法、分組分解法、二次三項(xiàng)式的因式(十字相乘法、求根)、因式分解一般步驟。
教學(xué)目標(biāo):
理解因式分解的概念,掌握提取公因式法、公式法、分組分解法等因式分解方法,掌握利用二次方程求根公式分解二次二項(xiàng)式的方法,能把簡(jiǎn)單多項(xiàng)式分解因式。
考查重難點(diǎn)與常見題型:
考查因式分解能力,在中考試題中,因式分解出現(xiàn)的頻率很高。重點(diǎn)考查的分式提取公因式、應(yīng)用公式法、分組分解法及它們的綜合運(yùn)用。習(xí)題類型以填空題為多,也有選擇題和解答題。
教學(xué)過程:
因式分解知識(shí)點(diǎn)
多項(xiàng)式的因式分解,就是把一個(gè)多項(xiàng)式化為幾個(gè)整式的積。分解因式要進(jìn)行到每一個(gè)因式都不能再分解為止。分解因式的'常用方法有:
。1)提公因式法
如多項(xiàng)式
其中m叫做這個(gè)多項(xiàng)式各項(xiàng)的公因式,m既可以是一個(gè)單項(xiàng)式,也可以是一個(gè)多項(xiàng)式。
。2)運(yùn)用公式法,即用
寫出結(jié)果。
。3)十字相乘法
對(duì)于二次項(xiàng)系數(shù)為l的二次三項(xiàng)式尋找滿足ab=q,a+b=p的a,b,如有,則對(duì)于一般的二次三項(xiàng)式尋找滿足
a1a2=a,c1c2=c,a1c2+a2c1=b的a1,a2,c1,c2,如有,則
。4)分組分解法:把各項(xiàng)適當(dāng)分組,先使分解因式能分組進(jìn)行,再使分解因式在各組之間進(jìn)行。
分組時(shí)要用到添括號(hào):括號(hào)前面是“+”號(hào),括到括號(hào)里的各項(xiàng)都不變符號(hào);括號(hào)前面是“-”號(hào),括到括號(hào)里的各項(xiàng)都改變符號(hào)。
。5)求根公式法:如果有兩個(gè)根X1,X2,那么
2、教學(xué)實(shí)例:學(xué)案示例
3、課堂練習(xí):學(xué)案作業(yè)
4、課堂:
5、板書:
6、課堂作業(yè):學(xué)案作業(yè)
7、教學(xué)反思:
【因式分解教案】相關(guān)文章:
因式分解教案04-02
因式分解復(fù)習(xí)教案09-06
【精選】因式分解教案4篇02-09
精選因式分解教案三篇02-01
精選因式分解教案3篇02-07
初中數(shù)學(xué)因式分解教案06-15
精選因式分解教案四篇03-03
因式分解教案8篇01-03
因式分解教案15篇04-26
因式分解教案(15篇)04-02