- 《勾股定理逆定理》的教學(xué)反思 推薦度:
- 相關(guān)推薦
《勾股定理逆定理》教學(xué)反思
身為一名人民教師,我們的任務(wù)之一就是教學(xué),寫教學(xué)反思可以很好的把我們的教學(xué)記錄下來,優(yōu)秀的教學(xué)反思都具備一些什么特點呢?以下是小編收集整理的《勾股定理逆定理》教學(xué)反思,僅供參考,大家一起來看看吧。
《勾股定理逆定理》教學(xué)反思1
根據(jù)學(xué)生的認(rèn)知結(jié)構(gòu)與教材地位,為了達到本節(jié)課的教學(xué)目標(biāo),我設(shè)計了以下幾個環(huán)節(jié):
1.創(chuàng)設(shè)情境,提出猜想讓學(xué)生判斷兩位同學(xué)的畫法是否都能得到斜邊為10cm的直角三角形,通過對不同畫法的探究,溫故知新,為用構(gòu)造全等三角形的方法證明勾股定理的逆定理做好鋪墊.同時,引導(dǎo)學(xué)生從特殊到一般提出猜想。
2.證明猜想,得出新知。由于有前一環(huán)節(jié)的鋪墊,通過啟發(fā)、引導(dǎo)、討論,讓學(xué)生體會用構(gòu)造全等三角形的`方法證明問題的思想,突破定理證明這一難點,并適時出示課題。
3.應(yīng)用訓(xùn)練,鞏固新知為了鞏固新知,靈活運用所學(xué)知識解決相應(yīng)問題,提高學(xué)生的分析解題能力,我設(shè)計了三個層次的問題,以達到教學(xué)目標(biāo).第一層次是讓學(xué)生直接運用定理判斷三角形是否是直角三角形,掌握定理基本運用;第二層次是強調(diào)已知三角形三邊長或三邊關(guān)系,就有意識的判斷三角形是否是直角三角形,這樣既鞏固了勾股定理的逆定理的應(yīng)用,又為下一個層次做好了鋪墊;第三層次是靈活運用勾股定理與逆定理解決圖形面積的計算問題.根據(jù)學(xué)生原有的認(rèn)知結(jié)構(gòu),讓學(xué)生更好地體會分割的思想.設(shè)計的題型前后呼應(yīng),使知識有序推進,有助于學(xué)生的理解和掌握;讓學(xué)生通過合作、交流、反思、感悟的過程,激發(fā)學(xué)生探究新知的興趣,感受探索、合作的樂趣,并從中獲得成功的體驗.真正體現(xiàn)學(xué)生是學(xué)習(xí)的主人.。
4.歸納小結(jié),形成體系讓學(xué)生交流學(xué)習(xí)的收獲、課堂經(jīng)歷的感受和對數(shù)學(xué)思想方法的感悟體會等.幫助學(xué)生內(nèi)化新知,優(yōu)化學(xué)生的認(rèn)知結(jié)構(gòu),形成能力,減輕課后負(fù)擔(dān)。
5.布置作業(yè),課外延伸分層布置作業(yè),目的是讓不同的學(xué)生得到不同層次的發(fā)展
《勾股定理逆定理》教學(xué)反思2
星期四上午第三節(jié)講了《勾股定理逆定理》第一課時,課后效果和我預(yù)想的一樣,由于探究內(nèi)容偏多,課堂容量大,后半部分感覺倉促,留給學(xué)生的思考時間顯得不足。
回頭反思,這節(jié)課的設(shè)計思路比較合理:定理來源于生活,服務(wù)于生活。我由勾股定理引出一道生活實際問題,引起學(xué)生的求知欲,然后和學(xué)生分三種方法探究,得出“勾股定理逆定理”,經(jīng)過課堂練習(xí)夯實基礎(chǔ),最后利用新知解決開課時提出的生活實際問題,首尾呼應(yīng),學(xué)以致用。
怎么避免上述授課時間緊張問題,取得更高的課堂效率呢?我簡單談兩點建議,希望各位數(shù)學(xué)老師以后教此課時得到共勉。
一是在設(shè)計探究時應(yīng)注重簡化。我設(shè)計了三個探究:探究1是古埃及人用結(jié)繩打樁法得到直角;探究2是師生用尺規(guī)作圖法得到直角;探究3是利用三角形全等的知識通過證明得到直角。現(xiàn)在覺得應(yīng)把探究2簡化,老師就“勾三股四弦五”給學(xué)生當(dāng)堂做尺規(guī)作圖演示,沒有必要再讓學(xué)生親自作圖,因為教師的演示,效果明顯,學(xué)生已經(jīng)理解,達到目標(biāo)要求,這樣就可以節(jié)約5分鐘時間。
二是對互逆命題,原命題,逆命題,互逆定理,逆定理等概念的'講解可隨題點化,而詳細(xì)講解、隨堂練習(xí)可做為第二課時的重點,讓出更多時間來做勾股定理逆定理的相應(yīng)練習(xí),特別是應(yīng)加大有靈活度和難度生活習(xí)題的練習(xí),拓寬學(xué)生知識面,提高學(xué)生的發(fā)散思維能力。
總之,課堂設(shè)計要做到一個“狠”字,該刪除的就刪,教學(xué)目標(biāo)不可貪多。我們圍繞授課重點做相應(yīng)探究,練習(xí),次重點可放在下個課時重點講解,探究時間要預(yù)留充足,相應(yīng)練習(xí)寧精勿多,注重雙基才是根本。
《勾股定理逆定理》教學(xué)反思3
教材分析
1.勾股定理的逆定理是研究特殊三角形——直角三角形的一種判定方法,體現(xiàn)了數(shù)形結(jié)合的思想。
2.通過勾股定理與它的逆定理的學(xué)習(xí),加深了學(xué)生對性質(zhì)與判定之間辨證統(tǒng)一關(guān)系的認(rèn)識。
3. 完善了知識結(jié)構(gòu),為后繼學(xué)習(xí)打下基礎(chǔ)。
學(xué)情分析
初中生已經(jīng)具備一定的獨立思考和探索能力,并能在探索過程中形成自己的觀點,能在傾聽別人意見的過程中逐漸完善自己的想法,而且本班學(xué)生比較上進,思維活躍,愿意表達自己的見解,有一定的互動互助基礎(chǔ)。
教學(xué)目標(biāo)
1.知識與技能:
。1)理解勾股定理的逆定理的證明方法并能證明勾股定理的逆定理。
。2)掌握勾股定理的逆定理,并能應(yīng)用勾股定理的逆定理判定一個三角形是不是直角三角形。
2.過程與方法
。1)通過對勾股定理的逆定理的探索,經(jīng)歷知識的發(fā)生、發(fā)展與形成過程。
(2)通過用三角形三邊的數(shù)量關(guān)系來判斷三角形的形狀,體驗數(shù)形結(jié)合方法的應(yīng)用。
(3)通過對勾股定理的逆定理的證明,體會數(shù)形結(jié)合方法在問題解決中的作用,并能應(yīng)用勾股定理的逆定理來解決相關(guān)問題。
3.情感態(tài)度
(1)通過用三角形三邊的數(shù)量關(guān)系來判斷三角形的形狀,體驗數(shù)與形的內(nèi)在聯(lián)系,感受定理與逆定理之間的.和諧與辨證統(tǒng)一的關(guān)系
(2)在探索勾股定理的逆定理的活動中,通過一系列的富有探究性的問題,滲透與他人交流、合作的意識和探究精神。
教學(xué)重點和難點
教學(xué)重點:勾股定理的逆定理及起應(yīng)用
教學(xué)難點:勾股定理的逆定理的證明
《勾股定理逆定理》教學(xué)反思4
這次展示課,我上的是八年級數(shù)學(xué)課《17.2勾股定理的逆定理》,我是根據(jù)“五步三查”課堂模式來設(shè)計“導(dǎo)學(xué)案”和組織教學(xué)的。 這次課相對于過去基礎(chǔ)上的課堂改革是完全不同的課,其進步之處之一是規(guī)范了課堂的結(jié)構(gòu),明確了課堂模式“五步三查”,操作上更能心中有數(shù)。進步之二是發(fā)揮學(xué)生的積極性方式與手段更多些,“老師需要什么?就評價什么”,進行了有益的嘗試,將評價納入整個課堂,如何通過開展小組的評比與競賽調(diào)動學(xué)生積極性及學(xué)習(xí)氛圍積累了經(jīng)驗。進步之三是“導(dǎo)學(xué)案”的.編寫上更適和學(xué)生,更有利于對課堂的指導(dǎo)。進步之四是課堂效率和課堂效果更好。進步之五學(xué)生的主體作用得到了真正的體現(xiàn)。進步之六是課堂不僅成了學(xué)習(xí)知識的地方,更是增進情感、培養(yǎng)能力的地方。
這次展示課也有待改進的地方,其一是“五步三查”模式操作細(xì)節(jié)不清楚,對整個操作流程理解不到位,導(dǎo)致整個課堂有些亂,因不能多講,又不放心學(xué)生學(xué)。其二是學(xué)生的能力培養(yǎng)還應(yīng)下大功夫,過去是以老師講為主,學(xué)生只是聽記,現(xiàn)在要他們自學(xué)、討論,同學(xué)們還不習(xí)慣,導(dǎo)致課堂有些沉悶。其三是時間緊,教學(xué)任務(wù)完不成,課堂的知識掌握度、能力目標(biāo)達成度較低。其四是“五步三查”各細(xì)節(jié)的科學(xué)性、有效性落實,有許多細(xì)節(jié)的落實與協(xié)調(diào)有待深化,如如何評價?如何有效利用評價得分?如何有效獨學(xué)?其五是“導(dǎo)學(xué)案”如何更科學(xué)編制?體現(xiàn)分層同時又能更有利于指導(dǎo)學(xué)生的學(xué),也有利于指導(dǎo)教師的教。其六更主要的是老師的觀念,樹立學(xué)生為主體的觀念,將學(xué)生發(fā)展落實到教育教學(xué)各環(huán)節(jié)這才是根本。勇于變革和創(chuàng)新,積極研究和實踐才能保障我們的課堂改革更順利推進。雖然存在這樣多,或更多的問題,但對其前景我們每一個人都充滿了信心,我們相信只有這樣做才能真正達到教育的目標(biāo)。
《勾股定理逆定理》教學(xué)反思5
教學(xué)目標(biāo)
一、知識與技能
1.掌握直角三角形的判別條件。
2.熟記一些勾股數(shù)。
3.掌握勾股定理的逆定理的探究方法。
二、過程與方法
1.用三邊的數(shù)量關(guān)系來判斷一個三角形是否為直角三角形,培養(yǎng)學(xué)生數(shù)形結(jié)合的思想。
2.通過對Rt△判別條件的研究,培養(yǎng)學(xué)生大膽猜想,勇于探索的創(chuàng)新精神。
三、情感態(tài)度與價值觀
1.通過介紹有關(guān)歷史資料,激發(fā)學(xué)生解決問題的愿望。
2.通過對勾股定理逆定理的探究;培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和創(chuàng)新精神。
教學(xué)重點探究勾股定理的逆定理,理解互逆命題,原命題、逆命題的有關(guān)概念及關(guān)系.理解并掌握勾股定理的逆定理,并會應(yīng)用。
教學(xué)難點理解勾股定理的逆定理的推導(dǎo)。
教具準(zhǔn)備多媒體課件。
教學(xué)過程
一、創(chuàng)設(shè)問屬情境,引入新課
活動1
(1)總結(jié)直角三角形有哪些性質(zhì)。
。2)一個三角形,滿足什么條件是直角三角形?
設(shè)計意圖:通過對前面所學(xué)知識的歸納總結(jié),聯(lián)想到用三邊的關(guān)系是否可以判斷一個三角形為直角三角形,提高學(xué)生發(fā)現(xiàn)反思問題的能力。
師生行為學(xué)生分組討論,交流總結(jié);教師引導(dǎo)學(xué)生回憶。
本活動,教師應(yīng)重點關(guān)注學(xué)生:①能否積極主動地回憶,總結(jié)前面學(xué)過的舊知識;②能否“溫故知新”。
生:直角三角形有如下性質(zhì):
。1)有一個角是直角;
。2)兩個銳角互余;
(3)兩直角邊的平方和等于斜邊的平方;
。4)在含30°角的直角三角形中,30°的角所對的直角邊是斜邊的一半。
師:那么,一個三角形滿足什么條件,才能是直角三角形呢?
生:有一個內(nèi)角是90°,那么這個三角形就為直角三角形。
生:如果一個三角形,有兩個角的和是90°,那么這個三角形也是直角三角形。
師:前面我們剛學(xué)習(xí)了勾股定理,知道一個直角三角形的兩直角邊a,b斜邊c具有一定的數(shù)量關(guān)系即a2+b2=c2,我們是否可以不用角,而用三角形三邊的關(guān)系來判定它是否為直角三角形呢?我們來看一下古埃及人如何做?
二、講授新課
活動2
問題:據(jù)說古埃及人用下圖的方法畫直角:把一根長蠅打上等距離的13個結(jié),然后以3個結(jié),4個結(jié)、5個結(jié)的長度為邊長,用木樁釘成一個三角形,其中一個角便是直角。
這個問題意味著,如果圍成的三角形的三邊分別為3、4、5。有下面的關(guān)系“32+42=52”。那么圍成的三角形是直角三角形。
畫畫看,如果三角形的三邊分別為2.5cm,6cm,6.5cm,有下面的關(guān)系,“2.52+62=6.52,畫出的三角形是直角三角形嗎?換成三邊分別為4cm、7.5cm、8.5cm.再試一試.
設(shè)計意圖:由特殊到一般,歸納猜想出“如果三角形三邊a,b,c滿足a2+b2=c2,那么這個三角形就為直免三角形的結(jié)論,培養(yǎng)學(xué)生動手操作能力和尋求解決數(shù)學(xué)問題的一般方法。
師生行為讓學(xué)生在小組內(nèi)共同合作,協(xié)手完成此活動。教師參與此活動,并給學(xué)生以提示、啟發(fā)。在本活動中,教師應(yīng)重點關(guān)注學(xué)生:①能否積極動手參與;②能否從操作活動中,用數(shù)學(xué)語言歸納、猜想出結(jié)論;③學(xué)生是否有克服困難的'勇氣。
生:我們不難發(fā)現(xiàn)上圖中,第(1)個結(jié)到第(4)個結(jié)是3個單位長度即AC=3;同理BC=4,AB=5.因為32+42=52。我們圍成的三角形是直角三角形。
生:如果三角形的三邊分別是2.5cm,6cm,6.5cm.我們用尺規(guī)作圖的方法作此三角形,經(jīng)過測量后,發(fā)現(xiàn)6.5cm的邊所對的角是直角,并且2.52+62=6.52.
再換成三邊分別為4cm,7.5cm,8.5cm的三角形,目標(biāo)可以發(fā)現(xiàn)8.5cm的邊所對的角是直角,且也有42+7.52=8.52.
是不是三角形的三邊只要有兩邊的平方和等于第三邊的平方,就能得到一個直角三角形呢?
活動3下面的三組數(shù)分別是一個三角形的三邊長a,b,c
5,12,13;7,24,25;8,15,17。
。1)這三組效都滿足a2+b2=c2嗎?
(2)分別以每組數(shù)為三邊長作出三角形,用量角器量一量,它們都是直角三角形嗎?
設(shè)計意圖:本活動通過讓學(xué)生按已知數(shù)據(jù)作出三角形,并測量三角形三個內(nèi)角的度數(shù)來進一步獲得一個三角形是直角三角形的有關(guān)邊的條件。
師生行為:學(xué)生進一步以小組為單位,按給出的三組數(shù)作出三角形,從而更加堅信前面猜想出的結(jié)論。
教師對學(xué)生歸納出的結(jié)論應(yīng)給予解釋,我們將在下一節(jié)給出證明.本活動教師應(yīng)重點關(guān)注學(xué)生:①對猜想出的結(jié)論是否還有疑慮;②能否積極主動的操作,并且很有耐心。
生:(1)這三組數(shù)都滿足a2+b2=c2。(2)以每組數(shù)為邊作出的三角形都是直角三角形。
師:很好,我們進一步通過實際操作,猜想結(jié)論。
命題2如果三角形的三邊長a,b,c滿足a2+b2=c2那么這個三角形是直角三角形。
同時,我們也進一步明白了古埃及人那樣做的道理.實際上,古代中國人也曾利用相似的方法得到直角,直至科技發(fā)達的今天。
《勾股定理逆定理》教學(xué)反思6
本節(jié)課以活動為主線,通過從估算到實驗活動結(jié)果的產(chǎn)生讓學(xué)生總結(jié)過程,最后回到解決生活中實際問題,思路清晰,脈絡(luò)明了。
例如:活動1問題:據(jù)說古埃及人用下圖的方法畫直角:把一根長蠅打上等距離的13個結(jié),然后以3個結(jié),4個結(jié)、5個結(jié)的長度為邊長,用木樁釘成一個三角形,其中一個角便是直角.
這個問題意味著,如果圍成的三角形的三邊分別為3、4、5.那么圍成的'三角形是直角三角形.
2、體現(xiàn)了“數(shù)學(xué)源于生活,寓于生活,用于生活”的教育思想;突出了“特征讓學(xué)生觀察,思路讓學(xué)生探索,方法讓學(xué)生思考,意義讓學(xué)生概括,結(jié)論讓學(xué)生驗證,難點讓學(xué)生突破,以學(xué)生為主體”的教學(xué)思路。同學(xué)們經(jīng)過操作,觀察,探究,歸納得到直角三角形的判定,由感性認(rèn)識上升到理性認(rèn)識,能力得到提升。
3、在教學(xué)活動過程中,我經(jīng)常走下講臺,到學(xué)生中去,以學(xué)生身份和學(xué)生一起探討問題。用一切可能的方式,激勵回答問題的學(xué)生,激發(fā)學(xué)生的求知欲,使師生在和諧的教學(xué)環(huán)境中零距離的接觸。課堂上學(xué)生們的思維空前活躍,發(fā)言的人數(shù)不斷增多,學(xué)生能從多角度認(rèn)識問題,爭先恐后地交流不同的意見和方法,收到比較好的效果。
《勾股定理逆定理》教學(xué)反思7
我國是最早了解勾股定理的國家之一。早在三千多年前,周朝數(shù)學(xué)家商高就提出,將一根直尺折成一個直角,如果勾(短直角邊)等于三,股(長直角邊)等于四,那么弦等于五。即“勾三、股四、弦五”。它被記載于我國古代著名的數(shù)學(xué)著作《周髀算經(jīng)》中,在這本書的另一處,還記載了勾股定理的一般形式。中國古代的幾何學(xué)家研究幾何是為了實用,是唯用是尚的。在講完《勾股定理逆定理》這節(jié)課后,我的反思如下:
本節(jié)課的教學(xué)目標(biāo)是:在掌握了勾股定理的基礎(chǔ)上,讓學(xué)生如何從三邊的關(guān)系來判定一個三角形是否為直角三角形.即:勾股定理的逆定理。
勾股定理的逆定理的教學(xué)設(shè)計說明:本教教學(xué)設(shè)計是圍繞勾股定理的逆定理的證明與應(yīng)用來展開,結(jié)合新課標(biāo)的要求,根據(jù)我班學(xué)生的認(rèn)知結(jié)構(gòu)與教材地位為了達到本節(jié)課的教學(xué)目標(biāo),我做了以下設(shè)計(也是成功之處):
一、創(chuàng)設(shè)情境,提出猜想達到直觀性的教學(xué)要求。讓幾個學(xué)生要全班同學(xué)前面做一個“數(shù)學(xué)實驗”,三條分別為:3,4,5的三角形是一個直角三角形。第二步驟是讓學(xué)生畫已知三邊的一定長度的三角形,判斷是不是直角三角形,并分析三邊滿足什么關(guān)系條件,同時,引導(dǎo)學(xué)生從特殊到一般提出猜想。
二、將教學(xué)內(nèi)容精簡化.考慮到我所教班級的學(xué)生認(rèn)識水平,做了如下教學(xué)設(shè)計:⑴將教學(xué)目標(biāo)定為讓學(xué)生掌握勾股定理的逆定理.以及逆定理的應(yīng)用,而對于本課中逆定理的證明.以及其探究都放在一下節(jié)課再進行講解.⑵對于本課中所出現(xiàn)了的逆定理的定義,及其真假性的判斷也簡單化.本節(jié)課也不詳細(xì)講.本節(jié)課的的重點放在掌握勾股定理的逆定理,及其應(yīng)用.從課堂效果來看,這樣的教學(xué)設(shè)計是合理的,學(xué)生較好的掌握了勾股定理的逆定理,所以取得了良好的課堂效果。
三、應(yīng)用訓(xùn)練,鞏固新知為了鞏固新知,靈活運用所學(xué)知識解決相應(yīng)問題,提高學(xué)生的分析解題能力,基于對我班的學(xué)情分析,為了讓學(xué)生都能動起手做,學(xué)案的設(shè)計上做了很多腳手架,目的就是讓學(xué)生能夠按照腳手架的步驟一步步完成,最終也形成了解題的“操作性”。此外,腳手架的設(shè)置對我們的中下水平的學(xué)生是很多幫助的.從課堂上看,他們也能在腳手架的幫助下,完成一定的題目中,而如果沒有的話,這部分學(xué)生對一些基本的題都會束手無策.
四、實行分層教學(xué),讓不同水平的學(xué)生在同一課堂都能學(xué)好,為此,我設(shè)計了三個層次的問題,以達到分層教學(xué)目標(biāo):第一層次是讓學(xué)生直接運用定理判斷三角形是否是直角三角形,掌握定理基本運用;第二層次是強調(diào)已知三角形三邊長或三邊關(guān)系,就有意識的判斷三角形是否是直角三角形,這樣既鞏固了勾股定理的逆定理的應(yīng)用,又為下一個層次做好了鋪墊;第三層次是靈活運用勾股定理與逆定理解決圖形面積的計算問題.根據(jù)學(xué)生原有的認(rèn)知結(jié)構(gòu),讓學(xué)生更好地體會分割的思想.設(shè)計的題型前后呼應(yīng),使知識有序推進,有助于學(xué)生的理解和掌握;讓學(xué)生通過合作、交流、反思、感悟的過程,激發(fā)學(xué)生探究新知的興趣,感受探索、合作的樂趣,并從中獲得成功的體驗.真正體現(xiàn)學(xué)生是學(xué)習(xí)的主人.。將目標(biāo)分層后,我設(shè)計的學(xué)案里的題目也是相應(yīng)的進行了分層設(shè)計,滿足不同層次的學(xué)生的做題要求,達到鞏固課堂知識的目的。最后,布置作業(yè),也是分層布置的,分為三層,對應(yīng)不同的學(xué)生,讓他們的作業(yè)都在他們的能力范圍。
誠然,這節(jié)課也存在許多不足第一、新課導(dǎo)入部分:存在如下值得改進的地方:①復(fù)習(xí)舊知部分,復(fù)習(xí)勾股定理的內(nèi)容應(yīng)用了填空的形式,這個形式不是最佳的.因為學(xué)生書寫勾股定理耗時,既使書寫出來,復(fù)習(xí)效果也不太好。最佳的應(yīng)該是以簡單的題目形式來復(fù)習(xí)勾股定理.這樣快而有效;②如何從復(fù)習(xí)勾股定理中巧妙的切入本課的`主題,過渡語的設(shè)置,應(yīng)該將過渡語言簡單明了,可設(shè)計成:怎么從邊的關(guān)系來判斷一個三角形是直角三角形呢?這就是本節(jié)課要學(xué)習(xí)的內(nèi)容.③導(dǎo)入部分的課時分配估計不足,顯得冗長,也一定程度上造成后面的教學(xué)時間緊張。應(yīng)該對導(dǎo)入部分的時效再進行分析簡化。
第二存在的問題是:
(1)腳手架設(shè)計的太多,本節(jié)課有一定的腳手架是合適的,太多了,反而不利于學(xué)生自己的書寫規(guī)范性,過程的掌握等,
。2)練習(xí)題題量過大,本節(jié)課的練習(xí)題大部分都是重復(fù)一些基本的操作,沒有必要太多簡單的題目,可以適當(dāng)去掉.對于數(shù)字的設(shè)計可以更加科學(xué)化一點,應(yīng)該讓學(xué)生方便運算和節(jié)省時間.此外,對于層次較要的同學(xué)來說,應(yīng)該設(shè)計更多一點綜合性的題目。適當(dāng)?shù)脑黾右恍┨岣哳},以滿足這一層次的學(xué)生的學(xué)習(xí)練習(xí)要求.
在備每一節(jié)課中,對于課堂的每一個細(xì)節(jié),第一刻鐘,第一個教學(xué)設(shè)計的思考都無不直接影響著你的這一節(jié)課,影響著你的課堂效果。靜心思考,反思整個過程是一種全新的收獲,也是全新的開始,讓自己能夠重新起步,向前。
【《勾股定理逆定理》教學(xué)反思】相關(guān)文章:
《勾股定理逆定理》的教學(xué)反思04-14
勾股定理的逆定理說課稿05-15
《勾股定理的逆定理》說課稿11-13
勾股定理的逆定理說課稿8篇02-24
《勾股定理》教學(xué)反思06-09
數(shù)學(xué)《勾股定理》教學(xué)反思04-22
八年級勾股定理教學(xué)反思04-17
勾股定理的說課稿,勾股定理說課稿范文05-06
《勾股定理》說課稿06-20
勾股定理教案05-30