分數(shù)的基本性質教案范文集合七篇
作為一名專為他人授業(yè)解惑的人民教師,就有可能用到教案,編寫教案助于積累教學經驗,不斷提高教學質量。來參考自己需要的教案吧!下面是小編為大家收集的分數(shù)的基本性質教案7篇,希望能夠幫助到大家。
分數(shù)的基本性質教案 篇1
一、 教材
根據(jù)課程標準的要求,基于對教學內容的把握,本課時我確定的教學目標為:
1.理解和掌握分數(shù)的基本性質,并會應用分數(shù)的基本性質把不同分母的分數(shù)化成分母相同而大小不變的分數(shù)。
2.通過猜想、驗證、歸納、總結等活動,經歷分數(shù)的基本性質的探究過程,體會舉具體事例、數(shù)形結合的思考方法,感受抽象、推理的基本數(shù)學思想。
3.在自主探究與合作交流的過程中,感受數(shù)學知識之間的聯(lián)系,激發(fā)學生探究學習的興趣。我確定本目標的依據(jù)有三點:
一是基于對課程標準的理解。
《義務教育數(shù)學課程標準(20xx年版)》在學段目標的第二學段指出學生要“在觀察、實驗、猜想、驗證等活動中,發(fā)展合情推理能力,能進行有條理的思考,能比較清楚地表達自己的'思考過程”。
二是基于對教材的認識。
《分數(shù)的基本性質》是在學生學習了分數(shù)的意義、分數(shù)與除法的關系、商不變性質等知識的基礎上進行教學的,它是以后學習約分、通分的依據(jù),而約分和通分則是分數(shù)四則混合運算的重要基礎,因此,理解分數(shù)的基本性質顯得尤為重要。
三是基于對學情的認識。
作為舊課新上,如何讓學生在重新學習的過程中對學習活動任然保持濃厚興趣,從探究活動中得到新的發(fā)展,上出數(shù)學味,上出新意,我在思考。本節(jié)課常規(guī)的是創(chuàng)設情境,在情景中提煉出等式,最終形成性質。因此在教學時,我沒有從具體的情境入手,而是從思考一連串的問題開始,通過實驗、猜想、驗證、結論,從等式的驗證上升到規(guī)律的發(fā)現(xiàn)和歸納,經歷定律由特殊到一般的歸納推理過程,在這個過程中積累數(shù)學經驗、滲透數(shù)學思想、掌握數(shù)學方法。
據(jù)此,
我將教學重點確定為:通過猜想、驗證、歸納、總結等活動,讓學生經歷分數(shù)的基本性質的探究過程。教學難點確定:理解和掌握分數(shù)的基本性質。
二、教法
課程標準指出教師要關注已有的知識經驗及認知水平,發(fā)揮組織者、引導者、合作者的作用。本節(jié)課我綜合采用了引導發(fā)現(xiàn)法、啟發(fā)式教學法,直觀演示法,組織學生經歷實驗、猜測、驗證、得出結論的過程。
三、說學法
學生是學習的主體,學生的學習活動應該是生動的、活潑的、富有個性的,因此,在本節(jié)課教學中,我主要采用觀察發(fā)現(xiàn)法、動手操作法、舉例驗證法,引導學生靜心傾聽、認真操作、積極思考、大膽表達,通過動手實踐、自主探究、合作交流等多種方式獲得廣泛的數(shù)學活動經驗。
四、說教學過程
本著讓學生
“主動參與、樂于探究、學有所得”的理念,結合五年級學生的認知水平和年齡特點,結合教材的編排意圖和學情特點,我設計了如下教學環(huán)節(jié):1. 聯(lián)系舊知,質疑引思。 2.自主操作,驗證猜想 3.知識應用,鞏固提高4.回顧總結,完善認知。
環(huán)節(jié)一:聯(lián)系舊知,質疑引思。
“疑是思之始,學之端。”思考這樣一連串的問題,目的是喚醒學生已有的知識經驗;迅速地點燃孩子們求知欲望;引發(fā)學生的數(shù)學思考,為主動探究新知識積聚動力。
環(huán)節(jié)二:操作體驗,概括規(guī)律
1.觀察發(fā)現(xiàn),提出猜想。
通過找與1/2相等的分數(shù),思考證明方法,觀察等式,發(fā)現(xiàn)規(guī)律,于是提出猜想
2.舉例操作,驗證猜想。
課標指出“學生應當有足夠的時間和空間經歷觀察、實驗、猜測、推理、驗證等活動的過程”。本節(jié)課驗證環(huán)節(jié),將“分子分母怎樣變才使得分數(shù)的大小不變”設定為研究的關鍵點,然后圍繞這一關鍵點讓學生展開了操作、感悟、分析、推理等一系列的數(shù)學活動,引導學生通過比較全面的大量的例子來驗證結論,在觀察、實驗、猜測、驗證的活動中發(fā)展合情推理能力。讓學生試著用數(shù)學的思維去思考,體驗如何運用新舊知識間的聯(lián)系和遷移去分析和解決問題,培養(yǎng)學生好學善思的良好品質。
3.概括性質,深化理解
通過觀察算式,經歷由特殊到一般的歸納推理,發(fā)現(xiàn)分數(shù)的基本性質。
4.運用規(guī)律,完成例2
嘗試運用發(fā)現(xiàn)的規(guī)律,解決問題。
環(huán)節(jié)三:知識應用,鞏固提高
在有層次的練習過程中,形成技能,發(fā)展學生的智力,達成本節(jié)課的教學目標,突出重點,突破難點。本節(jié)課,我設計了兩個層次的練習。一是點對點的基礎練習,二是靈活運用所學知識解決生活中實際問題。
環(huán)節(jié)四:回顧總結,完善認知
通過回顧,梳理所學的知識,提煉數(shù)學方法,聯(lián)系新舊知識,使學生的認知結構得到補充和完善。
有人說的好,教育是一門永無止境的藝術,我知道這節(jié)課還有很多不足,懇切的希望各位能給予我更多的寶貴建議,有了你們的幫助我一定收獲更多,成長更快。
分數(shù)的基本性質教案 篇2
內容:P15、16例1、2 ,練習四第1-3題。
目標:
1.知識與技能:經歷探索分數(shù)基本性質的過程、理解分數(shù)的基本性質。
2.過程與方法:能運用分數(shù)的基本性質,把一個分數(shù)化成指定分母或分子而大小不變的分數(shù)。
3.情感、態(tài)度與價值觀:經歷觀察、操作和討論等學習活動,體驗數(shù)學學習的樂趣。
重點:正確理解與分析運用分數(shù)的基本性質。
過程:
一、創(chuàng)設情境,導入新課。
“大圣”分桃:
話說大圣從王母娘娘處偷來的蟠桃分給眾猴。猴兒們好生歡喜。幾日之后,所剩不多了,只見大圣那兒留著一個特大的蟠 桃準備獨自享用。不料,它最寵愛的一只小猴還饞著要分享。大圣說:好吧,咱倆平分各一半。小猴小嘴一厥,不好不好,太少了!大圣把桃切大小一樣的四塊:“給,2塊!”“不好不好還是太小了”,小猴還是不滿意!罢骐y纏,還嫌少?”于是大圣把桃切成了大小一樣的8塊,扔給小猴4塊:“再嫌少,本大王就不給了”小猴一看,4塊,比1塊多了3塊!好極了!嘻嘻,謝大王!小猴歡天喜地地走了。同學們你們說,小猴真的比第一次多拿了嗎?
二、師生共研、發(fā)現(xiàn)規(guī)律。
師生共同揭秘“分桃”內幕。
人分桃的全過程,我們可將“齊天大圣”的分桃秘招公著如下:
1÷2=1/2=2/4=4/8
從上面這三個分數(shù)的相等關系,你發(fā)現(xiàn)了什么?
從左往右看:
1/2 = 1×2 / 2×2 = 2/4
從右往左看:
2/4 = 2÷2 / 4÷2 = 1/2
1/2的分子、分母同乘2,分數(shù)大小不變;2/4的分子、分母同除以2,分數(shù)大小不變。
觀察分子、分母的變化,同時歸納小結。
學生試,驗證自己提出的觀點是否正確。
小結:
分數(shù)的分子和分母同時乘上或者除以相同的數(shù)(零除外)分數(shù)的大小不變。
三、數(shù)學小報,再次驗證。
1.指導閱讀,并參照課本進行折紙(按小組活動)注意4張報紙要大小相同。
2.將折得的小報中數(shù)學趣題版用陰影顯示出來。
3.將四張的折疊結果重疊,得出數(shù)學趣題版面大小。
4.針對式子進行口頭表述。
四、理解性質、簡單運用。
例2的教學
。1)出示例2:把3/4、15/24化成分母都是8而大小不變的分數(shù)。
請同學們理清題意,然后進行轉化。
。2)反饋。
。3)質疑
讓學生通過討論,深化對分數(shù)大小不變的要求的`理解。
(4)議一議
由于分數(shù)與除法的密切關系,所以分數(shù)的基本性質與除法的商不變性質是一致的。在實際應用中可以通用。
五、練習鞏固、拓展提高。
1.課堂活動
2.提取第一題的結果,進行深入思考:
當我們應用分數(shù)的基本性質,把一個分數(shù)的分子和分母都乘或都除以一個非零的楨數(shù)時,大小是不是變了,分數(shù)單位呢?
結論:大小不變,分數(shù)單位要變。
六、全課總結:
這節(jié)課,我人們又發(fā)現(xiàn)了分數(shù)的什么奧秘?用自己的話說給同桌聽聽,還有什么要和老師及同學們說的?有問題嗎?
七、作業(yè):
練習四第1-3題。
分數(shù)的基本性質教案 篇3
教學目的
1.使學生理解和掌握分數(shù)的基本性質,能應用“性質”解決一些簡單問題.
2.培養(yǎng)學生觀察、分析、思考和抽象、概括的能力.
3.滲透“形式與實質”的辯證唯物主義觀點,使學生受到思想教育.
教學過程
一、談話.
我們已經學習了分數(shù)的意義,認識了真分數(shù)、假分數(shù)和帶分數(shù),掌握了假分數(shù)與帶分數(shù)、
整數(shù)的互化方法.今天我們繼續(xù)學習分數(shù)的有關知識.
二、導入新課.
(一)教學例1.
出示例1:用分數(shù)表示下面各圖中的陰影部分,并比較它們的大。
1.分別出示每一個圓,讓學生說出表示陰影部分的分數(shù).
。1)把這個圓看做單位1,陰影部分占圓的幾分之幾?
(2)同樣大的圓,陰影部分占圓的幾分之幾?
。3)同樣大的圓,陰影部分用分數(shù)表示是多少?
2.觀察比較陰影部分的大。
。1)從4 幅圖上看,陰影部分的大小怎么樣?(陰影部分的大小相等.)
。2)陰影部分的大小相等,可以用等號連接起來.(把圖上陰影部分畫上等號)
3.分析、推導出表示陰影部分的分數(shù)的大小也相等:
。1)4幅圖中陰影部分的大小相等.那么,表示這4 幅圖的4個分數(shù)的大小怎么樣呢?
。ㄟ@4個分數(shù)的大小也相等)
。2)它們的大小相等,也可以用等號連接起來(把4個分數(shù)用等號連起來).
4.觀察、分析相等的.分數(shù)之間有什么關系?
。1)觀察 轉化成 , 的分子、分母發(fā)生了什么變化?
( 的分子、分母都乘上了2或 的分子、分母都擴大了 2倍.)
。2)觀察
(二)教學例2.
出示例2:比較 的大小.
1.出示圖:我們在三條同樣的數(shù)軸上分別表示這三個分數(shù).
2.觀察數(shù)軸上三個點的位置,比較三個分數(shù)的大。
從數(shù)軸上可以看出:
3.觀察、分析形式不同而大小相等的三個分數(shù)之間有什么聯(lián)系和變化規(guī)律.
。1)這三個分數(shù)從形式上看不同,但是它們實質上又都相等.
。ń處煱鍟 )
(2)你們分析一下, 、 各用什么樣的方法就都可以轉化成 了呢?
三、抽象概括出分數(shù)的基本性質.
1.觀察前面兩道例題,你們從中發(fā)現(xiàn)了什么變化規(guī)律?
“分數(shù)的分子分母都乘上或都除以相同的數(shù)(零除外),分數(shù)的大小不變.”(板書)
2.為什么要“零除外”?
3.教師小結:這就是今天這節(jié)課我們學習的內容:“分數(shù)的基本性質”
。ò鍟骸盎拘再|”)
4.誰再說一遍什么叫分數(shù)的基本性質?
教師板書字母公式:
四、應用分數(shù)基本性質解決實際問題.
1.請同學們回憶,分數(shù)的基本性質和我們以前學過的哪一個知識相類似?
。ê统ㄖ猩滩蛔兊男再|相類似.)
。1)商不變的性質是什么?
(除法中,被除數(shù)和除數(shù)都乘上或都除以相同的數(shù)(零除外),商的大小不變.)
。2)應用商不變的性質可以進行除法簡便運算,可以解決小數(shù)除法的運算.
2.分數(shù)基本性質的應用:
我們學習分數(shù)的基本性質目的是加深對分數(shù)的認識,更主要的是應用這一知識去解
決一些有關分數(shù)的問題.
3.教學例3.
例3 把 和 化成分母是12而大小不變的分數(shù).
板書:
教師提問:
。1) ?為什么?依據(jù)什么道理?
。 ,因為分母2乘上6等于12,要使分數(shù)的大小不變,分子1也要乘上6.所以, )
。2)這個“6”是怎么想出來的?
。ㄟ@樣想:2×?=12,2ד6”=12,也可以看12是2的幾倍:12÷2=6,那么分子1也擴大6倍)
(3) ?為什么?依據(jù)的什么道理?
。 ,因為分母24除以2等于12,要使分數(shù)的大小不變,分子10也得除以2,所以, )
(4)這個“2”是怎么想出來的?
。ㄟ@樣想:24÷?=12,24÷“2”=12.也可以想24是12的2倍,那么分子10也應是新分子的2倍,所以新的分子應是10÷2=5)
五、課堂練習.
1.把下面各分數(shù)化成分母是60,而大小不變的分數(shù).
2.把下面的分數(shù)化成分子是1,而大小不變的分數(shù).
3.在( )里填上適當?shù)臄?shù).
4. 的分子增加2,要使分數(shù)的大小不變,分母應該增加幾?你是怎樣想的?
5.請同學們想出與 相等的分數(shù).
規(guī)律:這個分數(shù)的值是 ,然后只要按自然數(shù)的順序說出分子是1、2、3、4、……分母是分子的4倍為:4、8、12、16……無數(shù)個.
六、課堂總結.
今天這節(jié)課我們學習了什么知識?懂得了一個什么道理?分數(shù)的基本性質是什么?這是學習分數(shù)四則運算的基礎,一定要掌握好.
七、課后作業(yè).
1.指出下面每組中的兩個分數(shù)是相等的還是不相等的.
2.在下面的括號里填上適當?shù)臄?shù).
分數(shù)的基本性質教案 篇4
教學目的:
1、理解分數(shù)的基本性質;
2、初步掌握分數(shù)性質的應用;
3、培養(yǎng)學生觀察——探索——抽象——概括的能力;
4、滲透事物是相互聯(lián)系、發(fā)展變化的辯證唯物主義觀點。
教學重點:
從相等的分數(shù)中看出變與不變,觀察、發(fā)現(xiàn)、概括其中的規(guī)律。
教學難點:
形成對分數(shù)的基本性質的統(tǒng)一認知。
教學準備:多媒體,自制演示教具。
教學過程:
一、激趣引新:
1、有位老爺爺把一塊地分給三個兒子。老大分到了這塊地的1/3,老二分到這塊地的2/6,老三分到這塊地的3/9。老大、老二覺得自己很吃虧,于是三人就大吵起來。剛好阿凡提路過,問清爭吵的原因后,哈哈的笑起來,給他們講了幾句話,三兄弟就停止了爭吵。你知道阿凡提為什么會笑?他對三兄弟說了那些話?你想知道嗎?這節(jié)課我們就來解決這個問題。
2、在下面的()中填上合適的數(shù)。
1÷2=(1×5)÷(2×())=(1÷())÷(2÷4)
同學們現(xiàn)在已經能用分數(shù)的知識來解決問題了。
二、啟發(fā)引導,探索新知。
1、下面是六年級三個班的同學到三塊同樣大小面積的正方形地里去種樹,哪個班種植的面積大一些呢?
通過圖形的平移、旋轉等方法看出三個班種植面積一樣大。
2.引導觀察得出結論。
(1)通過拼圖得到1/2=2/4=4/8
。2)引導觀察、比較,提出問題:分子,分母都不相同,它們的大小為什么相同呢?
。3)引導思考探索變化規(guī)律:
從左往右看:1/2=1×2/2×2=2/4=2×2/4×2=4/8
反過來看:4/8=4÷2/8÷2=2/4=2÷2/4÷2=1/2
3.共同討論,引導學生抽象概括出分數(shù)的基本性質:
(1)怎么做能使分數(shù)的分子和分母發(fā)生變化,而分數(shù)的大小都不變呢?
。2)變化時同時乘或除以小數(shù)可以嗎?
。3)0可以嗎?3/4=3×0/4×0=?(分數(shù)的`分母不能為0,在除法里0不能作除數(shù),分子和分母都乘或除以相同的數(shù),這個數(shù)不能是0。)
歸納分數(shù)基本性質:分數(shù)的分子和分母都乘或除以相同的數(shù)(0除外)分數(shù)的大小不變。
4.學習分數(shù)的基本性質以后,感覺過去我們學過類似的性質是什么呢?(商不變的性質)
。1)練習在□中填上合適的數(shù)
1÷2=(1×5)÷(2×□)=(1×□)÷(1×4)
。2)你能把1÷2這個除法算式改寫成分數(shù)形式?
你能用今天所學的知識解決老爺爺分地的問題嗎?(學生交流、匯報)
5.組織練習
。1)判斷:
1/5=1/5×3=1/5()
5/6=5×2/6×3=10/18()
8/12=8×4/12÷4=32/3()
2/5=2+2/5+2=4/7()
3/4=3÷0.5/4÷0.5()
分數(shù)的分子和分母都乘或除以相同的數(shù),分數(shù)的大小不變。()
(2)畫一畫、填一填
。3)填空
1/2=1×()/2×()=6/()
10/24=10○()/24○()=()/12
15/60=()/203/()=9/12
6/18=()/()=()/()(有多少種填法)
6.通過練習在此性質中哪些是關鍵詞?
7.鞏固練習(選擇你喜歡的一題來做)
。1)與1/2相等的分數(shù)有多少個?想象一下把手中正方形的紙無限地平分下去,可得到多少個與1/2相等的分數(shù)?
。2)9/24和20/32哪一個數(shù)大一些,你能講出判斷的依據(jù)嗎?
三、課堂總結
今天這節(jié)課同學們學了分數(shù)的基本性質,有什么感想呢?回家講給爸爸媽媽聽好嗎!同時希望同學們把今天所學的知識運用到今后的學習和生活中去,做一個生活的有心人。
四、課堂作業(yè):練習十四第1——3題。
板書設計:
分數(shù)的基本性質
1/2=1×2/2×2=2/4=2×2/4×2=4/8
分數(shù)的分子和分母同時乘以一個不為0的數(shù)分數(shù)的大小不變
4/8=4÷2/8÷2=2/4=2÷2/4÷2=1/2
分數(shù)的分子和分母同時除以一個不為0的數(shù)分數(shù)的大小不變
綜上所述分數(shù)的基本性質是:分數(shù)的分子和分母同時乘或除以相同的數(shù)(0除外),分數(shù)的大小不變。
分數(shù)的基本性質教案 篇5
教學目的
1.使學生理解和掌握分數(shù)的基本性質.
2.培養(yǎng)學生觀察、思考、動手操作和自學能力.
教學過程
一、導入新課.
故事引入:中秋節(jié),媽媽買了一個大西瓜,分給哥哥這個西瓜的 ,(板書: ).
分給組組這個西瓜的 ,(板書: ).分給弟弟這個西瓜的 ,(板書: ).哥哥、姐姐、弟弟三個人,他們誰吃的西瓜多呢?(學生答案不一)
到底誰回答得對呢?上完這節(jié)課你們一定能得到準確的答案.
二、新課.
1.實際操作列等式證實兩組分數(shù),每組分數(shù)大小相等.
。1)教師講解:請同學們拿出三個大小相等的圓來,分別用陰影部分表示每個圓的
。ò鍟 )
。2)教師提問:比較一下陰影部分的大小,結果怎樣?
陰影部分相等,說明這三個分數(shù)怎樣?
(隨著學生回答老師將三個分數(shù)用“=”連接)
。3)教師拿出畫著三條數(shù)軸的小黑板,講:誰能在三條數(shù)軸上標出 ?
(4)教師提問:這三個分數(shù)在數(shù)軸上所表示的長度怎樣?這又說明了什么?
。S著學生回答老師在三個分數(shù)間用“=”連接)
2.初步概括分數(shù)基本性質.
。1)觀察兩個等式,每個等式的'三個分數(shù)什么變了?什么沒變?
。2)同學們從左到右觀察第一個等式,想一下,這三個分數(shù)的分子、分母怎樣變化才保證了分數(shù)的大小不變.
板書:
。3)誰能用一句話把這個變化規(guī)律敘述出來?
板書:分數(shù)的分子、分母都乘上同一個數(shù),分數(shù)大小不變.
。4)從左到右觀察第二個等式,這三個分數(shù)的分子、分母發(fā)生了怎樣的變化,才保證了分數(shù)大小不變呢?
板書:
。5)問:誰能用一句話把這個變化規(guī)律敘述出來?
誰能用一句話把這兩個變化規(guī)律敘述出來?
(板書:或除以)
3.完整分數(shù)基本性質.
填空:
教師追問:第三題( )里可以填多少個數(shù)?第4題呢?
為什么3、4題( )里可以填無數(shù)個數(shù)?
( )里填任何數(shù)都行嗎?哪個數(shù)不行?(板書:零除外)
這里為什么必須“零除外”?
教師小結:我們總結的分數(shù)的這個變化規(guī)律就是“分數(shù)的基本性質.
。ò鍟n題:分數(shù)基本性質)
4.深入理解分數(shù)基本性質.
教師提問:分數(shù)的基本性質里哪幾個詞比較重要?
為什么“都”和“相同”很重要?
為什么“分數(shù)大小不變”也很重要?
為什么“零除外”也很重要?
三、課堂練習.
1.用直線把相等的分數(shù)連接起來.
2.把下列分數(shù)按要求分類.
和 相等的分數(shù):
和 相等的分數(shù):
3.判斷下列各題的對錯,并說明理由.
4.填空并說出理由.
5.集體練習.
四、照應課前談話.
問:現(xiàn)在誰知道哥哥、姐姐、弟弟三個人,誰吃的西瓜多呢?
板書:
五、課堂小結.
這節(jié)課你有什么收獲?
六、布置作業(yè).
1.指出下面每組中的兩個分數(shù)是相等的還是不相等的.
2.在下面的括號里填上適當?shù)臄?shù).
分數(shù)的基本性質教案 篇6
教學目標:
1、理解分數(shù)的基本性質。
2、初步掌握分數(shù)的基本性質。
3、培養(yǎng)學生觀察、比較、綜合、概括的能力和初步的邏輯推理能力。
教學重點:理解與掌握分數(shù)的基本性質。 教材分析:分數(shù)的基本性質是在學習了商不變性質及分數(shù)與除法的關系的基礎上進行教學的。它是今后學習約分和通分的依據(jù),是分數(shù)四則運算的重要基礎知識,是學生準確進行分數(shù)加減法計算的依據(jù)。
設計意圖:通過復習商不變的性質和分數(shù)與出發(fā)的關系,為學生探索新知提供了材料,作好了鋪墊,也為后面溝通分數(shù)基本性質與商不變性質打下了基礎。
在新知的引入,我設計了讓學生動手操作的方法(折紙、涂色),調動學生的多種感觀充分感知數(shù)學事實,來引導學生觀察、思考,激發(fā)學生的求知欲,調動學生學習的積極性。
通過先進的電教手段,如:投影儀,電腦等多媒體輔助教學。用形象的電腦圖象,以活潑的形式將抽象的數(shù)學概念轉變?yōu)閷W生易于理解概念,激發(fā)學生的學習興趣,結合一系列的具有針對性的提問,引導學生觀察思考,共同討論新知,自己歸納出分數(shù)變化的規(guī)律,即分于分母都乘以或除以相同的數(shù),分數(shù)和大小不變。 通過電腦出示的畫象的逐步引入,使學生加深對分數(shù)基本性質的理解,逐步建立清晰的概念。這樣讓學生參與概念形成的整個過程,有利于學生學習的主動性,發(fā)展學生的邏輯思維。
在練習的設計上,力求緊扣重點,做到新穎、多樣、層次分明,難度由淺入深。
第1、2題是基本練習,主要是幫助學生理解概念,并全面了解學生掌握新知識的情況。第3題是在第1、2題的基礎上,進一步讓學生進行鞏固練習,加深對所學知識的理解。第4題通過游戲的形式,加深學生對分數(shù)基本性質的認識,激發(fā)學生學習的興趣,活躍課堂氣氛。第5題,判斷練習,意在使學生加深對新知識的鞏固,糾正容易出錯的地方。第6題是思考題,是為了滿足學有余力的學生的需要,意在發(fā)展學生的智能。在聯(lián)系的過程中,也采用了電腦與投影及錄音機的有機結合有效地提高了課堂效率。
教學過程: 復習舊知,導入新課 被除數(shù) 除數(shù)= 根據(jù)120 30=3 填數(shù) (120 3) (40 3)=( ) (120 ___) (40 10)=4 (復習商不變性質) 驗證并結實課題 學生用準備好的兩張紙,進行動手操作。(感知 = ) 教師再演示,引導學生發(fā)現(xiàn) 、 、 、三個分數(shù)的大小相等。觀察什么在變,什么不變。把單位1平均分的'分數(shù)和取的分數(shù),也就是分數(shù)的分子和分母發(fā)生了變化,而分數(shù)的大小不便,為什么分數(shù)的分子、分母在變,而分數(shù)的大小不變?它們的變化規(guī)律是什么?(引導學生帶著問題去思考) 新授,探索新知 啟發(fā)引導,揭示規(guī)律 (1) = = = =
從左往右觀察,探索分數(shù)的分子、分母的變化規(guī)律,引導學生去思考。討論得出:分數(shù)的分子墳墓都乘以相同的數(shù),分數(shù)的大小不變。 ,分數(shù)的分子分母有什么變化? 呢? 它們的大小又怎樣呢?想一想,小姐出規(guī)律:分子、分母都除以相同的數(shù),分數(shù)的大小不變。 歸納性質 誰能把上面的分數(shù)的分子分母都乘以或除以相同的數(shù)。兩句話合成一句話來說。分數(shù)的分子分母都乘以或除以相同的數(shù),分數(shù)的大小不變。 這里指的相同的數(shù)是指什么數(shù)? 指出:分母是0的分數(shù)是沒有意義的。假如分子、分母都乘以或都除以0,也是沒有意義的。所以0除外。相同的數(shù)可以是自然數(shù),也可以是小數(shù),也可以是分數(shù)。
請全班同學將結語說完整,全班讀。 小結:就是我們今天學習的內容:分數(shù)的基本性質。看書質疑。 勾出關鍵詞語,幫助理解掌握。 (在新課的教學過程中,利用計算機,將各種圖形(也就是單位1)用主動的分割形式在大屏幕上清楚地進行演示,提高學生學習的積極性,更好地理解本課的學習內容,有效地提高教學效率,使教學目標得以順利地實施。) 鞏固練習 在括號里填上適當?shù)臄?shù)使等式成立 幾組相等分數(shù)的天空練習
。ㄓ糜嬎銠C將題目演示在大屏幕上,全般一齊練習,再請個別學生說出答案,看答案是否和計算機演示的答案相同,全班同學來做小老師)
3、請找我的好朋友練習。(以游戲的形式來進行)
要求:(1)將幾張寫有分數(shù)的卡片發(fā)給幾位同學,請 他們看清楚上面的分數(shù)。
。 2 )練習開始,請有卡片的同學注意觀察,和老師受傷卡片上分數(shù)大小相等的同學走出來,看誰最快最好。 (先將卡片上的分數(shù)用大屏幕顯示出來,便于全班同學練習。)
4、判斷對錯 (1) = = ( ) (2) = = ( ) (3) = = ( ) (4) = = ( )
(這道題用計算機一題一題來演示,讓全班學生能用所學的知識來進行判斷,并能說出錯在哪里,可以請個別同學來回答,如果答對了計算機回發(fā)出以示獎勵的音樂;錯了會告訴同學錯了,再試一次。這道題的形式,充分運用了計算機的多功能作用,較生動活潑,引起學生的興趣,提高教學效果。)
5、思考練習題 = 課堂總結 總結本課內容,復述分數(shù)的基本性質。
分數(shù)的基本性質教案 篇7
這節(jié)課,戴老師教師教態(tài)自然、語言清晰、數(shù)學語言表述準確。著重培養(yǎng)了學生通過動手操作的活動來讓學生主動探究分數(shù)的基本性質,掌握分數(shù)的基本性質在生活中的實際應用,同時培養(yǎng)了學生積極參與,團結合作,主動探索,引導觀察鈫捬罷夜媛桑發(fā)現(xiàn)規(guī)律,我覺得這是一堂充滿生命活力的課堂,能促進學生全面發(fā)展的課堂,體現(xiàn)新課標理念的課堂,從中我得到了一些鮮活的經驗和有益的啟示。具體概括以下幾點?
一、教學思路清晰,目標明確,重難點突出。
教師根據(jù)教學內容,因材施教地制定了教學思路。這節(jié)課以鈥湸瓷棖榫車既胄驢沃傅嘉探索,整個教學思路清晰。這節(jié)課戴老師突出培養(yǎng)學生動手操作,主動探究的訓練,通過用三張同樣大的長形紙折一張的、涂色等活動來探索分數(shù)分子、分母的變化規(guī)律,從而讓學生發(fā)現(xiàn)規(guī)律,突出重難點的內容,整個教學做到詳略得當,重難點把握準確。這樣設計符合學生年齡特點和認知規(guī)律,體現(xiàn)了以學生為主體的學習過程,培養(yǎng)了學生的學習能力?
二、創(chuàng)設情境,重視操作活動,發(fā)揮主體作用。
老師能創(chuàng)造機會,讓學生各種感官參與學習,把學生推到主體地位。讓學生獲得豐富感性認識,使抽象知識具體化、形象化。引導學生比較觀察三幅圖的異同之處,分數(shù)的分子分母的變化過程,從而證實變化的規(guī)律,整個操作過程層次分明,通過折涂,學生動手、動腦、動口,人人參與學習過程,不是操作而操作,而是把操作,理解概念,讓學生觀察三個圖形來說明概念,降低了難度。通過操作,讓學生既學得高興又充分理解知識。形象直觀地推導了分數(shù)的基本性質的概念,這樣概念形成過程十分清晰,充分培養(yǎng)了學生自主探索的'能力,把被動地接受知識變?yōu)橹鲃拥孬@取知識,達到教學目的。
三、練習設計具有層次性,開放性。
由淺入深由易到難的設計,既使學生牢固的掌握了所學的知識,鞏固了本節(jié)課的基礎知識,又訓練了學生的思維。激發(fā)了學生的學習興趣。
【分數(shù)的基本性質教案】相關文章:
《分數(shù)的基本性質》教案02-15
《分數(shù)的基本性質》教案09-10
分數(shù)的基本性質教案03-16
分數(shù)的基本性質的教案02-26
分數(shù)的基本性質教案4篇07-31
分數(shù)的基本性質教案9篇07-02
【精選】分數(shù)的基本性質教案3篇07-24
分數(shù)的基本性質教案15篇03-21
【精選】分數(shù)的基本性質教案三篇08-13
【精選】分數(shù)的基本性質教案4篇08-07