當前位置:育文網(wǎng)>教學(xué)文檔>教案> 因式分解教案

因式分解教案

時間:2022-08-20 17:59:52 教案 我要投稿

實用的因式分解教案4篇

  作為一名教職工,時常要開展教案準備工作,借助教案可以提高教學(xué)質(zhì)量,收到預(yù)期的教學(xué)效果。來參考自己需要的教案吧!以下是小編收集整理的因式分解教案4篇,僅供參考,大家一起來看看吧。

實用的因式分解教案4篇

因式分解教案 篇1

  【教學(xué)目標】

  1、了解因式分解的概念和意義;

  2、認識因式分解與整式乘法的相互關(guān)系——相反變形,并會運用它們之間的相互關(guān)系尋求因式分解的方法。

  【教學(xué)重點、難點】

  重點是因式分解的概念,難點是理解因式分解與整式乘法的.相互關(guān)系,并運用它們之間的相互關(guān)系尋求因式分解的方法。

  【教學(xué)過程】

  ㈠、情境導(dǎo)入

  看誰算得快:(搶答)

  (1)若a=101,b=99,則a2-b2=___________;

  (2)若a=99,b=-1,則a2-2ab+b2=____________;

  (3)若x=-3,則20x2+60x=____________。

 、妗⑻骄啃轮

  1、請每題答得最快的同學(xué)談思路,得出最佳解題方法。(多媒體出示答案)(1)a2-b2=(a+b)(a-b)=(101+99)(101-99)=400;

  (2)a2-2ab+b2=(a-b) 2=(99+1)2 =10000;

  (3)20x2+60x=20x(x+3)=20x(-3)(-3+3)=0。

  2、觀察:a2-b2=(a+b)(a-b),a2-2ab+b2 = (a-b)2, 20x2+60x=20x(x+3),找出它們的特點。(等式的左邊是一個什么式子,右邊又是什么形式?)

  3、類比小學(xué)學(xué)過的因數(shù)分解概念,得出因式分解概念。(學(xué)生概括,老師補充。)

  板書課題:§6.1 因式分解

  因式分解概念:把一個多項式化成幾個整式的積的形式叫做因式分解,也叫分解因式。

 、、前進一步

  1、讓學(xué)生繼續(xù)觀察:(a+b)(a-b)= a2-b2, (a-b)2= a2-2ab+b2, 20x(x+3)= 20x2+60x,它們是什么運算?與因式分解有何關(guān)系?它們有何聯(lián)系與區(qū)別?

  2、因式分解與整式乘法的關(guān)系:

  因式分解

  結(jié)合:a2-b2 (a+b)(a-b)

  整式乘法

  說明:從左到右是因式分解其特點是:由和差形式(多項式)轉(zhuǎn)化成整式的積的形式;從右到左是整式乘法其特點是:由整式積的形式轉(zhuǎn)化成和差形式(多項式)。

  結(jié)論:因式分解與整式乘法的相互關(guān)系——相反變形。

 、、鞏固新知

  1、 下列代數(shù)式變形中,哪些是因式分解?哪些不是?為什么?

  (1)x2-3x+1=x(x-3)+1 ;(2)(m+n)(a+b)+(m+n)(x+y)=(m+n)(a+b+x+y);

  (3)2m(m-n)=2m2-2mn; (4)4x2-4x+1=(2x-1)2;(5)3a2+6a=3a(a+2);

  (6)x2-4+3x=(x-2)(x+2)+3x; (7)k2++2=(k+)2;(8)18a3bc=3a2b·6ac。

  2、你能寫出整式相乘(其中至少一個是多項式)的兩個例子,并由此得到相應(yīng)的兩個多項式的因式分解嗎?把結(jié)果與你的同伴交流。

 、、應(yīng)用解釋

  例 檢驗下列因式分解是否正確:

  (1)x2y-xy2=xy(x-y);(2)2x2-1=(2x+1)(2x-1);(3)x2+3x+2=(x+1)(x+2).

  分析:檢驗因式分解是否正確,只要看等式右邊幾個整式相乘的積與右邊的多項式是否相等。

  練習(xí) 計算下列各題,并說明你的算法:(請學(xué)生板演)

  (1)872+87×13

  (2)1012-992

 、、思維拓展

  1.若 x2+mx-n能分解成(x-2)(x-5),則m= ,n=

  2.機動題:(填空)x2-8x+m=(x-4)( ),且m=

 、、課堂回顧

  今天這節(jié)課,你學(xué)到了哪些知識?有哪些收獲與感受?說出來大家分享。

  ㈧、布置作業(yè)

  作業(yè)本(1) ,一課一練

  (九)教學(xué)反思:

因式分解教案 篇2

  教學(xué)目標:

  1、進一步鞏固因式分解的概念; 2、鞏固因式分解常用的三種方法

  3、選擇恰當?shù)姆椒ㄟM行因式分解 4、應(yīng)用因式分解來解決一些實際問題

  5、體驗應(yīng)用知識解決問題的樂趣

  教學(xué)重點:靈活運用因式分解解決問題

  教學(xué)難點:靈活運用恰當?shù)囊蚴椒纸獾姆椒ǎ卣咕毩?xí)2、3

  教學(xué)過程:

  一、創(chuàng)設(shè)情景:若a=101,b=99,求a2-b2的值

  利用因式分解往往能將一些復(fù)雜的運算簡單化,那么我們先來回顧一下什么是因式分解和怎樣來因式分解。

  二、知識回顧

  1、因式分解定義:把一個多項式化成幾個整式積的形式,這種變形叫做把這個多項式分解因式.

  判斷下列各式哪些是因式分解?(讓學(xué)生先思考,教師提問講解,讓學(xué)生明確因式分解的`概念以及與乘法的關(guān)系)

  (1).x2-4y2=(x+2y)(x-2y) 因式分解 (2).2x(x-3y)=2x2-6xy 整式乘法

  (3).(5a-1)2=25a2-10a+1 整式乘法 (4).x2+4x+4=(x+2)2 因式分解

  (5).(a-3)(a+3)=a2-9 整式乘法 (6).m2-4=(m+4)(m-4) 因式分解

  (7).2πR+2πr=2π(R+r) 因式分解

  2、.規(guī)律總結(jié)(教師講解): 分解因式與整式乘法是互逆過程.

  分解因式要注意以下幾點: (1).分解的對象必須是多項式.

  (2).分解的結(jié)果一定是幾個整式的乘積的形式. (3).要分解到不能分解為止.

  3、因式分解的方法

  提取公因式法:-6x2+6xy+3x=-3x(2x-2y-1) 公因式的概念;公因式的求法

  公式法: 平方差公式:a2-b2=(a+b)(a-b) 完全平方公式:a2+2ab+b2=(a+b)2

  4、強化訓(xùn)練

  試一試把下列各式因式分解:

  (1).1-x2=(1+x)(1-x) (2).4a2+4a+1=(2a+1)2

  (3).4x2-8x=4x(x-2) (4).2x2y-6xy2 =2xy(x-3y)

  三、例題講解

  例1、分解因式

  (1)-x3y3+x2y+xy (2)6(x-2)+2x(2-x)

  (3) (4)y2+y+例2、分解因式

  1、a3-ab2= 2、(a-b)(x-y)-(b-a)(x+y)= 3、(a+b) 2+2(a+b)-15=

  4、-1-2a-a2= 5、x2-6x+9-y2 6、x2-4y2+x+2y=

  例3、分解因式

  1、72-2(13x-7) 2 2、8a2b2-2a4b-8b3

  三、知識應(yīng)用

  1、(4x2-9y2)÷(2x+3y) 2、(a2b-ab2)÷(b-a)

  3、解方程:(1)x2=5x (2) (x-2)2=(2x+1)2

  4、.若x=-3,求20x2-60x的值. 5、1993-199能被200整除嗎?還能被哪些整數(shù)整除?

  四、拓展應(yīng)用

  1.計算:7652×17-2352×17 解:7652×17-2352×17=17(7652-2352)=17(765+235)(765-235)

  2、20042+20xx被20xx整除嗎?

  3、若n是整數(shù),證明(2n+1)2-(2n-1)2是8的倍數(shù).

  五、課堂小結(jié):今天你對因式分解又有哪些新的認識?

因式分解教案 篇3

  學(xué)習(xí)目標

  1、了解因式分解的意義以及它與正式乘法的關(guān)系。

  2、能確定多項式各項的公因式,會用提公因式法分解因式。

  學(xué)習(xí)重點:能用提公因式法分解因式。

  學(xué)習(xí)難點:確定因式的公因式。

  學(xué)習(xí)關(guān)鍵,在確定多項式各項公因式時,應(yīng)抓住各項的公因式來提公因式。

  學(xué)習(xí)過程

  一.知識回顧

  1、計算

  (1)、n(n+1)(n-1)(2)、(a+1)(a-2)

  (3)、m(a+b)(4)、2ab(x-2y+1)

  二、自主學(xué)習(xí)

  1、閱讀課文P72-73的內(nèi)容,并回答問題:

  (1)知識點一:把一個多項式化為幾個整式的__________的形式叫做____________,也叫做把這個多項式__________。

  (2)、知識點二:由m(a+b+c)=ma+mb+mc可得

  ma+mb+mc=m(a+b+c)

  我們來分析一下多項式ma+mb+mc的特點;它的每一項都含有一個相同的因式m,m叫做各項的_________。如果把這個_________提到括號外面,這樣

  ma+mb+mc就分解成兩個因式的積m(a+b+c),即ma+mb+mc=m(a+b+c)。這種________的方法叫做________。

  2、練一練。P73練習(xí)第1題。

  三、合作探究

  1、(1)m(a-b)=ma-mb(2)a(x-y+2)=ax-ay+2a,由上可知,整式乘法是一種變形,左邊是幾個整式乘積形式,右邊是一個多項式。、

  2、(1)ma-mb=m(a-b)(2)ax-ay+2a=a(x-y+2),由此可知,因式分解也是一種變形,左邊是_____________,右邊是_____________。

  3、下列是由左到右的變形,哪些屬于整式乘法,哪些屬于因式分解?

  (1)(a+b)(a-b)=a-b(2)a+2ab+b=(a+b)

  (3)-6x3+18x2-12x=-16(x2-3x+2)(4)(x-1)(x+1)=x2-1

  4、準確地確定公因式時提公因式法分解因式的關(guān)鍵,確定公因式可分兩步進行:

  (1)確定公因式的數(shù)字因數(shù),當各項系數(shù)都是整數(shù)時,他們的最大公約數(shù)就是公因式的數(shù)字因數(shù)。

  例如:8a2b-72abc公因式的數(shù)字因數(shù)為8。

  (2)確定公因式的字母及其指數(shù),公因式的.字母應(yīng)是多項式各項都含有的字母,其指數(shù)取最低的。故8a2b-72abc的公因式是8ab

  四、展示提升

  1、填空(1)a2b-ab2=ab(________)

  (2)-4a2b+8ab-4b分解因式為__________________

  (3)分解因式4x2+12x3+4x=__________________

  (4)__________________=-2a(a-2b+3c)

  2、P73練習(xí)第2題和第3題

  五、達標測試。

  1、下列各式從左到右的變形中,哪些是整式乘法?哪些是因式分解?哪些兩者都不是?

  (1)ax+bx+cx+m=x(a+b+c)+m(2)mx-2m=m(x-2)

  (3)2a(b+c)=2ab+2ac(4)(x-3)(x+3)=(x+3)(x-3)

  (5)x2-y2-1=(x+y)(x-y)-1(6)(x-2)(x+2)=x2-4

  2.課本P77習(xí)題8.5第1題

  學(xué)習(xí)反思

  一、知識點

  二、易錯題

  三、你的困惑

因式分解教案 篇4

  學(xué)習(xí)目標

  1、 學(xué)會用公式法因式法分解

  2、綜合運用提取公式法、公式法分解因式

  學(xué)習(xí)重難點 重點:

  完全平方公式分解因式.

  難點:綜合運用兩種公式法因式分解

  自學(xué)過程設(shè)計

  完全平方公式:

  完全平方公式的逆運用:

  做一做:

  1.(1)16x2-8x+_______=(4x-1)2;

  (2)_______+6x+9=(x+3)2;

  (3)16x2+_______+9y2=(4x+3y)2;

  (4)(a-b)2-2(a-b)+1=(______-1)2.

  2.在代數(shù)式(1)a2+ab+b2;(2)4a2+4a+1;(3)a2-b2+2ab;(4)-4a2+12ab-9b2中,可用完全平方公式因式分解的是_________(填序號)

  3.下列因式分解正確的是( )

  A.x2+y2=(x+y)2 B.x2-xy+x2=(x-y)2

  C.1+4x-4x2=(1-2x)2 D.4-4x+x2=(x-2)2

  4.分解因式:(1)x2-22x+121 (2)-y2-14y-49 (3)(a+b)2+2(a+b)+1

  5.計算:20062-40102006+20052=___________________.

  6.若x+y=1,則 x2+xy+ y2的`值是_________________.

  想一想

  你還有哪些地方不是很懂?請寫出來。

  ____________________________________________________________________________________ 預(yù)習(xí)展示一:

  1.判別下列各式是不是完全平方式.

  2、把下列各式因式分解:

  (1)-x2+4xy-4y2

  (2)3ax2+6axy+3ay2

  (3)(2x+y)2-6(2x+y)+9

  應(yīng)用探究:

  1、用簡便方法計算

  49.92+9.98 +0.12

  拓展提高:

  (1)( a2+b2)( a2+b2 10)+25=0 求a2+b2

  (2)4x2+y2-4xy-12x+6y+9=0

  求x、y關(guān)系

  (3)分解因式:m4+4

  教后反思 考察利用公式法因式分解的題目不會很難,但是需要學(xué)生記住公式的形式,之后利用公式把式子進行變形,從而達到進行因式分解的目的,但是這里有用到實際中去的例子,對學(xué)生來說會難一些。

【因式分解教案】相關(guān)文章:

因式分解教案04-02

因式分解教案05-07

因式分解復(fù)習(xí)教案09-06

因式分解教案三篇02-04

【精選】因式分解教案四篇02-03

精選因式分解教案4篇02-06

精選因式分解教案三篇02-01

因式分解教案8篇01-03

因式分解教案15篇04-26

精選因式分解教案四篇03-03