因數(shù)和倍數(shù)教學(xué)反思(15篇)
身為一名人民教師,我們要有一流的課堂教學(xué)能力,通過教學(xué)反思可以快速積累我們的教學(xué)經(jīng)驗,那么寫教學(xué)反思需要注意哪些問題呢?下面是小編收集整理的因數(shù)和倍數(shù)教學(xué)反思,歡迎大家借鑒與參考,希望對大家有所幫助。
因數(shù)和倍數(shù)教學(xué)反思 篇1
一、教材與知識點的對比與區(qū)別。
1、對比新版教材知識設(shè)置與傳統(tǒng)教材的區(qū)別。有關(guān)數(shù)論的這部分知識是傳統(tǒng)教學(xué)內(nèi)容但教材在傳承以往優(yōu)秀做法的同時也進行了較大幅度的改動。無論是從宏觀方面——內(nèi)容的劃分還是從微觀方面——具體內(nèi)容的設(shè)計上都獨具匠心!耙驍(shù)與倍數(shù)”的認識與原教材有以下兩方面的區(qū)別1新課標教材不再提“整除”的概念也不再是從除法算式的觀察中引入本單元的學(xué)習(xí)而是反其道而行之通過乘法算式來導(dǎo)入新知。2“約數(shù)”一詞被“因數(shù)”所取代。這樣的變化原因何在教師必須要認真研讀教材深入了解編者意圖才能夠正確、靈活駕馭教材。因此我通過學(xué)習(xí)教參了解到以下信息學(xué)生的原有知識基礎(chǔ)是在已經(jīng)能夠區(qū)分整除與余數(shù)除法對整除的含義有比較清楚的認識不出現(xiàn)整除的'定義并不會對學(xué)生理解其他概念產(chǎn)生任何影響。因此本教材中刪去了“整除”的數(shù)學(xué)化定義。
2、相似概念的對比。1彼“因數(shù)”非此“因數(shù)”。在同一個乘法算式中兩者都是指乘號兩邊的整數(shù)但前者是相對于“積”而言的與“乘數(shù)”同義可以是小數(shù)。而后者是相對于“倍數(shù)”而言的與以前所說的“約數(shù)”同義說“X是X的因數(shù)”時兩者都只能是整數(shù)。2“倍數(shù)”與“倍”的區(qū)別!氨丁钡母拍畋取氨稊(shù)”要廣。我們可以說“1.5是0.3的5倍”但不能說”1.5是0.3的倍數(shù)”。我們在求一個數(shù)的倍數(shù)時運用的方法與“求一個數(shù)的幾倍是多少”是相同的只是這里的“幾倍”都是指整數(shù)倍。
二、教法的運用實踐
1、“因數(shù)與倍數(shù)”概念的數(shù)的應(yīng)用范圍的規(guī)定直接運用講述法。對與本知識點的概念是人為規(guī)定的一個范圍因此對于學(xué)生和第一接觸的印象是沒有什么可以探究和探索的要求而且給學(xué)生一個直觀的感受!耙驍(shù)與倍數(shù)”的運用范圍就是在非0自然數(shù)的范疇之內(nèi)與小數(shù)無關(guān)與分數(shù)無關(guān)與負數(shù)無關(guān)雖沒學(xué)但有小部分學(xué)生了解。同時強調(diào)——非0——因為0乘任何數(shù)得00除以任何數(shù)得0。研究它的因數(shù)與倍數(shù)是沒有意義。我得到的經(jīng)驗就是對于數(shù)學(xué)當中規(guī)定性的概念用直接講述法讓學(xué)生清晰明確。因此用直接導(dǎo)入法先復(fù)習(xí)自然數(shù)的概念再寫出乘法算式3×4=12說明在這個算式中3和4是12的因數(shù)12是3和4的倍數(shù)。
2、在進行延續(xù)性教學(xué)中可以讓學(xué)生探究怎么樣找一個數(shù)的因數(shù)和倍數(shù)在板書要講究一個格式與對稱性這樣在對學(xué)生發(fā)現(xiàn)倍數(shù)與因數(shù)個數(shù)的有限與無限的對比再就是發(fā)現(xiàn)一個數(shù)的因數(shù)的最小因數(shù)是1最大因數(shù)是其本身。
因數(shù)和倍數(shù)教學(xué)反思 篇2
因數(shù)和倍數(shù)是五年級下冊第二單元的教學(xué)內(nèi)容,由于知識較為抽象,學(xué)生不易理解,因此我在教學(xué)時做到了以下幾點:
。1)密切聯(lián)系生活中的數(shù)學(xué),幫助學(xué)生理解概念間的關(guān)系。
今天在教學(xué)前,我讓學(xué)生學(xué)說話,就是培養(yǎng)學(xué)生對語言的概括能力和對事物間關(guān)系的理解能力。于是我利用課前談話讓學(xué)生在找找生活中的相互依存關(guān)系,課中遷移到數(shù)學(xué)中的倍數(shù)和因數(shù),這樣設(shè)計自然又貼切,既讓學(xué)生感受到了數(shù)學(xué)與生活的聯(lián)系,又幫助學(xué)生理解了倍數(shù)因數(shù)之間的相互依存關(guān)系,從而使學(xué)生更深一步的`認識倍數(shù)與因數(shù)的關(guān)系,
。2)改動呈現(xiàn)倍數(shù)和因數(shù)概念的方式。我改變了例題,用杯子翻動的次數(shù)與杯口朝上的次數(shù)之間的關(guān)系,列出乘法算式,初步感知倍數(shù)關(guān)系的存在,從而引出倍數(shù)和因數(shù)的概念,并為下面學(xué)習(xí)如何找一個數(shù)的倍數(shù)奠定了良好的基礎(chǔ)。這樣不僅溝通了乘法和除法的關(guān)系,也讓學(xué)生很容易感悟到不管是根據(jù)乘法還是除法算式都可以找到因數(shù)和倍數(shù)。
。3)根據(jù)學(xué)生的實際情況,教學(xué)找一個數(shù)的因數(shù)的方法,雖然學(xué)生不能有序地找出來,但是基本能全部找到,再此基礎(chǔ)上讓體會有序找一個數(shù)因數(shù)的辦法學(xué)生容易接受,這樣的設(shè)計由易到難,由淺入深,我覺得能起到鞏固新知,發(fā)展思維的效果。
。4)設(shè)計有趣游戲活動,擴大學(xué)生思維的空間,培養(yǎng)學(xué)生發(fā)散思維的能力。譬如“找朋友”游戲,答案不唯一,學(xué)生思考問題的空間很大,培養(yǎng)了學(xué)生的發(fā)散思維能力。我手里拿了5、17、38幾張數(shù)字卡片,讓學(xué)生判斷自己的學(xué)號數(shù)是哪些數(shù)的倍數(shù),是哪些數(shù)的因數(shù),如果學(xué)生的學(xué)號數(shù)是老師出示卡片的倍數(shù)或因數(shù)就可以站起來。最后問能不能想個辦法讓所有的學(xué)生都站起來。出示地卡片應(yīng)該是幾,找的朋友應(yīng)該是倍數(shù)還是因數(shù)?學(xué)生面對問題積極思考,享受了數(shù)學(xué)思維的快樂。
因數(shù)和倍數(shù)教學(xué)反思 篇3
倍數(shù)和因數(shù)本教材與原教材大不相同。在舊教材中,首先確立了除法的概念,然后在此基礎(chǔ)上認識了因子倍數(shù)。目前,在不知道劃分的情況下,直接識別倍數(shù)和因子。數(shù)學(xué)中的“初始概念”通常很難教授。這部分信息是學(xué)生第一次很難掌握的。首先,這個名字相對抽象,在現(xiàn)實生活中不常接觸。對于這樣的概念教學(xué),學(xué)生要真正理解、掌握和確定它,需要一個長期的消化和理解過程。
在本課程中,我充分體現(xiàn)了學(xué)生是主體,為學(xué)生的探索和發(fā)現(xiàn)提供了充足的時間和空間,并提供了適當?shù)闹笇?dǎo)。同時,為了提高課堂教學(xué)的有效性,我在本課程的教學(xué)中體現(xiàn)了自主性、主動性、合作性和親和力,做到了以下幾點:
(一)操作實踐,實例內(nèi)化,對倍數(shù)和因子的理解
我創(chuàng)造了一個有效的數(shù)學(xué)學(xué)習(xí)環(huán)境,將數(shù)字與形狀結(jié)合起來,并將抽象化為直覺。首先,讓學(xué)生操作,將12個小正方形放入不同的矩形中,然后讓學(xué)生寫出不同的乘法公式,從而得出因子和倍數(shù)的含義。這樣,在學(xué)生已有知識的基礎(chǔ)上,從動手操作到直觀感知,概念的揭示突破了從抽象到抽象,從數(shù)學(xué)到數(shù)學(xué),使學(xué)生能夠獨立體驗數(shù)與形的結(jié)合,然后形成要素和倍數(shù)的含義。使學(xué)生初步建立“因素與多元”的概念。這樣,我們就可以充分學(xué)習(xí)、利用和挖掘教材,利用學(xué)生已有的'數(shù)學(xué)知識,引出新的知識,減緩難度,效果良好。
。↖I)自主探究、意義建構(gòu)、發(fā)現(xiàn)倍數(shù)和因素
整個教學(xué)過程試圖反映學(xué)生是學(xué)習(xí)的主體,教師只是教學(xué)活動的組織者、指導(dǎo)者和參與者。在整個課堂上,教師總是為學(xué)生營造一種輕松的學(xué)習(xí)氛圍,讓學(xué)生自主探索,學(xué)習(xí)和理解倍數(shù)和因子的意義,探索和掌握尋找一個數(shù)的倍數(shù)和因子的方法,引導(dǎo)學(xué)生滿口獨立獲取知識,手和腦。
新課程提出了合作學(xué)習(xí)的學(xué)習(xí)方式。多元合作教學(xué)不僅能使學(xué)生在合作中表達自己的觀點、參與討論、獲取知識、發(fā)現(xiàn)特色,還能培養(yǎng)學(xué)生的合作學(xué)習(xí)技能,初步形成合作與競爭意識。
查找數(shù)字因子是本課的難點。在教學(xué)過程中,讓學(xué)生自主探究。在隨后的檢查中,我發(fā)現(xiàn)很多學(xué)生完成的不是很好,所以我決定先溝通,讓學(xué)生們發(fā)現(xiàn)。就這樣,花了很多時間。最后,我沒有太多時間練習(xí)。我認為雖然我用了太多的時間,但我認為學(xué)生們已經(jīng)充分探索和收獲了。對于剛剛對多因素有了感性認識的學(xué)生來說,如何在沒有重復(fù)和遺漏的情況下找到36個因素是一件很困難的事情,這樣他們才能充分發(fā)揮小組學(xué)習(xí)的優(yōu)勢。首先,讓學(xué)生獨立找出36的因子。我檢查了三分之一的學(xué)生可以有序地思考,大多數(shù)學(xué)生沒有按照必要的順序?qū)懝。然后讓學(xué)生討論兩個問題
因數(shù)和倍數(shù)教學(xué)反思 篇4
《因數(shù)和倍數(shù)》是一節(jié)概念課。教學(xué)時我首先以拼圖比賽為素材,讓學(xué)生動手操作快速把12個小正方形擺出一個長方形,再讓學(xué)生用乘法算式表示出所擺的長方形,在交流中得到三種不同的擺法和三種不同的乘法算式。借助乘法算式引出因數(shù)和倍數(shù)的意義,使學(xué)生初步建立了“因數(shù)與倍數(shù)”的概念。 這樣,用學(xué)生已有的數(shù)學(xué)知識引出了新知識,減緩了難度,這一環(huán)節(jié)的教學(xué),我覺得還是收到了預(yù)設(shè)的效果。
能不重復(fù)、不遺漏、有序地找出一個數(shù)的因數(shù),是本課的教學(xué)難點。在教學(xué)中,我是這樣設(shè)計的:在根據(jù)1×12=12,2×6=12,3×4=12三個乘法算式說出了誰是誰的因數(shù)、誰是誰的倍數(shù)后,我緊接著提問:12的`因數(shù)有哪些?學(xué)生看著黑板上的算式很快地找出12的因數(shù),接著再提問:你是用什么方式找到12的因數(shù)的?在學(xué)生說出方法后,為了讓學(xué)生探索出找一個因數(shù)的方法,我讓學(xué)生自己找一找15的因數(shù)有哪些。預(yù)設(shè)在匯報時,能借此解決如何有序、不重復(fù)、不遺漏地找出一個數(shù)的因數(shù)。但在實際交流時,學(xué)生的方法出現(xiàn)了兩種意見,并且各抒己見,因為15的因數(shù)只有兩對,無論怎樣找都不會遺漏。作為老師,我這時沒有把我的意見強加給學(xué)生,而是以男女生比賽的形式,讓學(xué)生分別找16、18的所有因數(shù)。由于部分學(xué)生運用從小到大一對一對地找很快找出這兩個數(shù)的因數(shù),另一部分卻在無序的情況下,不是重復(fù)就是遺漏,這樣在比較中,不重復(fù)、不遺漏、有序地找出一個數(shù)的因數(shù)的方法,學(xué)生就能夠很好地接受并掌握。雖然在這個環(huán)節(jié)上花了比較多的時間,但對學(xué)生自主探索、自主學(xué)習(xí)起到了很好的促進作用。
最后引導(dǎo)學(xué)生歸納總結(jié)出一個數(shù)的因數(shù)的特點時,由于及時跟上個性化的語言評價,激活了學(xué)生的情感,學(xué)生的思維不斷活躍起來。借助這一學(xué)習(xí)熱情讓學(xué)生自己探索找一個數(shù)的倍數(shù)的方法,學(xué)生學(xué)習(xí)興趣更濃。不僅探討出從小到大找一個數(shù)的倍數(shù)而且發(fā)現(xiàn)了倍數(shù)的特點。
由于本節(jié)課的容量比較大,練習(xí)題設(shè)計綜合性比較強,學(xué)生學(xué)得并不輕松,還存在一小部分學(xué)生沒有很好地理解因數(shù)與倍數(shù)的關(guān)系。今后,應(yīng)努力改進教學(xué)手段,提高學(xué)困生的學(xué)習(xí)效率。
因數(shù)和倍數(shù)教學(xué)反思 篇5
教學(xué)中我發(fā)現(xiàn)倍數(shù)和因數(shù)這一內(nèi)容與原來教材比有了很大的不同,老教材中是先建立整除的概念,在此基礎(chǔ)上認識因數(shù)倍數(shù)。而這里的處理的方法有所不同,我在教學(xué)時做了一些改動,讓學(xué)生用12個小正方形擺長方形,然后自己用算式把擺法表示出來。這樣學(xué)生的算是就不局限于乘法,有一部分學(xué)生寫了除法算式。這樣學(xué)生很容易感悟到不管是根據(jù)乘法還是除法算式都可以找到因數(shù)和倍數(shù)。因為現(xiàn)在也有很多學(xué)生學(xué)習(xí)奧賽,所以我從整除的角度也介紹了因數(shù)與倍數(shù)的概念.
由于這節(jié)是概念課,因此有不少東西是由老師告知的,但并不意味著學(xué)生完全被動的接受。如讓學(xué)生思考:你覺得3和12、4和12之間有什么關(guān)系呢?(對乘除法學(xué)生有著相當豐富的經(jīng)驗,因此不少學(xué)生能說出倍數(shù)關(guān)系,可能說得不很到位,但那是學(xué)生自己的東西)。當學(xué)生認識了倍數(shù)之后,我進行了設(shè)問:12是3的倍數(shù),那反過來3和12是什么關(guān)系呢?盡管學(xué)生無法回答,但卻給了他思考和接受“因數(shù)”的空間,使學(xué)生體會到12是3的倍數(shù),反過來3就是12的因數(shù),接下來4和12的關(guān)系,學(xué)生都爭者要回答。
如何做到既不重復(fù)又不遺漏地找36的.因數(shù),對于剛剛對倍數(shù)因數(shù)有個感性認識的學(xué)生來說有一定困難,這里可以充分發(fā)揮小組學(xué)習(xí)的優(yōu)勢。先讓學(xué)生自己獨立找36的因數(shù),我巡視了一下五分之一的學(xué)生能有序的思考,多數(shù)學(xué)生寫的算式不按一定的次序進行。接著讓學(xué)生在小組里討論兩個問題:用什么方法找36的因數(shù),如何找不重復(fù)也不遺漏。在小組交流的過程中,學(xué)生對自己剛才的方法進行反思,吸收同伴中好的方法,這不比老師給予的有效得多。
因數(shù)和倍數(shù)教學(xué)反思 篇6
教學(xué)片斷:
1、出示12個小正方形。
師:數(shù)一數(shù),一共有幾個小正方形?如果老師請你把這12個同樣的小正方形拼成一個長方形,會拼嗎?能不能用一條簡單的乘法算式表達出來?
2、指名學(xué)生列式,提問其他學(xué)生:“你知道他是怎么擺的嗎?”要求學(xué)生說出每排擺幾個,擺了幾排。
3、根據(jù)學(xué)生的回答,適時貼出各種不同擺法:
12×1=12
6×2=12
4×3=12
4、12個同樣大小的正方形拼成長方形,能列出三道不同的乘法算式,千萬別小看這些乘法算式,咱們今天研究的內(nèi)容就在這里。以4×3=12為例,12是4的倍數(shù),那12也是(3的`倍數(shù)),4是12的因數(shù),那3也是(12的因數(shù))。同學(xué)們很有遷移的能力,這就是我們今天要研究的倍數(shù)和因數(shù)。(板書課題)
5、根據(jù)另外兩道乘法算式,說說誰是誰的倍數(shù),誰是誰的因數(shù)。
6、剛才在聽的時候發(fā)現(xiàn)12×1=12說因數(shù)和倍數(shù)時有兩句特別拗口,是哪兩句?
說明:雖然是拗口了點,不過數(shù)學(xué)上還真是這么回事。12的確是12的因數(shù),12也確實是12的倍數(shù)。為了方便,我們在研究倍數(shù)和因數(shù)時所說的數(shù)一般指不是0的自然數(shù)。
7、說一說
(1)根據(jù)72÷8=9,說一說哪一個數(shù)是哪一個數(shù)的倍數(shù),哪一個數(shù)是哪一個數(shù)的因數(shù)。
(2)從下面的數(shù)中任選兩個數(shù),說一說哪一個數(shù)是哪一個數(shù)的倍數(shù),哪一個數(shù)是哪一個數(shù)的因數(shù)。
3、5、18、20、36
反思:
陶老師從擺小正方形入手,提出“每排擺了幾個?”“擺了幾排?”這兩個問題,引導(dǎo)學(xué)生用乘法算式把擺法表示出來,再讓學(xué)生猜一猜“可能是怎么擺的”,學(xué)生充分經(jīng)歷了“由形到數(shù)、再由數(shù)到形”的過程,既為倍數(shù)和因數(shù)概念的提出積累了素材,又初步感知倍數(shù)和因數(shù)的關(guān)系,為正確理解概念提供了幫助。接著結(jié)合具體的乘法算式介紹倍數(shù)和因數(shù),并讓學(xué)生根據(jù)另外兩道乘法算式說說誰是誰的倍數(shù),誰是誰的因數(shù)。再通過除法算式讓學(xué)生說說誰是誰的倍數(shù),誰是誰的因數(shù)。最后讓學(xué)生從五個數(shù)中任選兩個數(shù)說說誰是誰的倍數(shù),誰是誰的因數(shù),這樣層層深入,學(xué)生對倍數(shù)和因數(shù)的感受更加深刻。<
因數(shù)和倍數(shù)教學(xué)反思 篇7
教學(xué)《倍數(shù)與因數(shù)》,這是一個非?菰锏恼n題,但我巧妙地運用課文中的情景圖與學(xué)生的生活實際聯(lián)系,通過水果店各種水果的單價所顯示的數(shù)進行分類,得出自然數(shù)、整數(shù)、小數(shù)、分數(shù)和負數(shù),使學(xué)生體會生活中各種不同的數(shù)。為了讓學(xué)生理解倍數(shù)與因數(shù)的含意,教學(xué)過程中,我立足體現(xiàn)一個“實”字,讓學(xué)生從算式中找出能整除的算式,揭示整除、倍數(shù)、因數(shù)之間的關(guān)系,再通過舉例去驗證倍數(shù)與因數(shù)之間的聯(lián)系,在推理中“悟”出知識的規(guī)律。學(xué)生在學(xué)習(xí)中實實在在經(jīng)歷了一個探究的過程!皠幽X筋出教室”這一游戲的設(shè)計,學(xué)生在積極參與探討、質(zhì)疑、創(chuàng)造的教學(xué)活動,既鞏固了知識,又享受了數(shù)學(xué)思維的.快樂。
在授課時,我體驗到了學(xué)生的快樂。當學(xué)生用自己的學(xué)號說整除、因數(shù)、倍數(shù)之間的關(guān)系時,由于像順口溜,很有趣。每個學(xué)生都很感興趣,說得很努力。原來,數(shù)學(xué)也很有趣……
因數(shù)和倍數(shù)教學(xué)反思 篇8
體會:
一、動手實踐、合作交流是學(xué)生有效學(xué)習(xí)的重要方式
《數(shù)學(xué)課程標準》指出:有效的數(shù)學(xué)學(xué)習(xí)活動,不能單純地依賴模仿與記憶,動手實踐、自主探索與合作交流,是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式。
本片斷一開始,以“用12個同樣大小的正方形,擺成一個長方形”為例,讓學(xué)生動手操作、合作交流,怎樣擺,有哪些不同的擺法?這里牛老師充分挖掘了教材,根據(jù)教材中的3種長方形的擺法,教師預(yù)想到學(xué)生可能出現(xiàn)的6種操作方法,事先用課件預(yù)設(shè)好。同時,教師在學(xué)生小組交流、操作后,又請各小組代表到黑板上演示自己的一種擺法,得到大家的認可后,再用課件逐一呈現(xiàn)。這樣的安排,首先體現(xiàn)了以學(xué)生為本,用學(xué)生已有的經(jīng)驗和動手操作,很好的調(diào)動了學(xué)生學(xué)習(xí)的積極性和主動性,同時知識的得到是從實際問題的解決,抽象為具體討論的數(shù)學(xué)問題。其次,這樣的安排體現(xiàn)了兩方面好處:一方面讓學(xué)生樂于接受,是學(xué)生在展示自己的想法,老師僅僅是組織者,另一方面培養(yǎng)了學(xué)生善于觀察和傾聽他人的想法的良好學(xué)習(xí)態(tài)度。這里的設(shè)計,有效的解決了知識的傳授與理解。
二、能挖掘教材,精心設(shè)計練習(xí),達到有效的訓(xùn)練
本片斷的兩個練習(xí)。第一個練習(xí)是“請你做裁判”。這一組的3題突出了說倍數(shù)和因數(shù)時,強調(diào)誰是誰的因數(shù),誰是誰的倍數(shù),同時也讓學(xué)生理解了兩個數(shù)的'倍數(shù)和因數(shù)的關(guān)系。第二個練習(xí)是“請你說一說”。教師選擇了2,3,5,6,9,20這6個數(shù),讓學(xué)生選擇性的分析以上信息,運用所學(xué)知識說說哪兩個數(shù)存在倍數(shù)和因數(shù)的關(guān)系。這樣的設(shè)計,培養(yǎng)了學(xué)生觀察、分析問題、口頭表達的能力,也進一步鞏固了倍數(shù)和因數(shù)的概念理解,接著教師又增加了“1”,讓學(xué)生再次用“1”與其它數(shù)比較,小組交流發(fā)現(xiàn)1與其它自然數(shù)的關(guān)系,學(xué)生很快總結(jié)出1是其它自然數(shù)的因數(shù),其它自然數(shù)是1的倍數(shù)。這樣的練習(xí)形式,很好的解決了本節(jié)課對于因數(shù)和倍數(shù)的概念理解,同時,形式上也較多的鼓勵學(xué)生參與學(xué)習(xí)、發(fā)表自己的見解、小組交流等,充分調(diào)動學(xué)生、相信學(xué)生、培養(yǎng)學(xué)生的學(xué)習(xí)能力,我覺得處理的較好。
反思:
一、教師的語言準確性和科學(xué)性
這里需要說明一點,四年級國標版教材的倍數(shù)和因數(shù),和蘇教版五年級第十冊教學(xué)的約數(shù)和倍數(shù)單元內(nèi)容相近,這里的概念也是建立在數(shù)的整除的基礎(chǔ)上,不同的是國標版第八冊教材是用乘法的方式引入新知的學(xué)習(xí)。
牛琴老師在教學(xué)練習(xí)二時,有一個學(xué)生說出3是2的倍數(shù),2是3的因數(shù),該同學(xué)剛說完,就有很多同學(xué)指出這種說法的錯誤,老師追問錯誤原因,有一個學(xué)生說因為3除以2不能整除,教師也及時給出結(jié)論:因為3除以2不能除盡。這個結(jié)論顯然不準確,或者說犯了科學(xué)性的錯誤,3除以2能除盡,但是3除以2得不到整數(shù)的商,所以3不可能被2整除,在這樣的前提下,3不是2的倍數(shù),2也不是3的因數(shù)。我覺得教師如果不自己下結(jié)論,而是讓學(xué)生結(jié)合這一問題展開討論、交流、對比,可能會使課堂增添一個意外的驚喜。
二、練習(xí)的設(shè)計與挖掘
1、練習(xí)一第3題:54是9的倍數(shù)。在學(xué)生判斷后,能否再展開拓展,54還是哪些數(shù)的倍數(shù),鼓勵學(xué)生發(fā)現(xiàn)54與其它自然數(shù)的倍數(shù)關(guān)系,也為后面教學(xué)找一個數(shù)的所有因數(shù)做鋪墊。
2、練習(xí)二中,老師選擇了6個數(shù)字讓學(xué)生選擇其中的兩個數(shù)判斷倍數(shù)和因數(shù)關(guān)系,從實際情況看完成的較好,不過是否顯多了,能否去調(diào)2個,這樣課的結(jié)構(gòu)會不會更緊密,課堂效果會更好呢?
當然,我們的研究正如我們學(xué)校出版的教學(xué)片斷的書序中所說:燃一根火柴,會閃亮一點,倘若用一根火柴點燃一堆篝火,定會帶來無限的精彩。希望我們的研究能給兄弟學(xué)校一定的思索,同時也希望兄弟學(xué)校能反饋給我們寶貴的建議,讓我們在課程改革中,更加堅定,更加執(zhí)著。
因數(shù)和倍數(shù)教學(xué)反思 篇9
《公倍數(shù)和公因數(shù)》的教學(xué)已接近尾聲,但練習(xí)反饋,部分學(xué)生求兩個數(shù)的最大公因數(shù)和最小公倍數(shù)錯誤百出,細細思量,用課本上列舉的方法,真的很難一下子準確找到最大公因數(shù)或最小公倍數(shù)。如:8和10的`最小公倍數(shù),有學(xué)生寫80,25和50的最大公因數(shù)有學(xué)生寫5!胰枂枌W(xué)生找兩個數(shù)公倍數(shù)和最小公倍數(shù),或者兩個數(shù)的公因數(shù)和最大公因數(shù)的感受,他們都說“煩”,“很煩”,“太麻煩了”。
在了解了學(xué)生的感受以后,我又重新通過練習(xí)概括出了一些特殊情況:
。1)兩個數(shù)是倍數(shù)關(guān)系的,這兩個數(shù)的最小公倍數(shù)是其中較大的一個數(shù),最大公因數(shù)是其中較小的一個數(shù);
(2)三種最大公因數(shù)是1,最小公倍數(shù)是兩數(shù)乘積的情況(“互質(zhì)數(shù)”這個概念學(xué)生沒有學(xué)到):
、賰蓚不同的素數(shù);
、趦蓚連續(xù)的自然數(shù);
、1和任何自然數(shù)。
另外,我又結(jié)合教材后面的“你知道嗎?”,指導(dǎo)了一下用短除法求兩個數(shù)的最小公倍數(shù)和最大公因數(shù)的方法。在完成練習(xí)時,讓學(xué)生根據(jù)情況,用自己喜歡的方法來求兩個數(shù)的最小公倍數(shù)和最大公因數(shù)。這樣,給學(xué)生結(jié)合題目中兩個數(shù)的特點,自主選擇方法的空間,學(xué)生比較喜歡。
想來想去,還是真得很懷念舊教材上的“短除法”。
因數(shù)和倍數(shù)教學(xué)反思 篇10
我在教學(xué)時做到了以下幾點:
(1)密切聯(lián)系生活中的數(shù)學(xué),幫助學(xué)生理解概念間的關(guān)系。
今天在教學(xué)前,我讓學(xué)生學(xué)說話,就是培養(yǎng)學(xué)生對語言的概括能力和對事物間關(guān)系的理解能力。于是我利用課前談話讓學(xué)生在找找生活中的相互依存關(guān)系,課中遷移到數(shù)學(xué)中的倍數(shù)和因數(shù),這樣設(shè)計自然又貼切,既讓學(xué)生感受到了數(shù)學(xué)與生活的聯(lián)系,又幫助學(xué)生理解了倍數(shù)因數(shù)之間的相互依存關(guān)系,從而使學(xué)生更深一步的認識倍數(shù)與因數(shù)的關(guān)系,
(2)改動呈現(xiàn)倍數(shù)和因數(shù)概念的方式。
我改變了例題,用杯子翻動的次數(shù)與杯口朝上的次數(shù)之間的關(guān)系,列出乘法算式,初步感知倍數(shù)關(guān)系的存在,從而引出倍數(shù)和因數(shù)的概念,并為下面學(xué)習(xí)如何找一個數(shù)的倍數(shù)奠定了良好的基礎(chǔ)。這樣不僅溝通了乘法和除法的關(guān)系,也讓學(xué)生很容易感悟到不管是根據(jù)乘法還是除法算式都可以找到因數(shù)和倍數(shù)。
(3)根據(jù)學(xué)生的實際情況,教學(xué)找一個數(shù)的因數(shù)的方法
雖然學(xué)生不能有序地找出來,但是基本能全部找到,再此基礎(chǔ)上讓體會有序找一個數(shù)因數(shù)的辦法學(xué)生容易接受,這樣的設(shè)計由易到難,由淺入深,我覺得能起到鞏固新知,發(fā)展思維的效果。
(4)設(shè)計有趣游戲活動,擴大學(xué)生思維的空間,培養(yǎng)學(xué)生發(fā)散思維的能力。
譬如“找朋友”游戲,答案不唯一,學(xué)生思考問題的'空間很大,培養(yǎng)了學(xué)生的發(fā)散思維能力。我手里拿了5、17、38幾張數(shù)字卡片,讓學(xué)生判斷自己的學(xué)號數(shù)是哪些數(shù)的倍數(shù),是哪些數(shù)的因數(shù),,如果學(xué)生的學(xué)號數(shù)是老師出示卡片的倍數(shù)或因數(shù)就可以站起來。最后問能不能想個辦法讓所有的學(xué)生都站起來。出示地卡片應(yīng)該是幾,找的朋友應(yīng)該是倍數(shù)還是因數(shù)?學(xué)生面對問題積極思考,享受了數(shù)學(xué)思維的快樂
因數(shù)和倍數(shù)教學(xué)反思 篇11
《因數(shù)和倍數(shù)》是一節(jié)數(shù)學(xué)概念課,人教版新教材在引入因數(shù)和倍數(shù)的概念時與以往的教材有所不一樣。在以往的教材中,都是通過除法算式來引出整除的概念,每個除法算式對應(yīng)著一對有整除關(guān)系的數(shù),如b÷a=n表示b能被a整除,a能整除b。在此基礎(chǔ)上再引出因數(shù)和倍數(shù)的概念。而此刻的人教版教材中沒有用數(shù)學(xué)語言給“整除”下定義,而是利用一個簡單的實物圖引出一個乘法算式,通過這個乘法算式直接給出因數(shù)和倍數(shù)的概念。這樣編排對于學(xué)生來說更容易理解和掌握。但是若老師對整除的概念不做講解的話,今后的知識學(xué)習(xí)可能會造成一些缺陷,因此我在這課時中,結(jié)合老教材的知識給學(xué)生進行了滲透,學(xué)生學(xué)習(xí)起來掌握的很好。利用除法、乘法都能很快的找到一個數(shù)的因數(shù)與倍數(shù)。
因數(shù)和倍數(shù)是揭示兩個整數(shù)之間的一種相互依存關(guān)系,在課前談話中我利用生活與數(shù)學(xué)之間的'聯(lián)系,來幫忙學(xué)生理解因數(shù)倍數(shù)相互依存的關(guān)系。比如,我上課前利用班級中學(xué)生的父子關(guān)系和朋友關(guān)系來說明“朋友、父子”詞語的含義,它是指兩個人之間的一種關(guān)系,只能造句為“某人是某人的朋友”。這樣的話局把生活中的相互依存關(guān)系遷移到數(shù)學(xué)中的倍數(shù)和因數(shù),這樣設(shè)計較自然貼切,讓學(xué)生感受到數(shù)學(xué)與生活的聯(lián)系,初步學(xué)會從數(shù)學(xué)的角度去觀察事物、思考問題,激發(fā)對數(shù)學(xué)的興趣,又幫忙學(xué)生理解了倍數(shù)和因數(shù)之間的相互依存關(guān)系。
教育家第斯多惠曾說過:“一個壞的教師奉送真理,一個好的教師則教人發(fā)現(xiàn)真理!币虼私虒W(xué)中,教師要重視學(xué)生的主體地位,給學(xué)生帶給充分思考和自我表現(xiàn)的空間,引導(dǎo)他們利用已有的知識去探索發(fā)現(xiàn)新的知識。如何找一個數(shù)的因數(shù)是這節(jié)課的重點也是難點。根據(jù)學(xué)生的實際狀況,我進行了重組教材,先讓學(xué)生根據(jù)乘法(除法)算式“一對對”地找出18、15、24的因數(shù)。通過“質(zhì)疑”:有什么辦法能保證既找全又不遺漏呢?讓學(xué)生思考并發(fā)現(xiàn):按照必須的順序一對對的找因數(shù),能既找全又不遺漏。在探究倍數(shù)時,我則大膽的放手,讓學(xué)生自主探索找一個數(shù)倍數(shù)的方法,給學(xué)生帶給了廣闊的思維空間。這樣通過多種形式的教學(xué),既激發(fā)了學(xué)生的學(xué)習(xí)興趣,又極大地提高了課堂教學(xué)的實效性。學(xué)生在自我找因數(shù)和倍數(shù)練習(xí)后又總結(jié)了最大的因數(shù)和最小的倍數(shù)都是它本身。我想這就應(yīng)比教師的傳授要好百倍。
一節(jié)課下來,學(xué)生學(xué)習(xí)起來十分簡單,盡量避免出現(xiàn)概念混淆、理解困難的問題。學(xué)生對新知掌握較牢,學(xué)生樂學(xué),思路清晰。以上是自我教學(xué)后的一點感悟。
因數(shù)和倍數(shù)教學(xué)反思 篇12
今天和孩子們一起學(xué)習(xí)了新的一節(jié)課《因數(shù)》,對于《因數(shù)》來說是孩子們第一冊接觸的知識,但是對于因數(shù)這個詞來說,孩子們也并不陌生,因為在乘法算式中已經(jīng)有了因數(shù)的一個初步的了解。所以對于本節(jié)課來說自己有如下的感受:
一、初步感知,數(shù)形結(jié)合讓學(xué)生形成表象。
在教學(xué)的時候,我首先通過課本上飛機圖的情景圖讓學(xué)生看圖列算式,并且用現(xiàn)在自己五年級的思維來用不同的乘法算式來表示,這一環(huán)節(jié)對于學(xué)生列式來說是比較簡單的,基本上所有的學(xué)生都能夠很好的列出算是,然后根據(jù)學(xué)生列出的算式,引出因數(shù)和倍數(shù)的意義。在此環(huán)節(jié)的設(shè)計上由于方法的多樣性,為不同思維的展現(xiàn)提供了空間,激發(fā)了學(xué)生的形象思維,而又借助“形”與“數(shù)”的關(guān)系,為接下來研究“因數(shù)與倍數(shù)”概念打下了良好基礎(chǔ),有效地實現(xiàn)了已有知識與新知識之間的聯(lián)系。更好的分化了難點,讓學(xué)生很輕松的接受了知識的形成。
二、自主探究以鄰為師。
在學(xué)生知道了因數(shù)和倍數(shù)的意義上,接下來出示了讓學(xué)生自己動手找18的所有的因數(shù)。為了能夠更好的、全面的找到18的所有因數(shù),讓同桌兩人互相合作來完成。通過教學(xué)發(fā)現(xiàn)學(xué)生的合作能力很強,能夠用數(shù)學(xué)語言來準確的表述,而且大多數(shù)學(xué)生在合作的過程中也能很好的找到、找全18的所有的因數(shù)。
三、在練習(xí)中體驗學(xué)習(xí)的快樂
在最后的環(huán)節(jié)中我設(shè)計了不同層次的練習(xí),先讓學(xué)生說說有關(guān)因數(shù)和倍數(shù)的`意義的一些練習(xí)題,加深對知識點的理解,主要是讓學(xué)生明白因數(shù)和倍數(shù)不是單獨存在的,是相互已存的,必須要說清楚是誰是誰的因數(shù)、誰是誰的倍數(shù)。通過教學(xué)來看學(xué)生掌握的還算可以。接著出示了讓學(xué)生找不同數(shù)的因數(shù),在這個環(huán)節(jié)的設(shè)計用了不同的形式,比如:找朋友,你來說我來做,比一比說最快等形式來幫助學(xué)生理解知識,在此過程中學(xué)生很感興趣,激情很好課堂氣氛熱烈,也讓學(xué)生在輕松的氛圍中體驗到學(xué)習(xí)的快樂。
不足之處:
1、在本節(jié)課的教學(xué)上還是存在很多哦不足之處,雖然自己也知道新課標提出要以學(xué)生為主體,老師只是引導(dǎo)著和合作者,可是在教學(xué)過程中許多地方還是不由自主的說得過多,給學(xué)生的自主探索空間太少。如在教學(xué)找18的因數(shù)這一環(huán)節(jié)時,由于擔心孩子們是第一次接觸因數(shù),對于因數(shù)的概念不夠了解,而犯這樣或那樣的錯誤,所以引導(dǎo)的過多講解的過細,因此給他們自主探究的空間太小了,沒能很好的體現(xiàn)學(xué)生的主體性。
2、這堂課我的個人語言過于貧乏和隨意,數(shù)學(xué)是嚴謹?shù),隨意性的語言會對學(xué)生的學(xué)習(xí)理解造成一定的影響。另外課堂評價性的語言也不多,可以說是幾乎沒有。因此在今后的教學(xué)中我要積極向其他老師學(xué)習(xí),多走進優(yōu)秀教師的課堂,多學(xué)多問。而且自己也要把握好各種學(xué)習(xí)機會,不斷的學(xué)習(xí),也要多反思認真分析教學(xué)中出現(xiàn)的問題,通過不斷地反思提高自己業(yè)務(wù)水平。希望自己也能越來越好!
undefined
因數(shù)和倍數(shù)教學(xué)反思 篇13
《因數(shù)和倍數(shù)》是人教版小學(xué)數(shù)學(xué)五年級下冊第二單元的起始課,也是一節(jié)重要的數(shù)學(xué)概念課,所涉及的知識點較多,內(nèi)容較為抽象,對于學(xué)生來說是比較難掌握的內(nèi)容,在這樣的前提下,如何能充分發(fā)揮學(xué)生的主體作用,讓他們自主探索,自己感悟概念的內(nèi)涵,并靈活地運用“先學(xué)后教”的模式,達到課堂的高效,在課堂中我做了以下的嘗試。
一、領(lǐng)會意圖,做到用教材教。
我覺得作為一名教師,重要的是領(lǐng)會教材的編寫意圖,靈活的運用教材,讓每個細節(jié)都能發(fā)揮它應(yīng)有的作用。如教材是利用了一個簡單的實物圖(2行飛機,每行6架;3行飛機,每行4架)引出了要研究的兩個乘法算式“2×6=12,3×4=12”直接給出了“誰是誰的因數(shù),誰是誰的倍數(shù)”的概念。這樣做目的有二:一是滲透了從乘法算式中找因數(shù)倍數(shù)的方法,二是利用數(shù)與數(shù)之間的關(guān)系明確的看到因數(shù)倍數(shù)這種相互依存的關(guān)系。
但這樣做仍不夠開放,我是這樣做的:課始并沒有出示主題圖,直接提出問題:“如果有12架飛機,你可以怎樣去排列?”學(xué)生除了能想到圖中的兩種排法還能得到第三種,這樣做是用開放的問題做為誘因,使學(xué)生得到“2×6=12、3×4=12、1×12=12”三個算式,而這些算式不僅能夠清晰地體現(xiàn)因數(shù)倍數(shù)間的關(guān)系,更是后面“如何求一個數(shù)的因數(shù)”的方法的滲透和引導(dǎo)?磥盱`活的運用教材,深放領(lǐng)會意圖,才能使教學(xué)更為輕松、高效!
二、模式運用,做到靈活自然。
模式是一種思想或是引子,面對不同的課型,我們應(yīng)該大膽嘗試,不斷的積累經(jīng)驗,使模式不再是僵化的,機械的'。只要是能促進學(xué)生能力形成的東西,我們不能因為要運用模式而把它們淡化,反之,應(yīng)該想方設(shè)法,在不知不覺中體現(xiàn)出來。
如本課中例1是“求18的因數(shù)有哪些”,例2是“求2的倍數(shù)有哪些”教材的設(shè)計已經(jīng)能夠體現(xiàn)學(xué)生自主探索知識的軌跡,那我們何不通過一句簡短的過渡語讓學(xué)生進入到下面的學(xué)習(xí)中呢?而沒有必要非要設(shè)計出兩個“自學(xué)指導(dǎo)”讓學(xué)生按步就搬地往下走,而且讓學(xué)生對比著去感受一個數(shù)“因數(shù)和倍數(shù)”的求法的不同,比先學(xué)例1再學(xué)例2的方式更容易讓學(xué)生發(fā)現(xiàn)不同,得到方法,加深對知識的理解,同時也更加體現(xiàn)了學(xué)生的自主性,這才是模式的真正目的所在。內(nèi)涵比形式更重要,發(fā)現(xiàn)比引導(dǎo)更有效!
因數(shù)和倍數(shù)教學(xué)反思 篇14
一、單元主題圖體驗數(shù)學(xué)化過程。單元主題圖是教材中的一個重要內(nèi)容,它是選擇某一個主題構(gòu)建的一幅情境圖,本單元就出現(xiàn)了“數(shù)的世界”單元主題圖。在教學(xué)中,我是從培養(yǎng)學(xué)生的問題意識出發(fā)來組織教學(xué)的,首先讓學(xué)生獨立觀察主題圖,通過獨立思考提出問題;然后讓孩子們通過小組合作,共享學(xué)習(xí)的成果;最后通過解決問題,體驗獲取知識的過程。教學(xué)中學(xué)生不僅很快找到了整數(shù)、小數(shù)、負數(shù),而且也找到了橙子賣完了用“0”表示,圖中有一個凳子、一張桌子用“1”表示,更多的是學(xué)生提出了很多的數(shù)學(xué)問題,如我有50元可以買多少千克蘋果?學(xué)生真正是在自主學(xué)習(xí)的過程中提出問題、解決問題,體驗“數(shù)學(xué)化”的過程。
二、數(shù)形結(jié)合實現(xiàn)有意義建構(gòu)。教材中對因數(shù)概念的認識,設(shè)計了“用小正方形拼長方形”的操作活動,引導(dǎo)學(xué)生在方格紙上畫一畫,寫出乘法算式,再與同學(xué)進行交流。在思考“哪幾種拼法”時,借助“拼小正方形”的活動,使數(shù)與形有機地結(jié)合,防止學(xué)生進行“機械地學(xué)習(xí)”;學(xué)生對因數(shù)和理解不僅是數(shù)字上的認識,而且能與操作活動與圖形描述聯(lián)系起來,促進了學(xué)生的有意義建構(gòu),這是一個“先形后數(shù)”的過程,是一個知識抽象的過程。
三、探索活動關(guān)注解決問題的策略。學(xué)生在探索活動中,運用做記號、列表格、畫示意圖等解決問題的策略來發(fā)現(xiàn)規(guī)律和特征,在探究的過程中,體會觀察、分析、歸納、猜想、驗證等過程,孩子們學(xué)會了思考,初步形成了解決問題的一些基本策略。
四、困惑:
1、第一次真正開始教北師大教材,最大的`感覺是教學(xué)的空間真的擴大了,課堂活躍了,但是同時給學(xué)生進行課后輔導(dǎo)的時間也增加了,每節(jié)課從學(xué)生的反饋看來,卻有相當一部分的學(xué)生存在各種問題,教材中太缺乏那些能讓他們成功的“基礎(chǔ)性”題目,整個一個單元只有一個練習(xí)一,那六道題目真的能解決問題嗎?能否多給孩子們一些選擇。
2、不太明白為什么一定要使用“因數(shù)”這個概念,比較“因數(shù)——公因數(shù)——最大公因數(shù)——約分”和“約數(shù)——公約數(shù)——最大公約數(shù)——約分”,總覺得后者容易接受吧。這一改好像我們還得教學(xué)生家長,就真的有學(xué)生家長投訴說“老師啊,你教錯了,那不是因數(shù),是約數(shù)……”,讓人哭笑
因數(shù)和倍數(shù)教學(xué)反思 篇15
《因數(shù)和倍數(shù)》是一節(jié)數(shù)學(xué)概念課,人教版新教材在引入因數(shù)和倍數(shù)的概念時與以往的教材有所不同。在以往的教材中,都是通過除法算式來引出整除的概念,每個除法算式對應(yīng)著一對有整除關(guān)系的數(shù),如b÷a=c,表示b能被a整除,b÷c=a,表示b能被c整除。在此基礎(chǔ)上再引出因數(shù)和倍數(shù)的概念。而現(xiàn)在的人教版教材中沒有用數(shù)學(xué)語言給“整除”下定義,而是利用一個簡單的實物圖(2行飛機,每行6架)引出一個乘法算式2×6=12,通過這個乘法算式直接給出因數(shù)和倍數(shù)的概念。我覺得這局部內(nèi)容同學(xué)初次接觸,對于同學(xué)來說是比較難掌握的.內(nèi)容。尤其對因數(shù)和倍數(shù)和是一對相互依存的概念,不能單獨存在,不是很好理解。我通過捕獲生活與數(shù)學(xué)之間的聯(lián)系,協(xié)助同學(xué)理解因數(shù)倍數(shù)相互依存的關(guān)系。所以在上課之前我特意和小朋友們玩了一個小游戲。用“ 我和誰是好朋友”這句話來理解相互依存的意思。即“我是誰的好朋友”,“誰是我的好朋友”,而不能說“我是好朋友”。同學(xué)對相互依存理解了,在描述因數(shù)和倍數(shù)的概念時就不會說錯了。對于這節(jié)課的教學(xué),我特別注意下面幾個細節(jié)來協(xié)助同學(xué)理解因數(shù)和倍數(shù)的概念。
一是教材雖然不是從過去的整除定義動身,而是通過一個乘法算式來引出因數(shù)和倍數(shù)的概念,但實質(zhì)上任是以“整除”為基礎(chǔ)。所以我上課時特別注意讓同學(xué)明白什么情況下才干討論因數(shù)和倍數(shù)的概念。我舉了一些反例加以說明。二是要同學(xué)注意區(qū)分乘法算式中的“因數(shù)”和本單元中的“因數(shù)”的聯(lián)系和區(qū)別。在同一個乘法算式中,兩者都是指乘號兩邊的整數(shù),但前者是相對于“積”而言的,與“乘數(shù)”同義,可以是小數(shù),而后者是相對于“倍數(shù)”而言的,兩者都只能是整數(shù)。三是要注意區(qū)分“倍數(shù)”與前面學(xué)過的“倍”的聯(lián)系與區(qū)別!氨丁钡母拍畋取氨稊(shù)”要廣?梢哉f“15是3的5倍”,也可以說“1。5是0。3的5倍”,但我們只能說“15是3的倍數(shù)”,卻不能說“1。5是0。3的倍數(shù)”。我在課堂上反復(fù)強調(diào),協(xié)助小朋友們認真理解辨析,所以同學(xué)一節(jié)課下來對這組概念就理解透徹了,不會模糊了。
【因數(shù)和倍數(shù)教學(xué)反思】相關(guān)文章:
因數(shù)和倍數(shù)的教學(xué)反思02-21
《倍數(shù)和因數(shù)》教學(xué)反思02-17
《因數(shù)和倍數(shù)》教學(xué)反思02-06
倍數(shù)和因數(shù)教學(xué)反思(精選15篇)05-24
倍數(shù)和因數(shù)教學(xué)反思15篇02-28