當(dāng)前位置:育文網(wǎng)>教學(xué)文檔>說課稿> 高一數(shù)學(xué)說課稿

高一數(shù)學(xué)說課稿

時間:2024-06-07 12:44:06 說課稿 我要投稿

高一數(shù)學(xué)說課稿集合(15篇)

  作為一名老師,時常需要編寫說課稿,說課稿有助于順利而有效地開展教學(xué)活動。我們該怎么去寫說課稿呢?下面是小編精心整理的高一數(shù)學(xué)說課稿,歡迎閱讀,希望大家能夠喜歡。

高一數(shù)學(xué)說課稿集合(15篇)

高一數(shù)學(xué)說課稿1

  一、教學(xué)背景

  1、教材分析

  《對數(shù)函數(shù)及其性質(zhì)》是人教版普通高中課程數(shù)學(xué)必修1第二章第二節(jié)第二部分內(nèi)容,對數(shù)函數(shù)是一類特殊的函數(shù),在實際生產(chǎn)過程中運用很廣泛。同時,通過對對數(shù)函數(shù)及其圖象和性質(zhì)的研究,既可以從具體的感性認(rèn)識上來對函數(shù)的圖象和性質(zhì)更好的理解,也可為以后研究冪函數(shù)、三角函數(shù)等其它函數(shù)的圖象和性質(zhì)起示范和鋪墊作用。

  2、學(xué)情分析

  剛?cè)敫咭坏膶W(xué)生,仍保留著初中生許多學(xué)習(xí)特點,能力發(fā)展正處于形象思維向抽象思維轉(zhuǎn)折階段,但更注重形象思維。由于函數(shù)概念十分抽象,對數(shù)函數(shù)又以對數(shù)運算為基礎(chǔ),同時,初中函數(shù)教學(xué)要求降低,導(dǎo)致初中生運算能力有所下降,這雙重問題增加了對數(shù)函數(shù)教學(xué)的難度。但在此之前,學(xué)生已經(jīng)學(xué)習(xí)了指數(shù)函數(shù)及其性質(zhì),學(xué)生已經(jīng)初步對新函數(shù)的研究方法有所了解,為本節(jié)的學(xué)習(xí)奠定了基礎(chǔ)。

  基于以上分析,我制定如下教學(xué)目標(biāo)及重、難點:

  3、教學(xué)目標(biāo)

  知識與技能:

  初步掌握對數(shù)函數(shù)的概念、圖象及性質(zhì),并應(yīng)用性質(zhì)解決簡單數(shù)學(xué)問題。

  過程與方法:

  經(jīng)歷對數(shù)函數(shù)性質(zhì)的探索過程,體會函數(shù)思想、分類討論思想和轉(zhuǎn)化思想在解決具體問題中的應(yīng)用。

  情感態(tài)度與價值觀:

  培養(yǎng)勇于探索的精神,培養(yǎng)學(xué)生的`成功意識,合作交流的學(xué)習(xí)方式,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)、應(yīng)用數(shù)學(xué)的興趣。

  4、教學(xué)重、難點

  重點:理解對數(shù)函數(shù)的概念,掌握對數(shù)函數(shù)的圖象及性質(zhì)。

  難點:由圖象探究函數(shù)性質(zhì),應(yīng)用性質(zhì)解決具體問題。

  二、教學(xué)方法及手段

  1、教法

  根據(jù)建構(gòu)主義的學(xué)習(xí)理論和新課程標(biāo)準(zhǔn)理念,本節(jié)課以自主探究法和講解法為主,以練習(xí)法為輔,引導(dǎo)學(xué)生自己觀察、歸納、分析,培養(yǎng)學(xué)生采用自主探究的方法進(jìn)行學(xué)習(xí),使學(xué)生體會學(xué)習(xí)的樂趣。

  2、學(xué)法

  (1)類比學(xué)習(xí):通過指數(shù)函數(shù)類比學(xué)習(xí)對數(shù)函數(shù)。

  (2)小組合作學(xué)習(xí):將學(xué)生分成7個小組,通過小組內(nèi)討論交流,歸納得出對數(shù)函數(shù)的圖象和性質(zhì)。

  3、教學(xué)手段

  采用多媒體輔助教學(xué)。

  三、教學(xué)教程

  1、情境引入

  通過銀行的復(fù)利計算問題,逐步引出對數(shù)函數(shù)。

  設(shè)計意圖:情景來源于生活,通過生活中的實例來反應(yīng)對數(shù)函數(shù)的重要性,目的在于激發(fā)學(xué)生學(xué)習(xí)的興趣,讓每一個學(xué)生都主動融入到學(xué)習(xí)中。

  2、新知探索

  通過上述模型,讓學(xué)生給對數(shù)函數(shù)下定義。

  學(xué)生用描點法畫和的圖象,教師再借助于計算機再畫幾個對數(shù)函數(shù)的圖象,讓學(xué)生觀察并總結(jié)出一般情況。

  以“你們能根據(jù)圖象歸納出對數(shù)函數(shù)的性質(zhì)嗎?”設(shè)問,引導(dǎo)學(xué)生能過圖象的特征得出對應(yīng)的性質(zhì)。

  例比較下列各組數(shù)中兩個值的大小:

  (1)log23.4和log28.5;

  (2) log0.33.4和log0.38.5;

  (3) loga3.4和loga8.5(a>0,且a≠1);

  (4) log23.4和log3.42;

  (5) log3.42和log0.38.5。

  3、鞏固練習(xí)

  (1)比較大小:

  lg6________lg8;ln1.3________

  (2)比較正數(shù)m,n的大。

  若,則m_____n;若,則m_____n.

  4、總結(jié)提煉

  (1)自主探究新知識的方法;

  (2)本節(jié)課應(yīng)用了哪些數(shù)學(xué)思想。

  5、布置作業(yè)

  (1)閱讀教材P70~P72,梳理對數(shù)函數(shù)的概念、圖象、性質(zhì)等知識點;

  (2)教材P74—7、8

  四、板書設(shè)計

  2.2.2對數(shù)函數(shù)及其性質(zhì)

  一、概念例題

  二、圖象

  三、性質(zhì)

  四、教學(xué)反思

高一數(shù)學(xué)說課稿2

  授課時間: 08 年 9 月 12 日

  授課年級、科目、課題: 高一數(shù)學(xué) 集合的概念

  使用教材: 必修1(人教版)

  說課教師: 劉華

  各位老師同學(xué)們,大家好!今天我說課的課題是“集合的概念”,本節(jié)內(nèi)容選自高中數(shù)學(xué)必修1(人教版),下面我將主要從六個方面介紹我的教學(xué)方案。

  一、教材分析:

  教材的地位和作用:

  集合是學(xué)習(xí)高中數(shù)學(xué)的重要工具之一,起著承前啟后的作用。本小節(jié)首先從初中代數(shù)與幾何涉及的集合實例人手,引出集合與集合的元素的概念,并且結(jié)合實例對集合的概念作了說明.然后,介紹了集合的常用表示方法,包括列舉法、描述法等,還給出了畫圖表示集合的例子.從教材我歸納出本節(jié)內(nèi)容的教學(xué)重點和難點。

 。ㄒ唬┙虒W(xué)重點:集合的基本概念和表示方法,集合元素的特征

 。ǘ┙虒W(xué)難點:運用集合的三種常用表示方法、列舉法與描述法,正確表示一些簡單的集合

  二、教學(xué)目標(biāo):

  (一)知識目標(biāo):

 。1)使學(xué)生初步理解集合的概念,知道常用數(shù)集的概念及其記法;

 。2)使學(xué)生初步了解“屬于”關(guān)系的意義;

 。3)使學(xué)生初步了解有限集、無限集、空集的意義

  (二)能力目標(biāo):

 。1)重視基礎(chǔ)知識的教學(xué)、基本技能的訓(xùn)練和能力的培養(yǎng);

 。2)啟發(fā)學(xué)生能夠發(fā)現(xiàn)問題和提出問題,善于獨立思考,學(xué)會分析問題和創(chuàng)造地解決問題;

  (3)通過教師指導(dǎo),發(fā)現(xiàn)知識結(jié)論,培養(yǎng)學(xué)生抽象概括能力和邏輯思維能力;

 。ㄈ┑掠繕(biāo):激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和積極性,陶冶學(xué)生的情

  操,培養(yǎng)學(xué)生堅忍不拔的意志,實事求是的科學(xué)學(xué)習(xí)態(tài)度和勇于創(chuàng)新的精神。

  三、學(xué)情分析:

  針對現(xiàn)在的學(xué)生知識遷移能力差、計算能力差的特點,第一節(jié)課的內(nèi)容不要求學(xué)生太多的計算,通過大量的舉例讓學(xué)生充分掌握集合的基礎(chǔ)知識。

  四、教法分析:

  為了突出重點、突破難點,本節(jié)課主要采用觀察、分析、類比、歸納的方法讓學(xué)生參與學(xué)習(xí),將學(xué)生置于主體位置,發(fā)揮學(xué)生的主觀能動性,將知識的形成過程轉(zhuǎn)化為學(xué)生親自探索類比的過程,使學(xué)生獲得發(fā)現(xiàn)的成就感。在這個過程中力求把握好以下幾點:

  (1)通過實例,讓學(xué)生去發(fā)現(xiàn)規(guī)律。讓學(xué)生在問題情景中,經(jīng)歷知識的形成和發(fā)展,力求使學(xué)生學(xué)會用類比的思想去看待問題。

  (2)營造民主的教學(xué)氛圍,使學(xué)生參與教學(xué)全過程。

 。3)力求反饋的全面性、及時性,通過精心設(shè)計的`提問,讓學(xué)生的思維動起來,針對學(xué)生回答的問題,老師進(jìn)行適當(dāng)?shù)狞c評。

  (4)給學(xué)生思考的時間和空間,不急于把結(jié)果拋給學(xué)生,讓學(xué)生自己去觀察,分析,類比得出結(jié)果,提高學(xué)生的推理能力。

  五、教學(xué)過程

 。ㄒ唬⿵(fù)習(xí)導(dǎo)入

 。1)簡介數(shù)集的發(fā)展,復(fù)習(xí)最大公約數(shù)和最小公倍數(shù),質(zhì)數(shù)與和數(shù);

 。2)教材中的章頭引言;

 。3)教材中例子(P4)。

 。ǘ┲v解新課

 。1)集合的有關(guān)概念

 。2) 常用集合及表示方法

  (3)元素對于集合的隸屬關(guān)系

 。4)集合中元素的特性

  (三)課堂練習(xí)

  1下列各組對象能確定一個集合嗎?

 。1)所有很大的實數(shù)的集合 (不確定)

 。2)好心的人的集合 (不確定)

  (3){1,2,2,3,4,5} (有重復(fù))

 。4)所有直角三角形的集合 (是 的)

 。5)高一(12)班全體同學(xué)的集合(是 的)

 。6)參加2008年奧運會的中國代表團成員的集合(是 的)

  2、教材P5練習(xí)1、2

  六:總結(jié)

  1.本節(jié)主要學(xué)習(xí)了集合的基本概念、表示符號;一些常用數(shù)集及其記法;集合的元素與集合之間的關(guān)系;以及集合元素具有的特征.

  2.我們在進(jìn)一步復(fù)習(xí)鞏固集合有關(guān)概念的基礎(chǔ)上,又學(xué)習(xí)了集合的表示方法和有限集、無限集、空集的概念,同學(xué)們要熟練掌握.

高一數(shù)學(xué)說課稿3

  各位領(lǐng)導(dǎo)、各位老師:

  大家好!

  今天我說課的題目是《兩角差的余弦公式》。我計劃從教材背景、教學(xué)目標(biāo)、教學(xué)方法、教學(xué)過程、教學(xué)評價等方面來談?wù)勎覍Ρ竟?jié)課的理解。

  背景分析

  1、教材所處的地位和作用:

  《兩角差的余弦公式》是新課標(biāo)人教版數(shù)學(xué)必修四第三章第一課時的教學(xué)內(nèi)容,是本模塊第一章《三角函數(shù)》和第二章《平面向量》相關(guān)知識的延續(xù)和拓展。其中心任務(wù)是通過已學(xué)知識,探索建立兩角差的余弦公式。它不僅是前面已學(xué)的誘導(dǎo)公式的推廣,也是后面其它和(差)角公式推導(dǎo)的基礎(chǔ)和核心,具有承前啟后的作用,是本章的重點內(nèi)容之一。

  2、重點,難點以及確定的依據(jù):

  對本節(jié)課來說,學(xué)生最大的困惑在于如何得到公式.所以,

  本節(jié)課的教學(xué)重點是:兩角差的余弦公式的探究和應(yīng)用;

  教學(xué)難點是:兩角差的余弦公式的由來及證明;

  引導(dǎo)學(xué)生通過主動參與,獨立探索。

  教學(xué)目標(biāo)設(shè)計

  (1)知識與技能:

  本節(jié)課的知識技能目標(biāo)定位在公式的向量法證明和應(yīng)用上;學(xué)會運用分類討論思想完善證明;學(xué)會正用、逆用、變用公式;學(xué)會運用整體思想,抓住公式的本質(zhì).在新舊知識的沖撞過程中,讓學(xué)生自主地對知識進(jìn)行重組、構(gòu)建,形成屬于自己的知識結(jié)構(gòu)體系.

  (2)過程與方法:

  創(chuàng)設(shè)問題情景,調(diào)動學(xué)生已有的認(rèn)知結(jié)構(gòu),激發(fā)學(xué)生的問題意識,展開提出問題、分析問題、解決問題的學(xué)習(xí)活動,讓學(xué)生體會從“特殊”到“一般”的探究過程;在探究過程中體會化歸、數(shù)形結(jié)合等數(shù)學(xué)思想;在公式的證明過程中,培養(yǎng)學(xué)生反思的好習(xí)慣;在公式的理解記憶過程中,讓學(xué)生發(fā)現(xiàn)數(shù)學(xué)中的簡潔、對稱美;在公式的運用過程中,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)乃季S習(xí)慣和自我糾錯能力.

  (3)情感、態(tài)度與價值觀:

  體驗科學(xué)探索的過程,鼓勵學(xué)生大膽質(zhì)疑、大膽猜想,培養(yǎng)學(xué)生的“問題意識”,使學(xué)生感受科學(xué)探索的樂趣,激勵勇氣,培養(yǎng)創(chuàng)新精神和良好的團隊合作意識. 通過對猜想的驗證,對公式證明的完善,培養(yǎng)學(xué)生實事求是的科學(xué)態(tài)度和科學(xué)精神.

  教法設(shè)計

  1、學(xué)情分析:

  學(xué)生剛剛學(xué)習(xí)了同角三角函數(shù)的變換及平面向量的知識,對用舉反例推翻猜想、運用單位圓、用向量解決三角問題已經(jīng)有了一定的基礎(chǔ),但還遠(yuǎn)未達(dá)到綜合運用這些方法自主探究和證明的水平.

  教學(xué)手段:

  (1)從知識的認(rèn)知程序上看,老師看問題從整體到局部,而學(xué)生卻是從局部到整體。本節(jié)課嘗試將“帶著知識走向?qū)W生”的接受式教學(xué)模式轉(zhuǎn)變?yōu)椤皫е鴮W(xué)生走向知識”的探究式教學(xué)模式,充分尊重學(xué)生的主體地位.

  (2)本節(jié)課的教法采用了“一個主題兩種教學(xué)”的設(shè)計模式.一個主題:公式探究與應(yīng)用,兩種教學(xué):顯形教學(xué)(知識能力教學(xué))、隱性教學(xué)(情商培養(yǎng)),實踐兩種教學(xué)相互促進(jìn)的人性化教學(xué)理念.

  (3)在課堂上營造民主、開放、平等的教學(xué)氛圍,注重教學(xué)評價的多元性,將簡單的結(jié)果評價上升為對過程的評價;將一味的知識評價拓展為能力評價,突出學(xué)生的主體性,實現(xiàn)顯形教學(xué)與隱性教學(xué)的雙重評價,為全面發(fā)展學(xué)生打下基礎(chǔ).

  (4)利用幾何畫板,通過計算機技術(shù),給學(xué)生提供一種驗證猜想合理性的途徑. (教學(xué)媒體設(shè)計)

  課堂結(jié)構(gòu)設(shè)計:

  引入課題,提出猜想,實驗探究,嚴(yán)謹(jǐn)證明,例題訓(xùn)練,課堂小結(jié)

  教學(xué)過程設(shè)計

  1、引入課題:

  例:如圖所示,一個斜坡的高為6m,斜坡的水平長度為8m,已知作用在物體上的力F與水平方向的夾角為60°,且大小為10N ,在力F的作用下物體沿斜坡運動了3m,求力F作用在物體上的功W.

  解: W =

  = 30.

  提問:1、解決問題需要求什么?

  2、你能找到哪些與有關(guān)的條件?

  3、能否利用這些條件求出?如果能,提出你的猜想.

  4、怎樣檢驗這些猜想是否正確?

  【設(shè)計意圖】生活實例引入,體現(xiàn)數(shù)學(xué)與實際生活的聯(lián)系,也與物理(功的定義)、哲學(xué)(透過現(xiàn)象看本質(zhì))等相關(guān)學(xué)科相聯(lián)系,增強學(xué)生的應(yīng)用意識,激發(fā)學(xué)生的學(xué)習(xí)熱情,同時也讓學(xué)生體會數(shù)學(xué)知識的產(chǎn)生、發(fā)展過程.

  2、提出猜想:

  從特殊情況去猜測公式的結(jié)構(gòu)形式.

  令

  令

  分析:可見,我們的公式的形式應(yīng)該與均有關(guān)系?他們之間存在怎樣的代數(shù)關(guān)系呢?請同學(xué)們根據(jù)下表中數(shù)據(jù),相互交流討論,提出你的猜想.

  用具體值檢驗猜想的合理性.

  令則=

  三角函數(shù)

  三角函數(shù)值

  猜想:

  【設(shè)計意圖】鼓勵學(xué)生發(fā)揮想象力,大膽猜測,然后再去驗證其合理性,增強學(xué)生探索問題、挑戰(zhàn)困難的勇氣.

  3、實驗探究:

  【設(shè)計意圖】讓學(xué)生用幾何畫板進(jìn)行數(shù)學(xué)實驗, 激起學(xué)生的好奇心和探究欲望, 使學(xué)生體會到數(shù)學(xué)的系統(tǒng)演繹性和實驗歸納性的兩個側(cè)面.

  4、嚴(yán)謹(jǐn)證明:

  (利用向量)

  前一章我們剛剛學(xué)習(xí)完向量,并用向量知識解決了相關(guān)的幾何問題,這里,我們能否用向量知識來推導(dǎo)兩角差的余弦公式呢?我們來仔細(xì)觀察猜想的結(jié)構(gòu),我們在什么地方見到過類似結(jié)構(gòu)?在向量部分,求角的余弦有什么方法嗎?

  (學(xué)生:向量的數(shù)量積!)

  證明:在平面直角坐標(biāo)系xOy內(nèi)作單位圓O,以O(shè)x為始邊作角,它們終邊與單位圓O的交點分別為A、B,則:

  =, =

  =

  ∴= (0≤≤)

  思考:1、作為兩向量的夾角,有沒有限制條件?

  2、如果不在[0,]這個區(qū)間內(nèi),我們的結(jié)論還會成立嗎?怎樣給出證明?(引導(dǎo)學(xué)生找到與夾角之間的關(guān)系)

  【設(shè)計意圖】讓學(xué)生經(jīng)歷用向量知識解出一個數(shù)學(xué)問題的`過程,體會向量方法在數(shù)學(xué)探究過程中的簡潔性。

  思考:1、作為兩向量的夾角,有沒有限制條件?

  2、如果不在[0,]這個區(qū)間內(nèi),我們的結(jié)論還會成立嗎?怎樣給出證明?(引導(dǎo)學(xué)生找到與夾角之間的關(guān)系)

  推廣完善:令為、的夾角,

  則

  無論哪種情況,都有

  小結(jié):兩角差的余弦公式:

  (其中為任意角,簡記為)

  思考:請同學(xué)們仔細(xì)觀察一下公式的結(jié)構(gòu),說說公式的結(jié)構(gòu)有什么特點?應(yīng)怎樣記憶?(對學(xué)生的回答給予及時肯定)

  【設(shè)計意圖】引導(dǎo)學(xué)生關(guān)注兩個向量的夾角θ與α-β的聯(lián)系與區(qū)別,并通過觀察和討論,增強學(xué)生用數(shù)形結(jié)合、分類討論的方法解決問題的意識,感受數(shù)學(xué)思維的嚴(yán)謹(jǐn)性.

  (介紹單位圓的三角函數(shù)線法)

  除了以上的證明方法,是否還有其它證法呢?

  我們發(fā)現(xiàn),這里涉及的是三角函數(shù),是這個角的余弦問題,那我們還能不能考慮在單位圓里用三角函數(shù)線來推導(dǎo)呢?

  請同學(xué)們課后自己在單位圓中畫出、,并考慮如何用角的正弦線、余弦線來表示的余弦線?

  這個問題作為課后思考題,請同學(xué)們課下相互討論,共同探索。

  【設(shè)計意圖】根據(jù)教學(xué)實際,對教材進(jìn)行適當(dāng)安排,把單位圓三角函數(shù)線證法留作課后學(xué)生思考,為學(xué)生的課后探討留有空間。

  5、例題訓(xùn)練:

  1、解決引例中的問題.

  2、P127練習(xí):已知,求.

  (運用公式時應(yīng)根據(jù)角的范圍,正確確定兩角正、余弦值的范圍)

  公式的逆用:.

  4、公式活用:.

  【設(shè)計意圖】例1讓學(xué)生運用所學(xué)解決實際問題;例2利用變式突破學(xué)生在運用公式過程中的易錯點;例3對逆用公式解題加深認(rèn)識;例4活用公式,加深學(xué)生對公式中兩角形式變化的認(rèn)識,強化整體思想。

  6:課堂小結(jié):

  公式探索的一般步驟;公式的結(jié)構(gòu)和功能;公式的運用應(yīng)注意的問題。

  7、作業(yè):

  P127 練習(xí)1、2、3;

  .

  【設(shè)計意圖】讓學(xué)生通過自己小結(jié),反思學(xué)習(xí)過程,加深對公式的推導(dǎo)和應(yīng)用過程的理解,促進(jìn)知識的內(nèi)化;然后用作業(yè)鞏固本節(jié)課所學(xué)知識。

  (附:板書設(shè)計)

  §3.1.1 兩角差的余弦公式

  一、公式

  二、證明

  引例:

  例2:

  例3:

  4:

  小結(jié):

  教學(xué)評價分析

  診斷性評價:

  1.按常規(guī),學(xué)生很可能想到先探究兩角和的正弦公式,怎樣想到先研究兩角差的余弦公式是一個難點(但非重點),教學(xué)時可以直接提出研究兩角差的余弦公式。但后面補充老教材的證明方法,讓學(xué)生明白和與差內(nèi)在的聯(lián)系性與統(tǒng)一性,努力讓學(xué)習(xí)過程自然。

  2.盡管教材在前面的習(xí)題中,已經(jīng)為用向量法證明兩角差的余弦公式做了鋪墊,多數(shù)學(xué)生仍難以想到.教師需要引導(dǎo)學(xué)生,聯(lián)想到向量的數(shù)量積公式和單位圓上點的坐標(biāo)特點,努力使數(shù)學(xué)思維顯得自然、合理。

  3.用向量的數(shù)量積公式證明兩角差的余弦公式時,學(xué)生容易犯思維不嚴(yán)謹(jǐn)?shù)腻e誤,教學(xué)時需要引導(dǎo)學(xué)生搞清楚兩角差與相應(yīng)向量的夾角的聯(lián)系與區(qū)別。

  預(yù)期效果:

  1、讓學(xué)生在掌握兩角差的余弦公式探究方法的基礎(chǔ)上,能夠自我總結(jié)形成公式探究的一般方法。

  2、激發(fā)學(xué)生的探究欲望,能夠獨立或合作提出推導(dǎo)其它三角恒等式的方案,形成對三角恒等變換的本質(zhì)認(rèn)識,加深對靈活運用公式的理解。

  3、培養(yǎng)學(xué)生的“問題意識”,在探索的過程中學(xué)會將“知識問題化”,大膽、合理地提出猜測,通過證明、完善,最終達(dá)到將“問題知識化”的目的.

高一數(shù)學(xué)說課稿4

尊敬的各位專家、評委:

  下午好!我的抽簽序號是xx,今天我說課的課題是人教A版必修1第一章第二節(jié)《函數(shù)及其表示》、

  我嘗試?yán)眯抡n標(biāo)的理念來指導(dǎo)教學(xué),對于本節(jié)課,我將以“教什么,怎么教,為什么這樣教”為思路,從教材分析、目標(biāo)分析、教法學(xué)法分析、教學(xué)過程分析和評價分析五個方面來談?wù)勎覍滩牡睦斫夂徒虒W(xué)的設(shè)計,敬請各位專家、評委批評指正。

  一、教材分析

 。ㄒ唬┑匚慌c作用

  函數(shù)是中學(xué)數(shù)學(xué)中最重要的基本概念之一,函數(shù)的學(xué)習(xí)大致可分為三個階段:第一階段在義務(wù)教育階段,學(xué)習(xí)了函數(shù)的描述性概念,接觸了正比例函數(shù),凡比例函數(shù),一次函數(shù),二次函數(shù)等;本章學(xué)習(xí)的函數(shù)的概念、基本性質(zhì)與后續(xù)將要學(xué)習(xí)的基本初等函數(shù)(i)和(iI)是函數(shù)學(xué)習(xí)的第二階段,是對函數(shù)概念的再認(rèn)識階段;第三階段在選修系列得導(dǎo)數(shù)及其應(yīng)用的學(xué)習(xí),使函數(shù)學(xué)習(xí)的進(jìn)一步深化和提高。因此函數(shù)及其表述這一節(jié)在高中數(shù)學(xué)中,起著承上啟下的作用,函數(shù)的思想貫穿高中數(shù)學(xué)的始終,學(xué)好這章不僅在知識方面,更重要的是在函數(shù)的思想、方法方面,將會讓學(xué)生在今后的學(xué)習(xí)、工作和生活中受益無窮。

  本小節(jié)介紹了函數(shù)概念,及表示方法、我將本小節(jié)分為兩課時,第一課時完成函數(shù)概念的教學(xué),第二課時完成函數(shù)圖象的教學(xué)。這里我主要談?wù)労瘮?shù)概念的教學(xué)。

  函數(shù)的概念部分用三個實際例子設(shè)計數(shù)學(xué)情境,讓學(xué)生探尋變量和變量的對應(yīng)關(guān)系,結(jié)合初中學(xué)習(xí)的函數(shù)理論,在集合論的基礎(chǔ)上,促使學(xué)生建構(gòu)出函數(shù)的概念,體驗結(jié)合舊知識,探索新知識,研究新問題的快樂。

 。ǘ⿲W(xué)情分析

 。1)在初中,學(xué)生已經(jīng)學(xué)習(xí)過函數(shù)的概念,并且知道函數(shù)是變量之間的相互依賴關(guān)系、

 。2)學(xué)生思維活潑,積極性高,已初步形成對數(shù)學(xué)問題的合作探究能力。

 。3)學(xué)生層次參次不齊,個體差異比較明顯。

  二、目標(biāo)分析

  根據(jù)《函數(shù)的概念》在教材內(nèi)容中的地位與作用,結(jié)合學(xué)情分析,本節(jié)課教學(xué)應(yīng)實現(xiàn)如下教學(xué)目標(biāo):

  (一)教學(xué)目標(biāo)

 。1)知識與技能

  1進(jìn)一步體會函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型,○能用集合與對應(yīng)的語言刻畫函數(shù),體會對應(yīng)關(guān)系在刻畫函數(shù)概念中的作用

  2了解構(gòu)成函數(shù)的要素,○理解函數(shù)定義域和值域的概念,并會求一些簡單函數(shù)的定義域。 ③由實際問題出發(fā),培養(yǎng)學(xué)生探索知識和抽象概括知識等方面的能力。

 。2)過程與方法

  引導(dǎo)學(xué)生觀察,探尋變量和變量的對應(yīng)關(guān)系,通過歸納、抽象、概括,自主建構(gòu)函數(shù)概念;體驗結(jié)合舊知識探索新知識,研究新問題的快樂

 。3)情感態(tài)度與價值觀

  通過對函數(shù)概念形成的探究過程培養(yǎng)學(xué)生發(fā)現(xiàn)問題,探索問題,不斷超越的創(chuàng)新品質(zhì)

  (二)重點難點

  重點:體會函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型,正確理解函數(shù)的概念難點:函數(shù)概念及符號y=f(x)的理解

  三、教法、學(xué)法分析

 。ㄒ唬┙谭

  在本課的教學(xué)過程中采用設(shè)問、引導(dǎo)、啟發(fā)、發(fā)現(xiàn)的方法,并靈活應(yīng)用多媒體手段,以學(xué)生為主體,創(chuàng)設(shè)和諧、愉悅互動的環(huán)境,組織學(xué)生自主、合作的探究活動,引導(dǎo)學(xué)生探索新知識。

 。ǘ⿲W(xué)法

  首先,學(xué)生通過研究教師在課堂上提供的實例和提出的問題,展開分析和討論,發(fā)表個人的見解,接下來采用學(xué)生評價學(xué)生的方法提煉問題的中心思想。其次,學(xué)生通過對新舊兩種函數(shù)定義的對比,在集合論的觀點下初步建構(gòu)出函數(shù)的概念。最后,學(xué)生在理解函數(shù)概念的基礎(chǔ)上,建構(gòu)出函數(shù)的定義域、值域的概念,并初步掌握它們的求法。

  四、教學(xué)過程分析

  (一)教學(xué)過程設(shè)計

 。1)創(chuàng)設(shè)情境,提出問題。

  引入課本的三個具體實例,引發(fā)學(xué)生的探索

  對于例1:可以分別讓學(xué)生計算t=1,2,5,10時,炮彈距離地面多高,同時關(guān)注t和h的變化范圍,引導(dǎo)學(xué)生體會有解析式刻畫變量之間的對應(yīng)關(guān)系,啟發(fā)學(xué)生用集合與對應(yīng)的語言描述函數(shù)關(guān)系:

  對于例2:可以讓學(xué)生觀察圖像,找出臭氧空洞面積的年份或者臭氧空洞面積大約為20xx萬平方千米所對應(yīng)的年份,引導(dǎo)學(xué)生體會圖像對刻畫變量之間的對應(yīng)關(guān)系,并關(guān)注t和s的范圍。啟發(fā)學(xué)生再次利用集合與對應(yīng)的語言描述函數(shù)關(guān)系:

  對于例3:恩格爾系數(shù)與時間之間的關(guān)系是否和前兩個例題的兩個變量之間的關(guān)系相似?如何用集合和對應(yīng)的語言進(jìn)行描述

 。2)引導(dǎo)探究,建構(gòu)概念。

  (1)進(jìn)一步提問:“你覺得這三個問題有沒有共同的`特點呢?”由于這個問題比較開放,所以學(xué)生,容易形成數(shù)學(xué)以外的或者不在本課研究范圍的觀點。首先采用小組合作探究的形式獲得共識,并由各小組派代表發(fā)表探究成果,接著再讓其它學(xué)生根據(jù)老師的敘述,評論、提煉出重點。作為教學(xué)的引導(dǎo)者,我需要及時對學(xué)生的解答進(jìn)行指引。最終得出函數(shù)的概念

 。2)教師概括總結(jié)學(xué)生的探究成果,形成函數(shù)概念,并進(jìn)一步解釋函數(shù)概念

  I、函數(shù)的三要素

  Ii函數(shù)富豪的

  為深化學(xué)生對函數(shù)概念的理解,還可以用函數(shù)概念解析已經(jīng)學(xué)過的一次函數(shù),二次函數(shù),婦女比例函數(shù)等,可以設(shè)計如下表格

  函數(shù)一次函數(shù)二次函數(shù)反比例函數(shù)

  對應(yīng)關(guān)系

  定義域

  值域

  由學(xué)生填寫

 。3)自我嘗試,初步應(yīng)用。

  例1、判斷下列圖像是否為函數(shù)圖像?疾鞂W(xué)生對函數(shù)定義的理解

  例2、采用課本例1,并增加一問若f(x)=—1,求x

  目的是引導(dǎo)學(xué)生探究求函數(shù)定義域的基本方法;對于用解析式表示的函數(shù)會用解析式求

  函數(shù)值或有函數(shù)值求子變量的值,進(jìn)一步體會函數(shù)級號的含義,區(qū)分f(—1),f(a),f(x)例3、采用課本例2

  目的:通過判斷函數(shù)的相等認(rèn)識到函數(shù)的整體性,并指出在三要素中,由于值域是由定義域和對應(yīng)法則決定的,所以只要兩個函數(shù)的定義域和對應(yīng)關(guān)系相同,兩個函數(shù)就相等;進(jìn)一步加深函數(shù)概念的理解

  (4)當(dāng)堂訓(xùn)練,鞏固深化。

  通過學(xué)生的主體參與,使學(xué)生深切體會到本節(jié)課的主要內(nèi)容和思想方法,從而實現(xiàn)對知識識的再次深化。

  采用課后練習(xí)1、2、3

 。5)小結(jié)歸納,回顧反思。

  小結(jié)歸納不僅是對知識的簡單回顧,還要發(fā)揮學(xué)生的主體地位,從知識、方法、經(jīng)驗等方面進(jìn)行總結(jié)。我設(shè)計了三個問題:(1)通過本節(jié)課的學(xué)習(xí),你學(xué)到了哪些知識?(2)通過本節(jié)課的學(xué)習(xí),你的體驗是什么?(3)通過本節(jié)課的學(xué)習(xí),你掌握了哪些技能?

 。ǘ┳鳂I(yè)設(shè)計

  作業(yè)分為必做題和選做題,必做題對本節(jié)課學(xué)生知識水平的反饋,選做題是對本節(jié)課內(nèi)容的延伸與,注重知識的延伸與連貫,強調(diào)學(xué)以致用。通過作業(yè)設(shè)置,使不同層次的學(xué)生都可以獲得成功的喜悅,看到自己的潛能,從而激發(fā)學(xué)生飽滿的學(xué)習(xí)興趣,促進(jìn)學(xué)生自主發(fā)展、合作探究的學(xué)習(xí)氛圍的形成、

  我設(shè)計了以下作業(yè):

 。1)必做題:課后習(xí)題A 1(2,3),2、5、6

  (2)選做題:課后習(xí)題B 1、2

 。ㄈ┌鍟O(shè)計

  板書要基本體現(xiàn)整堂課的內(nèi)容與方法,體現(xiàn)課堂進(jìn)程,能簡明扼要反映知識結(jié)構(gòu)及其相互聯(lián)系;能指導(dǎo)教師的教學(xué)進(jìn)程、引導(dǎo)學(xué)生探索知識;通過使用幻燈片輔助板書,節(jié)省課堂時間,使課堂進(jìn)程更加連貫。

  五、評價分析

  學(xué)生學(xué)習(xí)的結(jié)果評價當(dāng)然重要,但是更重要的是學(xué)生學(xué)習(xí)的過程評價。我采用及時點評、延時點評與學(xué)生互評相結(jié)合,全面考查學(xué)生在知識、思想、能力等方面的發(fā)展情況,在質(zhì)疑探究的過程中,評價學(xué)生是否有積極的情感態(tài)度和頑強的理性精神,在概念反思過程中評價學(xué)生的歸納猜想能力是否得到發(fā)展,通過鞏固練習(xí)考查學(xué)生對本節(jié)是否有一個完整的集訓(xùn),并進(jìn)行及時的調(diào)整和補充。

  以上就是我對本節(jié)課的理解和設(shè)計,敬請各位專家、評委批評指正。

  謝謝!

高一數(shù)學(xué)說課稿5

  一、指數(shù)函數(shù)及其性質(zhì)教學(xué)設(shè)計說明

  新課標(biāo)指出:學(xué)生是教學(xué)的主體,教師的教應(yīng)本著從學(xué)生的認(rèn)知規(guī)律出發(fā),以學(xué)生活動為主線,在原有知識的基礎(chǔ)上,建構(gòu)新的知識體系。我將以此為基礎(chǔ)對教學(xué)設(shè)計加以說明。

  數(shù)學(xué)本質(zhì):

  探究指數(shù)函數(shù)的性質(zhì)從“數(shù)”的角度用解析式不易解決,轉(zhuǎn)而由“形”——圖象突破,體會數(shù)形結(jié)合的思想。通過分類討論,通過研究兩個具體的指數(shù)函數(shù)引導(dǎo)學(xué)生通過觀察圖象發(fā)現(xiàn)指數(shù)函數(shù)的圖象規(guī)律,從而歸納指數(shù)函數(shù)的一般性質(zhì),經(jīng)歷一個由特殊到一般的探究過程。引導(dǎo)學(xué)生探究出指數(shù)函數(shù)的一般性質(zhì),從而對指數(shù)函數(shù)進(jìn)行較為系統(tǒng)的研究。

  二、教材的地位和作用:

  本節(jié)課是全日制普通高中標(biāo)準(zhǔn)實驗教課書《數(shù)學(xué)必修1》第二章2.1.2節(jié)的內(nèi)容,研究指數(shù)函數(shù)的定義,圖像及性質(zhì)。是在學(xué)生已經(jīng)較系統(tǒng)地學(xué)習(xí)了函數(shù)的概念,將指數(shù)擴充到實數(shù)范圍之后學(xué)習(xí)的一個重要的基本初等函數(shù)。它既是對函數(shù)的概念進(jìn)一步深化,又是今后學(xué)習(xí)對數(shù)函數(shù)與冪函數(shù)的基礎(chǔ)。因此,在教材中占有極其重要的地位,起著承上啟下的作用。

  此外,《指數(shù)函數(shù)》的知識與我們的日常生產(chǎn)、生活和科學(xué)研究有著緊密的聯(lián)系,尤其體現(xiàn)在細(xì)胞_、貸款利率的計算和考古中的年代測算等方面,因此學(xué)習(xí)這部分知識還有著廣泛的現(xiàn)實意義。

  三、教學(xué)目標(biāo)分析:

  根據(jù)本節(jié)課的內(nèi)容特點以及學(xué)生對抽象的指數(shù)函數(shù)及其圖象缺乏感性認(rèn)識的實際情況,確定在理解指數(shù)函數(shù)定義的基礎(chǔ)上掌握指數(shù)函數(shù)的圖象和由圖象得出的性質(zhì)為本節(jié)教學(xué)重點。本節(jié)課的.難點是指數(shù)函數(shù)圖像和性質(zhì)的發(fā)現(xiàn)過程。

  為此,特制定以下的教學(xué)目標(biāo):

  1)知識目標(biāo)(直接性目標(biāo)):理解指數(shù)函數(shù)的定義,掌握指數(shù)函數(shù)的圖像、性質(zhì)及其簡單應(yīng)用、能根據(jù)單調(diào)性解決基本的比較大小的問題.

  2)能力目標(biāo)(發(fā)展性目標(biāo)):通過教學(xué)培養(yǎng)學(xué)生觀察、分析、歸納等思維能力,體會數(shù)形結(jié)合和分類討論思想,增強學(xué)生識圖用圖的能力。

  3)情感目標(biāo)(可持續(xù)性目標(biāo)):通過學(xué)習(xí),使學(xué)生學(xué)會認(rèn)識事物的特殊性與一般性之間的關(guān)系,用聯(lián)系的觀點看問題。體會研究函數(shù)由特殊到一般再到特殊的研究學(xué)習(xí)過程;體驗研究函數(shù)的一般思維方法。引導(dǎo)學(xué)生發(fā)現(xiàn)數(shù)學(xué)中的對稱美、簡潔美。善于探索的思維品質(zhì)。

  教學(xué)問題診斷分析:

  學(xué)生知識儲備:

  通過初中學(xué)段的學(xué)習(xí)和高中對集合、函數(shù)等知識的系統(tǒng)學(xué)習(xí),學(xué)生對函數(shù)和圖象的關(guān)系已經(jīng)構(gòu)建了一定的認(rèn)知結(jié)構(gòu)。

  學(xué)情分析:

  由于我所教學(xué)生數(shù)學(xué)的理解能力、運算能力、思維能力等方面有一部分是較好的,但整體是水平參差不齊。高一這個年齡段的學(xué)生思維活躍,求知欲強,能夠勇于表現(xiàn)自我,展現(xiàn)自我,愿意合作交流。但在思維習(xí)慣上與方法上還有待教師引導(dǎo)。

  可能存在的問題與策略:

  問題1.

  學(xué)生能夠從具體的問題中抽象出數(shù)學(xué)的模型但對于指數(shù)函數(shù)的定義中底數(shù)的取值范圍和指數(shù)函數(shù)形式的判斷有困難。

  教學(xué)策略:

  類比著二次函數(shù),對于底數(shù)的范圍的取值,引導(dǎo)學(xué)生回顧指數(shù)冪中當(dāng)指數(shù)為全體實數(shù)時,底數(shù)怎樣取值才能一直有意義,以問題的形式引發(fā)學(xué)生思考底數(shù)能否取負(fù)數(shù)、正數(shù)、0、1?從而得到底數(shù)的范圍。

  學(xué)生對:1)y=-3_2)y=31/_3)y=31+_

  4)y=(-3)_5)y=3-_=(1/3)_

  幾種形式的函數(shù)的判斷,加強對指數(shù)函數(shù)形解析式的理解和辨別:

  問題2.

  學(xué)生初中階段就接觸過函數(shù),但對于學(xué)生而言,指數(shù)函數(shù)是完全陌生的函數(shù)。學(xué)生列表時,數(shù)值的選取上可能會少取或是數(shù)值的選取不能照顧到全體實數(shù),畫圖時,又容易受以前學(xué)過的函數(shù)圖像的影響,把指數(shù)函數(shù)的圖像畫成已經(jīng)學(xué)過的圖像的形象。

  教學(xué)策略:在列表格時自變量的取值以及如何畫出指數(shù)函數(shù)的圖像的問題上,采用啟發(fā)式教學(xué)法,類比學(xué)過的函數(shù)圖形的畫法,引導(dǎo)學(xué)生畫圖,畫完圖后,又利用實物投影儀展示一位同學(xué)的圖像,由全班同學(xué)進(jìn)行提出意見糾錯來補充畫圖的不足。

  另外為了讓學(xué)生增強識圖、用圖的能力可以讓學(xué)生根據(jù)觀察到的指數(shù)函數(shù)的圖像,來畫出底數(shù)不同取值范圍內(nèi)的的草圖,以便于探究性質(zhì)。

  問題3.

  函數(shù)定義給出后,底數(shù)a如何分類討論的情況學(xué)生難以做到,如果處理不好,這對于指數(shù)函數(shù)質(zhì)探究時的分類討論有很重要的意義。

  教學(xué)策略:在定義中對于底數(shù)的取值范圍的討論后,得出了底數(shù)a>0且a≠1。此時,在數(shù)軸上把a的范圍表示出來,這樣學(xué)生很容易從數(shù)軸上的區(qū)間圖看出底數(shù)分為兩類情況進(jìn)行討論。這樣為指數(shù)函數(shù)質(zhì)探究時的分類討論埋下了伏筆。

  問題4.

  通過兩個具體的特殊的指數(shù)函數(shù)圖像,來探究得出指數(shù)函數(shù)的性質(zhì)。如何使學(xué)生能經(jīng)歷從特殊到一般的過程,這種由特殊到一般再到特殊的思想的領(lǐng)會,如何完成?

  教學(xué)策略:教師利用幾何畫板分別畫出了底數(shù)大于1的和底數(shù)在0到1之間的若干個不同的指數(shù)函數(shù)的圖像,展現(xiàn)不同的底數(shù)的變化時圖像的不同情況,從而讓學(xué)生經(jīng)歷由特殊到一般的過程。

  問題5.

  指數(shù)函數(shù)是學(xué)生在學(xué)習(xí)了函數(shù)基本概念和性質(zhì)以后接觸到得第一個具體函數(shù),學(xué)生可能找不到研究問題的方法和方向.

  教學(xué)策略:在這部分的安排上,我更注意學(xué)生思維習(xí)慣的養(yǎng)成,即應(yīng)從哪些方面,哪些角度去探索一個具體函數(shù)。

  問題6.

  學(xué)生得到的性質(zhì)特點可能是雜亂的,如何梳理突出主要的性質(zhì)?

  教學(xué)策略:在學(xué)生識圖、用圖、合作探究的過程后,利用兩個表格的填寫,讓學(xué)生感受由圖象特征來得到函數(shù)的性質(zhì)的過程。表格主要呈現(xiàn)五個方面的性質(zhì)與特點。

  四、教法分析:

  為充分貫徹新課程理念,使教學(xué)過_正成為學(xué)生學(xué)習(xí)過程,讓學(xué)生體驗數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的歷程,本節(jié)課擬采用直觀教學(xué)法、啟發(fā)發(fā)現(xiàn)法、課堂討論法等教學(xué)方法。以多媒體演示為載體,啟發(fā)學(xué)生觀察思考,分析討論為主,教師適當(dāng)引導(dǎo)點撥,以動手操作、合作交流,自主探究的方式來讓學(xué)生始終處在教學(xué)活動的中心。

  、預(yù)期效果分析:

  1、教學(xué)環(huán)節(jié)環(huán)環(huán)相扣,層層深入,并充分體現(xiàn)教師與學(xué)生的交流互動,在教師的整體調(diào)控下,學(xué)生通過動手操作,動眼觀察,動腦思考,親身經(jīng)歷了知識的生成和發(fā)展過程,使學(xué)生對知識的理解逐步深入。

  2、簡單實例的引入,順利完成了知識的遷移,從得出指數(shù)函數(shù)的模型,符合學(xué)生認(rèn)知規(guī)律的最近發(fā)展區(qū)。

  3、而作業(yè)中完成指數(shù)函數(shù)性質(zhì)的探究報告,彌補課堂時間有限探究和展示的局限性,帶領(lǐng)學(xué)生進(jìn)入對指數(shù)函數(shù)更進(jìn)一步的思考和研究之中,從而達(dá)到知識在課堂以外的延伸。4、在整個教學(xué)過程中,由于學(xué)生是自覺主動地發(fā)現(xiàn)結(jié)果,對所學(xué)知識應(yīng)該能夠較快接受。因此,我認(rèn)為可以達(dá)到預(yù)定的教學(xué)目標(biāo)。

高一數(shù)學(xué)說課稿6

各位領(lǐng)導(dǎo)、老師、大家好:

  今天,我說課的題目是邏輯聯(lián)結(jié)詞.我將從教材分析、教學(xué)方法、學(xué)法指導(dǎo)、教學(xué)過程、教學(xué)設(shè)計說明五個方面分別進(jìn)行說明。

  一.教材分析

  1.地位和作用

  本節(jié)課的內(nèi)容是人民教育出版社全日制普通高級中學(xué)教科書高中數(shù)學(xué)第一冊(必修)第一章第六節(jié)邏輯聯(lián)結(jié)詞。從內(nèi)容上看,本節(jié)課程是邏輯的入門知識,而邏輯是研究思維形式及規(guī)律的一門基礎(chǔ)學(xué)科。學(xué)習(xí)數(shù)學(xué)需要全面的理解概念,正確的表述、判斷和推理,這就離不開對邏輯知識的掌握和應(yīng)用。從知識上看,邏輯聯(lián)結(jié)詞與集合、充分與必要條件兩個知識點密不可分。而在日常生活、學(xué)習(xí)和工作中,基本的邏輯推理能力是認(rèn)識問題、研究問題不可缺少的工具。而本部分內(nèi)容,既是邏輯知識的基礎(chǔ),也是學(xué)生在初中數(shù)學(xué)中學(xué)習(xí)過的簡單命題知識的進(jìn)一步深化和推廣。

  2.教學(xué)目標(biāo)

  ⑴知識目標(biāo)

  了解命題的概念,理解邏輯聯(lián)結(jié)詞“或”、“且”、“非”的含義,掌握含有“或”、“且”、“非”的復(fù)合命題的構(gòu)成。

 、颇芰δ繕(biāo)

  經(jīng)歷抽象的邏輯聯(lián)結(jié)詞的過程,培養(yǎng)學(xué)生觀察、抽象推理的思維能力。通過發(fā)現(xiàn)式的引導(dǎo),培養(yǎng)學(xué)生發(fā)現(xiàn)問題,解決問題的能力。

 、乔楦心繕(biāo)

  培養(yǎng)學(xué)生勇于探索、善于研究的精神,挖掘其智力因素資源,培養(yǎng)其良好的數(shù)學(xué)品質(zhì)。

  3.教學(xué)重點與難點

 、沤虒W(xué)重點

  ①邏輯聯(lián)結(jié)詞“或”、“且”、“非”的含義。

 、趶(fù)合命題的構(gòu)成。

 、平虒W(xué)難點

 、賹Α盎颉钡暮x的理解;

 、趶(fù)合命題的含義。

  二.教學(xué)方法

  1.對受教育者的分析

  為更好的達(dá)到教學(xué)效果,必須知已知彼,所以在教學(xué)設(shè)計之前我對受教育者做了如下的分析:

 、艑W(xué)生的學(xué)習(xí)過程應(yīng)該是:具體——抽象——具體,即由感性認(rèn)識上升到理性認(rèn)識,形成抽象思維,這是一個歸納過程,然后用歸納的結(jié)論去指導(dǎo)具體問題的解決,這是一個演繹的過程,學(xué)生應(yīng)遵循兩個程序:循環(huán)往復(fù),循序漸進(jìn)。

  ⑵學(xué)生的主動性和積極性是教學(xué)效果能否達(dá)到的關(guān)鍵,教師要從調(diào)動學(xué)生的學(xué)習(xí)主動性和積極性為出發(fā)點設(shè)計教案,最大限度的激發(fā)學(xué)生的學(xué)習(xí)興趣。

  2.教學(xué)手段

  ⑴啟發(fā)誘導(dǎo)式的教學(xué)模式

  啟發(fā)誘導(dǎo)式教學(xué)模式是教師在學(xué)生已有的知識經(jīng)驗和思考基礎(chǔ)上適當(dāng)引導(dǎo),使學(xué)生獲得新知識。其主要理論依據(jù)是現(xiàn)代認(rèn)知理論和當(dāng)代信息理論。其程序是“新課引入,展示目標(biāo);啟發(fā)誘導(dǎo),提高升華;形成能力,反饋回授”。

 、片F(xiàn)代化多媒體教學(xué)手段

  計算機都有很強大的圖形處理功能和動畫處理功能,可以給學(xué)生包括聲音、圖片、視頻等幾乎你能想象到的所有媒體,F(xiàn)代信息傳播理論已證明:視聽等多媒體感官刺激大腦,會喚起表象,激起強烈的求知欲和濃厚的學(xué)習(xí)興趣,使教學(xué)目標(biāo)得以順利完成,并收到良好的學(xué)習(xí)效果。

 、菫榱送怀鲋攸c,突破難點,在教學(xué)設(shè)計上我結(jié)合對受教育者的分析,采用了以下措施:

 、俳Y(jié)合本節(jié)內(nèi)容的特征,設(shè)計出一個具有代表性的引例,激發(fā)學(xué)生邏輯思維的潛意識,使學(xué)生產(chǎn)生求知欲望。

 、谕ㄟ^簡單命題與復(fù)合命題的對比,明確它們的區(qū)別和聯(lián)系,加深對復(fù)合命題構(gòu)成的理解,抓住其本質(zhì)特點。

 、鄯治鰧W(xué)生的知識結(jié)構(gòu),并從具體情況出發(fā),設(shè)計出幾組例子,逐步引導(dǎo)學(xué)生觀察,探討歸納出邏輯聯(lián)結(jié)詞的含義,從中體會邏輯的思想。并聯(lián)系實際,對邏輯聯(lián)結(jié)詞中的“或”與日常生活中的“或”的區(qū)別做重點講解。

 、軓膶W(xué)生的認(rèn)知習(xí)慣出發(fā),在內(nèi)容安排上,把邏輯聯(lián)結(jié)詞“或”、“且”、“非”的講授順序改為“非”、“且”、“或”。

  三.學(xué)法指導(dǎo)

  教學(xué)矛盾的主要方面是學(xué)生的學(xué),學(xué)是中心,會學(xué)是目的,因此在教學(xué)中要不斷指導(dǎo)學(xué)生學(xué)會學(xué)習(xí),學(xué)會怎樣分析問題。引導(dǎo)學(xué)生自己發(fā)現(xiàn)問題,分析問題,并解決問題。這樣研究性的學(xué)習(xí)方法,可以讓學(xué)生真正的成為教學(xué)的主體,也只有這樣才能使學(xué)生學(xué)有所思,思有所得,學(xué)生也會慢慢感受到數(shù)學(xué)的美,會產(chǎn)生一種成就感,從而提高學(xué)生的興趣。這也適應(yīng)素質(zhì)教育下培養(yǎng)創(chuàng)新型人才的需要。

  四.教學(xué)過程

 。保胄抡n

  一堂課好的開始,能夠吸引學(xué)生的注意力,并能調(diào)動學(xué)生的學(xué)習(xí)積極性,所以一開始我就設(shè)置了一個問題情境:張三、李四和王二三位同學(xué)中的一位做了一件好事,但是做好事的同學(xué)不想讓別人知道,事后老師想知道是誰做的,張三說是李四做的,李四說不是他做的,王二說也不是他做的。已知只有一個人說實話,如果你是那位老師,你可以判斷是誰做的嗎?

  由于學(xué)生已經(jīng)具有一些簡單的邏輯常識,所以解決問題并不難,由此來引出本節(jié)課的內(nèi)容。

  2.新課講授

 、逡敫拍

  設(shè)問:學(xué)生對命題的理解在初中已略有了解,于是先讓學(xué)生觀察這樣幾個語句:

 、5是10的約數(shù);

 、凭匦蔚膶蔷互相平分;

 、撬倪呄嗟鹊腵四邊形是正方形;

 、冗@是一棵大樹.

  啟發(fā)誘導(dǎo)學(xué)生挖掘出以上幾個語句的特點,并歸納出命題定義:

  命題:可以判斷真假的語句;

  真命題:正確的語句;

  假命題:錯誤的語句。

 、骒柟叹毩(xí)

  例1:判斷下列語句是不是命題:

 、3是12的約數(shù);

 、;

  ⑶不等式的解集是;

  ⑷不等式的解集是;

 、刹皇欠匠痰母;

 、省

  說明:

  其一:讓學(xué)生通過練習(xí)掌握判斷命題及其真假的方法。

  其二:由例1引導(dǎo)學(xué)生歸納總結(jié)出命題的兩要素。

 、僖袛;②要知其真假。

  其三:通過⑶、⑷、⑸三個復(fù)合命題既復(fù)習(xí)了集合的知識,又為復(fù)合命題的講述作了鋪墊。

 、鐔l(fā)誘導(dǎo)

  例2:判斷下列語句是不是命題。若是,請判斷真假。

 、

  ⑵空集的補集是全集;

 、茄┫碌谜娲;

 、绕叫芯不相交;

  ⑸0既不是奇數(shù),也不是偶數(shù);

  ⑹0可以被2或5整除。

  略解:⑷、命題:平行線相交;則它是“非”形式。

  ⑸、命題:0不是奇數(shù);命題:0不是偶數(shù);則它是“且”的形式。

 、、命題:0可以被2整除;命題:0可以被5整除;則它是“或”的形式。

  說明:

  其一:讓學(xué)生練習(xí)并鞏固所學(xué)的知識,例2中包含真命題、假命題和不是命題的語句,總體上對學(xué)生進(jìn)行由淺入深的引導(dǎo)。

  其二:讓學(xué)生在無形中接觸復(fù)合命題,自然而然的引入復(fù)合命題。引導(dǎo)學(xué)生觀察探索⑷、⑸、⑹三個命題——含有“非”(不)、“且”、“或”(在例題的安排上把學(xué)生容易接受的“非”放在前面,而把學(xué)生們不容易接受的“或”安排在最后);進(jìn)而給出邏輯連接詞“或”、“且”、“非”的概念,引出復(fù)合命題的定義。

  其三:通過例2介紹命題的拉丁字母表示法,并由⑷⑸⑹給出復(fù)合命題的三種基本形式:“或”、“且”、“非”,并對這三個語句的形式加以判斷。

 、柰怀鲋攸c

  例3:判斷下列語句是“或”、“且”、“非”中的哪種形式。

  ⑴0不是負(fù)數(shù);“非”

 、2不是質(zhì)數(shù);“非”

 、橇庑蔚膶蔷相互垂直且平分;“且”

  ⑷24既是8的倍數(shù),也是16的倍數(shù);“且”

  ⑸李強是籃球運動員或跳高運動員;“或”

 、3大于或等于2!盎颉

  說明

  讓學(xué)生鞏固了對邏輯聯(lián)結(jié)詞“或”、“且”、“非”的含義的理解和掌握了復(fù)合命題的構(gòu)成。

 、橥黄齐y點

  例4:填空題

  ⑴若,則xxxx不xxxx屬于;

 、迫簦瑒txxxx且xxxx;

  ⑶若,則xxxx或xxxx。

  說明

  其一:通過學(xué)生們的填空及所填的“詞”加深對邏輯聯(lián)結(jié)詞的理解。

  其二:通過和集合的“交”、“并”、“補”的對比,了解它們的關(guān)系,以正確理解邏輯聯(lián)結(jié)詞“或”、“且”、“非”,并為下節(jié)課判斷復(fù)合題的真假做好鋪墊。

  其三:強調(diào)對邏輯聯(lián)結(jié)詞“或”的理解:

 、艛(shù)學(xué)中的邏輯聯(lián)結(jié)詞“或”與生活日常生活中的“或”的意義不同:日常生活用語中帶有“不可兼有”(即不能同時具備)的意思,如:你去或我去.這句話不含你我都去;而數(shù)學(xué)中的這一邏輯聯(lián)結(jié)詞含有“同時兼有”的意思.(請同學(xué)們結(jié)合集合的定義說一說這里的“或”怎么理解?)

 、啤盎颉迸c集合的“并”密切相關(guān):

 、偌系牟⒓怯谩盎颉眮矶x的:

 、谒鼈兊耐庋酉嗨疲骸盎颉钡暮x有三種情形:

 、逯挥谐闪;㈡只有成立;㈢和同時成立。

  3.實際應(yīng)用探索舉例

  日常生活中許多電器有控制功能,它與我們今天所學(xué)的“或”、“且”、“非”有一定的聯(lián)系。例如:洗衣機中就有一些元件,使洗衣機在甩干時,如果“到達(dá)預(yù)定時間”或“機蓋被打開”就會停機,即通過一些元件使當(dāng)兩個條件至少有一個滿足時就會停機。相應(yīng)的電路叫或門電路。又如:電子保險門在“鑰匙插入”與“密碼正確”兩個條件都滿足時,才會開啟。相應(yīng)的電路叫做與門電路。再如電鍵開則燈亮,電鍵關(guān)則燈滅,相應(yīng)的電路叫做非門電路。

  思考題:干電池一節(jié),小燈泡一個,電鍵兩個,導(dǎo)線若干.請同學(xué)們設(shè)計“或門電路”,“與門電路”,“非門電路”各一個。并在草稿紙上作出電路圖。

  4.小結(jié)

  這節(jié)課我們首先學(xué)習(xí)了命題、真命題、假命題的概念,進(jìn)而學(xué)習(xí)了如何判斷一個語句是不是命題的方法,并總結(jié)命題的兩要素一是要判斷、二是要知其真假。

  接下來我們學(xué)習(xí)了邏輯聯(lián)結(jié)詞和復(fù)合命題。其中復(fù)合命題有“或”、“且”、“非”三種形式。并重點分析了邏輯聯(lián)結(jié)詞“或”。

  說明

  引導(dǎo)同學(xué)們回憶這節(jié)課學(xué)了什么,讓學(xué)生對這節(jié)課所學(xué)的知識形成一個很清晰的網(wǎng)絡(luò),有利于學(xué)生們對知識的內(nèi)化。

  5.課后練習(xí)題

  在本節(jié)課的最后,我給出兩組梯形難度的練習(xí)題作為課后練習(xí)。這樣可以使不同層次的學(xué)生都可以在課后通過相應(yīng)的訓(xùn)練鞏固知識,并得到相應(yīng)的提高。

  第一組

  1:判斷下列語句是不是命題;若是,請判斷真假。

 、湃羰桥紨(shù)(),則都是偶數(shù);

 、品匠虥]有理根;

 、堑葍r于且。

  2:設(shè)命題:是等腰三角形;:是直角三角形,請寫出其構(gòu)成的“或”、“且”、“非”形式的合命題。

  3.判斷下列命題是不是復(fù)合命題;若是,請指出其構(gòu)成形式及構(gòu)成它的簡單命題.

 、24既是8的倍數(shù),又是6的倍數(shù);

 、

 、鄄淮嬖诮牵粒沟

  第二組

  寫出下列命題的“非”形式

 、牛呵遥虎疲夯。

  6.板書設(shè)計

  課題:邏輯聯(lián)結(jié)詞

  引入內(nèi)容:

  設(shè)  問:⑴⑵⑶⑷

  例2、

 、泞脾洽娶散

  例3、

  ⑴⑵⑶⑷⑸⑹

  例1、

  ⑴⑵⑶⑷⑸⑹

  例4、

 、泞脾洽

  總結(jié):

  練習(xí)題:

  第一組第二組

  五、教學(xué)設(shè)計說明:

  在教學(xué)設(shè)計時,我結(jié)合對受教育者的分析,設(shè)身處地從學(xué)生的角度著想,將概念設(shè)置在具體的情境中,這樣我們的教學(xué)活動就不在是由抽象到抽象,就能把教材的平鋪直敘變得活靈活現(xiàn)。我們的教學(xué)語言就會“說到學(xué)生的心坎上”。

  本節(jié)課的設(shè)計主要是以引導(dǎo)為主,讓學(xué)生自己發(fā)現(xiàn)問題、分析問題并解決問題。在程序安排上我講究各知識點的連貫,不斷的由已學(xué)的知識來引出未知的知識。這樣就此可以使學(xué)生對本節(jié)課所學(xué)的知識形成一個清晰的網(wǎng)絡(luò);并能激發(fā)學(xué)生的學(xué)習(xí)興趣和求知欲。

高一數(shù)學(xué)說課稿7

  一、教材分析:集合概念及其基本理論,稱為集合論,是近、現(xiàn)代數(shù)學(xué)的一個重要的基礎(chǔ),一方面,許多重要的數(shù)學(xué)分支,都建立在集合理論的基礎(chǔ)上。另一方面,集合論及其所反映的數(shù)學(xué)思想,在越來越廣泛的領(lǐng)域種得到應(yīng)用。

  二、目標(biāo)分析:

  教學(xué)重點。難點

  重點:集合的含義與表示方法。難點:表示法的恰當(dāng)選擇。

  教學(xué)目標(biāo)

  1、知識與技能

 。1)通過實例,了解集合的含義,體會元素與集合的屬于關(guān)系;

 。2)知道常用數(shù)集及其專用記號;

 。3)了解集合中元素的確定性;ギ愋。無序性;

 。4)會用集合語言表示有關(guān)數(shù)學(xué)對象;

  2、過程與方法

 。1)讓學(xué)生經(jīng)歷從集合實例中抽象概括出集合共同特征的過程,感知集合的含義。

 。2)讓學(xué)生歸納整理本節(jié)所學(xué)知識。

  3、情感。態(tài)度與價值觀

  使學(xué)生感受到學(xué)習(xí)集合的必要性,增強學(xué)習(xí)的積極性。

  三、教法分析

  1、教學(xué)方法:學(xué)生通過閱讀教材,自主學(xué)習(xí)。思考。交流。討論和概括,從而更好地完成本節(jié)課的教學(xué)目標(biāo)。2、教學(xué)手段:在教學(xué)中使用投影儀來輔助教學(xué)。

  四、過程分析

 。ㄒ唬﹦(chuàng)設(shè)情景,揭示課題

  1、教師首先提出問題:(1)介紹自己的家庭、原來就讀的學(xué)校、現(xiàn)在的班級。

 。2)問題:像“家庭”、“學(xué)!、“班級”等,有什么共同特征?

  引導(dǎo)學(xué)生互相交流。與此同時,教師對學(xué)生的活動給予評價。

  2、活動:(1)列舉生活中的集合的例子;(2)分析、概括各實例的共同特征

  由此引出這節(jié)要學(xué)的內(nèi)容。

  設(shè)計意圖:既激發(fā)了學(xué)生濃厚的學(xué)習(xí)興趣,又為新知作好鋪墊

 。ǘ┭刑叫轮,建構(gòu)概念

  1、教師利用多媒體設(shè)備向?qū)W生投影出下面7個實例:

 。1)1—20以內(nèi)的所有質(zhì)數(shù);

  (2)我國古代的四大發(fā)明;

 。3)所有的安理會常任理事國;

  (4)所有的正方形;

 。5)海南省在20xx年9月之前建成的所有立交橋;

 。6)到一個角的兩邊距離相等的所有的點;

 。7)國興中學(xué)20xx年9月入學(xué)的.高一學(xué)生的全體。

  2、教師組織學(xué)生分組討論:這7個實例的共同特征是什么?

  3、每個小組選出——位同學(xué)發(fā)表本組的討論結(jié)果,在此基礎(chǔ)上,師生共同概括出7個實例的特征,并給出集合的含義。一般地,指定的某些對象的全體稱為集合(簡稱為集)。集合中的每個對象叫作這個集合的元素。

  4、教師指出:集合常用大寫字母A,B,C,D,?表示,元素常用小寫字母a,b,c,d?表示。

  設(shè)計意圖:通過實例讓學(xué)生感受集合的概念,激發(fā)學(xué)習(xí)的興趣,培養(yǎng)學(xué)生樂于求索的精神

 。ㄈ┵|(zhì)疑答辯,發(fā)展思維

  1、教師引導(dǎo)學(xué)生閱讀教材中的相關(guān)內(nèi)容,思考:集合中元素有什么特點?并注意個別輔導(dǎo),解答學(xué)生疑難。使學(xué)生明確集合元素的三大特性,即:確定性;ギ愋院蜔o序性。只要構(gòu)成兩個集合的元素是一樣的,我們就稱這兩個集合相等。

  2、教師組織引導(dǎo)學(xué)生思考以下問題:

  判斷以下元素的全體是否組成集合,并說明理由:

 。1)大于3小于11的偶數(shù);(2)我國的小河流。讓學(xué)生充分發(fā)表自己的建解。

  3、讓學(xué)生自己舉出一些能夠構(gòu)成集合的例子以及不能構(gòu)成集合的例子,并說明理由。教師對學(xué)生的學(xué)習(xí)活動給予及時的評價。

  4、教師提出問題,讓學(xué)生思考

  b是(1)如果用A表示高—(3)班全體學(xué)生組成的集合,用a表示高一(3)班的一位同學(xué),

  高一(4)班的一位同學(xué),那么a,b與集合A分別有什么關(guān)系?由此引導(dǎo)學(xué)生得出元素與集合的關(guān)系有兩種:屬于和不屬于。

  如果a是集合A的元素,就說a屬于集合A,記作a?A。

  如果a不是集合A的元素,就說a不屬于集合A,記作a?A。

 。2)如果用A表示“所有的安理會常任理事國”組成的集合,則中國。日本與集合A的關(guān)系分別是什么?請用數(shù)學(xué)符號分別表示。

 。3)讓學(xué)生完成教材第6頁練習(xí)第1題。

  5、教師引導(dǎo)學(xué)生回憶數(shù)集擴充過程,然后閱讀教材中的相交內(nèi)容,寫出常用數(shù)集的記號。并讓學(xué)生完成習(xí)題1。1A組第1題。

  6、教師引導(dǎo)學(xué)生閱讀教材中的相關(guān)內(nèi)容,并思考。討論下列問題:

  (1)要表示一個集合共有幾種方式?

  (2)試比較自然語言。列舉法和描述法在表示集合時,各自的特點?適用的對象是什么?

 。3)如何根據(jù)問題選擇適當(dāng)?shù)募媳硎痉ǎ?/p>

  使學(xué)生弄清楚三種表示方式的優(yōu)缺點和體會它們存在的必要性和適用對象。

  設(shè)計意圖:明確集合元素的三大特性,使學(xué)生弄清楚三種表示方式的優(yōu)缺點,從而突破難點。

 。ㄋ模╈柟躺罨答伋C正

  教師投影學(xué)習(xí):

 。1)用自然語言描述集合{1,3,5,7,9};(2)用例舉法表示集合A?{x?N|1?x?8}

 。3)試選擇適當(dāng)?shù)姆椒ū硎鞠铝屑希航滩牡?頁練習(xí)第2題。

  設(shè)計意圖:使學(xué)生及時鞏固所學(xué)新知,體會三種表示方式存在的必要性和適用對象

 。ㄎ澹w納小結(jié),布置作業(yè)

  小結(jié):在師生互動中,讓學(xué)生了解或體會下例問題:

  1、本節(jié)課我們學(xué)習(xí)了哪些知識內(nèi)容?

  2、你認(rèn)為學(xué)習(xí)集合有什么意義?

  3、選擇集合的表示法時應(yīng)注意些什么?

  設(shè)計意圖:通過回顧,對概念的發(fā)生與發(fā)展過程有清晰的認(rèn)識,回顧集合元素的三大特性及集合的三種表示方式。

  作業(yè):1、課后書面作業(yè):第13頁習(xí)題1.1A組第4題。

  2、元素與集合的關(guān)系有多少種?如何表示?類似地集合與集合間的關(guān)系又有多少種

  呢?如何表示?請同學(xué)們通過預(yù)習(xí)教材。

  五\板書分析

高一數(shù)學(xué)說課稿8

  各位領(lǐng)導(dǎo)和老師,大家好!我說課的內(nèi)容是蘇教版必修1第1章第3節(jié)第一課時《交集、并集》,下面我想談?wù)勎覍@節(jié)課的教學(xué)構(gòu)想:

  一、教材分析:

  與傳統(tǒng)的教材處理不同,本章在學(xué)生通過觀察具體集合得到集合的補集的概念后,上升到數(shù)學(xué)內(nèi)部,將“補”理解為集合間的一種“運算”。在此基礎(chǔ)上,通過實例,使學(xué)生感受和掌握集合之間的另外兩種運算—交和并。設(shè)計的思路從具體到理論,再回到具體,螺旋上升。集合作為一種數(shù)學(xué)語言,在后續(xù)的學(xué)習(xí)中是一種重要的工具。因此,在教學(xué)過程中要針對具體問題,引導(dǎo)學(xué)生恰當(dāng)使用自然語言、圖形語言和集合語言來描述相應(yīng)的數(shù)學(xué)內(nèi)容。有了集合的語言,可以更清晰的表達(dá)我們的思想。所以,集合是整個數(shù)學(xué)的基礎(chǔ),在以后的學(xué)習(xí)中有著極為廣泛的應(yīng)用。

  基于以上的分析制定以下的教學(xué)目標(biāo)

  二、教學(xué)目標(biāo):

  1、理解交集與并集的概念;掌握有關(guān)集合的術(shù)語和符號,并會用它們正確表示一些簡單的集合。 能用Venn圖表示集合之間的關(guān)系;掌握兩個集合的交集、并集的求法。

  2、通過對交集、并集概念的學(xué)習(xí),培養(yǎng)學(xué)生觀察、比較、分析、概括的能力,使學(xué)生認(rèn)識由具體到抽象的'思維過程。

  3、通過對集合符號語言的學(xué)習(xí),培養(yǎng)學(xué)生符號表達(dá)能力,培養(yǎng)嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)作風(fēng),養(yǎng)成良好的學(xué)習(xí)習(xí)慣。

  三、教學(xué)重點、難點:

  針對以上的分析我把教學(xué)重點放在交集與并集的概念,一些集合的交集和并集的求法上。而把如何引導(dǎo)學(xué)生通過觀察、比較、分析、概括出交集與并集的概念作為本節(jié)的教學(xué)難點。

  四、教法、學(xué)法:

  針對我們師范學(xué)校學(xué)生的特點,我本著低起點、高要求、循序漸進(jìn),充分調(diào)動學(xué)生學(xué)習(xí)積極性的原則,采用“五環(huán)節(jié)教學(xué)法”。同時利用多媒體輔助教學(xué)。

  下面我重點說一說教學(xué)過程

  六、教學(xué)過程:

  第一個環(huán)節(jié):問題情境

  通過實例:學(xué)校舉辦了排球賽,08小教(2)56名同學(xué)中有12名同學(xué)參賽,后來又舉辦了田徑賽,這個班有20名同學(xué)參賽。已知兩項都參賽的有6名同學(xué)。兩項比賽中,這個班共有多少名同學(xué)沒有參加過比賽?讓學(xué)生感受到數(shù)學(xué)與我們的生活息息相關(guān),從而激發(fā)學(xué)生的學(xué)習(xí)興趣。

  學(xué)生思考后回答,然后老師加以引導(dǎo),讓學(xué)生的回答達(dá)到這樣三個層次:

  層次一:發(fā)現(xiàn)要求沒有參加比賽的人數(shù),首先應(yīng)該算出參加比賽的人數(shù),并且知道參加比賽的人數(shù)是12+20-6,而不是12+20,因為有6人既參加排球賽又參加田徑賽。

  層次二:老師引導(dǎo)學(xué)生利用集合的觀點再來研究這個問題。先設(shè)利用Venn圖來表示集合A,B,C.發(fā)現(xiàn)集合A,B的公共部分就是集合C.

  層次三:引導(dǎo)學(xué)生發(fā)現(xiàn)集合C的元素的構(gòu)成與集合A,B的元素的關(guān)系。學(xué)生可以發(fā)現(xiàn)集合C中的元素是由既參加排球比賽又參加田徑比賽的同學(xué)構(gòu)成的,更進(jìn)一步集合C的元素是由既屬于集合A的元素又屬于集合B的元素構(gòu)成的。

  通過對三個層次的探究和分析讓學(xué)生體驗數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的歷程。

高一數(shù)學(xué)說課稿9

  一、教材分析

  1.教材中的地位及作用

  本節(jié)課是學(xué)生在已掌握雙曲線的定義及標(biāo)準(zhǔn)方程之后,在此基礎(chǔ)上,反過來利用雙曲線的標(biāo)準(zhǔn)方程研究其幾何性質(zhì)。它是教學(xué)大綱要求學(xué)生必須掌握的內(nèi)容,也是高考的一個考點,是深入研究雙曲線,靈活運用雙曲線的定義、方程、性質(zhì)解題的基礎(chǔ),更能使學(xué)生理解、體會解析幾何這門學(xué)科的研究方法,培養(yǎng)學(xué)生的解析幾何觀念,提高學(xué)生的數(shù)學(xué)素質(zhì)。

  2.教學(xué)目標(biāo)的確定及依據(jù)

  平面解析幾何研究的主要問題之一就是:通過方程,研究平面曲線的性質(zhì)。教學(xué)參考書中明確要求:學(xué)生要掌握圓錐曲線的性質(zhì),初步掌握根據(jù)曲線的方程,研究曲線的幾何性質(zhì)的方法和步驟。根據(jù)這些教學(xué)原則和要求,以及學(xué)生的學(xué)習(xí)現(xiàn)狀,我制定了本節(jié)課的教學(xué)目標(biāo)。

 。1)知識目標(biāo):①使學(xué)生能運用雙曲線的標(biāo)準(zhǔn)方程討論雙曲線的范圍、對稱性、頂點、離心率、漸近線等幾何性質(zhì);

 、谡莆针p曲線標(biāo)準(zhǔn)方程中

  的幾何意義,理解雙曲線的漸近線的概念及證明;

 、勰苓\用雙曲線的幾何性質(zhì)解決雙曲線的一些基本問題。

 。2)能力目標(biāo):①在與橢圓的性質(zhì)的類比中獲得雙曲線的性質(zhì),培養(yǎng)學(xué)生的觀察能力,想象能力,數(shù)形結(jié)合能力,分析、歸納能力和邏輯推理能力,以及類比的學(xué)習(xí)方法;

 、谑箤W(xué)生進(jìn)一步掌握利用方程研究曲線性質(zhì)的基本方法,加深對直角坐標(biāo)系中曲線與方程的概念的理解。

 。3)德育目標(biāo):培養(yǎng)學(xué)生對待知識的科學(xué)態(tài)度和探索精神,而且能夠運用運動的,變化的觀點分析理解事物。

  3.重點、難點的確定及依據(jù)

  對圓錐曲線來說,漸近線是雙曲線特有的性質(zhì),而學(xué)生對漸近線的發(fā)現(xiàn)與證明方法接受、理解和掌握有一定的困難。因此,在教學(xué)過程中我把漸近線的發(fā)現(xiàn)作為重點,充分暴露思維過程,培養(yǎng)學(xué)生的創(chuàng)造性思維,通過誘導(dǎo)、分析,巧妙地應(yīng)用極限思想導(dǎo)出了雙曲線的漸近線方程。這樣處理將數(shù)學(xué)思想滲透于其中,學(xué)生也易接受。因此,我把漸近線的證明作為本節(jié)課的難點,根據(jù)本節(jié)的教學(xué)內(nèi)容和教學(xué)大綱以及高考的要求,結(jié)合學(xué)生現(xiàn)有的實際水平和認(rèn)知能力,我把漸近線和離心率這兩個性質(zhì)作為本節(jié)課的重點。

  4.教學(xué)方法

  這節(jié)課內(nèi)容是通過雙曲線方程推導(dǎo)、研究雙曲線的性質(zhì),本節(jié)內(nèi)容類似于“橢圓的簡單的幾何性質(zhì)”,教學(xué)中可以與其類比講解,讓學(xué)生自己進(jìn)行探究,得到類似的結(jié)論。在教學(xué)中,學(xué)生自己能得到的結(jié)論應(yīng)該讓學(xué)生自己得到,凡是難度不大,經(jīng)過學(xué)習(xí)學(xué)生自己能解決的問題,應(yīng)該讓學(xué)生自己解決,這樣有利于調(diào)動學(xué)生學(xué)習(xí)的積極性,激發(fā)他們的學(xué)習(xí)積極性,同時也有利于學(xué)習(xí)建立信心,使他們的主動性得到充分發(fā)揮,從中提高學(xué)生的思維能力和解決問題的能力。

  漸近線是雙曲線特有的性質(zhì),我們常利用它作出雙曲線的草圖,而學(xué)生對漸近線的發(fā)現(xiàn)與證明方法接受、理解和掌握有一定的困難。因此,在教學(xué)過程中著重培養(yǎng)學(xué)生的創(chuàng)造性思維,通過誘導(dǎo)、分析,從已有知識出發(fā),層層設(shè)(釋)疑,激活已知,啟迪思維,調(diào)動學(xué)生自身探索的內(nèi)驅(qū)力,進(jìn)一步清晰概念(或圖形)特征,培養(yǎng)思維的深刻性。

  例題的選備,可將此題作一題多變(變條件,變結(jié)論),訓(xùn)練學(xué)生一題多解,開拓其解題思路,使他們在做題中總結(jié)規(guī)律、發(fā)展思維、提高知識的應(yīng)用能力和發(fā)現(xiàn)問題、解決問題能力。

  二、教學(xué)程序

  (一).設(shè)計思路

 。ǘ.教學(xué)流程

  1.復(fù)習(xí)引入

  我們已經(jīng)學(xué)習(xí)過橢圓的標(biāo)準(zhǔn)方程和雙曲線的標(biāo)準(zhǔn)方程,以及橢圓的簡單的幾何性質(zhì),請同學(xué)們來回顧這些知識點,對學(xué)習(xí)的舊知識加以復(fù)習(xí)鞏固,同時為新知識的學(xué)習(xí)做準(zhǔn)備,利用多媒體工具的先進(jìn)性,結(jié)合圖像來演示。

  2.觀察、類比

  這節(jié)課內(nèi)容是通過雙曲線方程推導(dǎo)、研究雙曲線的性質(zhì),本節(jié)內(nèi)容類似于“橢圓的簡單的幾何性質(zhì)”,教學(xué)中可以與其類比講解,讓學(xué)生自己進(jìn)行探究,首先觀察雙曲線的形狀,試著按照橢圓的幾何性質(zhì),歸納總結(jié)出雙曲線的幾何性質(zhì)。一般學(xué)生能用類似于推導(dǎo)橢圓的幾何性質(zhì)的方法得出雙曲線的范圍、對稱性、頂點、離心率,對知識的理解不能浮于表面只會看圖,也要會從方程的角度來解釋,抓住方程的本質(zhì)。用多媒體演示,加強學(xué)生對雙曲線的簡單幾何性質(zhì)范圍、對稱性、頂點(實軸、虛軸)、離心率(不深入的講解)的鞏固。之后,比較雙曲線的這四個性質(zhì)和橢圓的性質(zhì)有何聯(lián)系及區(qū)別,這樣可以加強新舊知識的聯(lián)系,借助于類比方法,引起學(xué)生學(xué)習(xí)的興趣,激發(fā)求知欲。

  3.雙曲線的漸近線的發(fā)現(xiàn)、證明

 。1)發(fā)現(xiàn)

  由橢圓的幾何性質(zhì),我們能較準(zhǔn)確地畫出橢圓的'圖形。那么,由雙曲線的幾何性質(zhì),能否較準(zhǔn)確地畫出雙曲線

  的圖形為引例,讓學(xué)生動筆實踐,通過列表描點,就能把雙曲線的頂點及附近的點較準(zhǔn)確地畫出來,但雙曲線向遠(yuǎn)處如何伸展就不是很清楚。從而說明想要準(zhǔn)確的畫出雙曲線的圖形只有那四個性質(zhì)是不行的。

  從學(xué)生曾經(jīng)學(xué)習(xí)過的反比例函數(shù)入手,而且可以比較精確的畫出反比例函數(shù)

  的圖像,它的圖像是雙曲線,當(dāng)雙曲線伸向遠(yuǎn)處時,它與x、y軸無限接近,此時x、y軸是的漸近線,為后面引出漸近線的概念埋下伏筆。從而讓學(xué)生猜想雙曲線有何特征?有沒有漸近線?由于雙曲線的對稱性,我們只須研究它的圖形在第一象限的情況即可。在研究雙曲線的范圍時,由雙曲線的標(biāo)準(zhǔn)方程,可解出,,當(dāng)x無限增大時,y也隨之增大,不容易發(fā)現(xiàn)它們之間的微妙關(guān)系。但是如果將式子變形為,我們就會發(fā)現(xiàn):當(dāng)x無限增大,逐漸減小、無限接近于0,而就逐漸增大、無限接近于1();若將變形為,即說明此時雙曲線在第一象限,當(dāng)x無限增大時,其上的點與坐標(biāo)原點之間連線的斜率比1小,但與斜率為1的直線無限接近,且此點永遠(yuǎn)在直線的下方。其它象限向遠(yuǎn)處無限伸展的變化趨勢就可以利用對稱性得到,從而可知雙曲線的圖形在遠(yuǎn)處與直線無限接近,此時我們就稱直線叫做雙曲線的漸近線。這樣從已有知識出發(fā),層層設(shè)(釋)疑,激活已知,啟迪思維,調(diào)動學(xué)生自身探索的內(nèi)驅(qū)力,進(jìn)一步清晰概念(或圖形)特征,培養(yǎng)思維的深刻性。

  利用由特殊到一般的規(guī)律,就可以引導(dǎo)學(xué)生探尋雙曲線

  (a>0,b>0)的漸近線,讓學(xué)生同樣利用類比的方法,將其變形為,,由于雙曲線的對稱性,我們可以只研究第一象限向遠(yuǎn)處的變化趨勢,繼續(xù)變形為,,可發(fā)現(xiàn)當(dāng)x無限增大時,逐漸減小、無限接近于0,逐漸增大、無限接近于,即說明對于雙曲線在第一象限遠(yuǎn)處的點與坐標(biāo)原點之間連線的斜率比小,與斜率為的直線無限接近,且此點永遠(yuǎn)在直線下方。其它象限向遠(yuǎn)處無限伸展的變化趨勢可以利用對稱性得到,從而可知雙曲線(a>0,b>0)的圖形在遠(yuǎn)處與直線無限接近,直線叫做雙曲線(a>0,b>0)的漸近線。我就是這樣將漸近線的發(fā)現(xiàn)作為重點,充分暴露思維過程,培養(yǎng)學(xué)生的創(chuàng)造性思維,通過誘導(dǎo)、分析,巧妙地應(yīng)用極限思想導(dǎo)出了雙曲線的漸近線方程。這樣處理將數(shù)學(xué)思想滲透于其中,學(xué)生也易接受。

 。2)證明

  如何證明直線

  是雙曲線(a>0,b>0)的漸近線呢?

  啟發(fā)思考①:首先,逐步接近,轉(zhuǎn)換成什么樣的數(shù)學(xué)語言?(x→∞,d→0)

  啟發(fā)思考②:顯然有四處逐步接近,是否每一處都進(jìn)行證明?

  啟發(fā)思考③:鎖定第一象限后,具體地怎樣利用x表示d

 。üぞ呤鞘裁矗狐c到直線的距離公式)

  啟發(fā)思考④:讓學(xué)生設(shè)點,而d的表達(dá)式較復(fù)雜,能否將問題進(jìn)行轉(zhuǎn)化?

  分析:要證明直線

  是雙曲線(a>0,b>0)的漸近線,即要證明隨著x的增大,直線和曲線越來越靠攏。也即要證曲線上的點到直線的距離

 。麺Q|越來越短,因此把問題轉(zhuǎn)化為計算|MQ|。但因|MQ|不好直接求得,因此又可以把問題轉(zhuǎn)化為求|MN|。

  啟發(fā)思考⑤:這樣證明后,還須交代什么?

 。ㄔ谄渌笙,同理可證,或由對稱性可知有相似情況)

  引導(dǎo)學(xué)生層層深入的進(jìn)行探究,從而更深刻的理解雙曲線的漸近線的發(fā)現(xiàn)及證明過程。

  (3)深化

  再來研究實軸在y軸上的雙曲線

  (a>0,b>0)的漸近線方程就會變得容易很多,此時可利用類比的方法或者利用對稱性得到焦點在y軸上的雙曲線的漸近線方程即為。

  這樣,我們就完滿地解決了畫雙曲線遠(yuǎn)處趨向問題,從而可比較精確的畫出雙曲線。但是如果仔細(xì)觀察漸近線實質(zhì)就是雙曲線過實軸端點、虛軸端點,作平行與坐標(biāo)軸的直線

  所成的矩形的兩條對角線,數(shù)形結(jié)合,來加強對雙曲線的漸近線的理解。

  4.離心率的幾何意義

  橢圓的離心率反映橢圓的扁平程度,雙曲線離心率有何幾何意義呢?不難得到:

  ,這是剛剛學(xué)生在類比橢圓的幾何性質(zhì)時就可以得到的簡單結(jié)論。通過對離心率的研究,同樣也可以使學(xué)生進(jìn)一步加深對漸近線的理解。

  由等式

  ,可得:,不難發(fā)現(xiàn):e越。ㄔ浇咏1),就越接近于0,雙曲線開口越小;e越大,就越大,雙曲線開口越大。所以,雙曲線的離心率反映的是雙曲線的開口大小。通過對這些性質(zhì)的探究,就可以更好的理解雙曲線圖形與這些基本量之間的關(guān)系,更加準(zhǔn)確的作出雙曲線的圖形。

  5.例題分析

  為突出本節(jié)內(nèi)容,使學(xué)生盡快掌握剛才所學(xué)的知識。我選配了這樣的例題:

  例1.求雙曲線9x2-16y2=144的實半軸長和虛半軸長、頂點和焦點坐標(biāo)、漸近線方程、離心率。選題目的在于拿到一個雙曲線的方程之后若不是標(biāo)準(zhǔn)式,要先將所給的雙曲線方程化為標(biāo)準(zhǔn)方程,后根據(jù)標(biāo)準(zhǔn)方程分別求出有關(guān)量。本題求漸近線的方程的方法:(1)直接根據(jù)漸近線方程寫出;(2)利用雙曲線的圖形中的矩形框架的對角線得到。加強對于雙曲線的漸近線的應(yīng)用和理解。

  變1:求雙曲線9y2-16x2=144的實半軸長和虛半軸長、頂點和焦點坐標(biāo)、漸近線方程、離心率。選題目的:和上題相同先將所給的雙曲線方程化為標(biāo)準(zhǔn)方程,后根據(jù)標(biāo)準(zhǔn)方程分別求出有關(guān)量;但求漸近線時可直接求出,也可以利用對稱性來求解。

  關(guān)鍵在于對比:雙曲線的形狀不變,但在坐標(biāo)系中的位置改變,它的那些性質(zhì)改變,那些性質(zhì)不變?試歸納雙曲線的幾何性質(zhì)。(小結(jié)列表)

  變2:已知雙曲線的漸近線方程是

  ,且經(jīng)過點(,3),求雙曲線的標(biāo)準(zhǔn)方程。

  選題目的

 。涸谝阎p曲線的漸近線的前提下,如何利用已知信息求解雙曲線的方程。方法1:分焦點在x軸,焦點在y軸分別求解;方法2:確定點所在的區(qū)域,定方程的形式,然后求a、b。深化知識,加強應(yīng)用,使知識系統(tǒng)化。

  例題的選備,可將此題作一題多變(變條件,變結(jié)論),訓(xùn)練學(xué)生一題多解,開拓其解題思路,使他們在做題中總結(jié)規(guī)律、發(fā)展思維、提高知識的應(yīng)用能力和發(fā)現(xiàn)問題、解決問題能力。

  6.課堂練習(xí)

  課本P113練習(xí)1.2,讓學(xué)生自己練習(xí),熟悉并運用雙曲線的幾何性質(zhì)解題,加強應(yīng)用性。

  7.課堂小結(jié)

 。1)通過本節(jié)學(xué)習(xí),要求學(xué)生熟悉并掌握雙曲線的幾何性質(zhì),尤其是雙曲線的漸近線方程及其“漸近”性質(zhì)的證明,并能簡單應(yīng)用雙曲線的幾何性質(zhì);

 。2)雙曲線的幾何性質(zhì)總結(jié)(學(xué)生填表歸納)。

  8.課后作業(yè)

  課本P113習(xí)題1.2.3,鞏固并掌握課上所學(xué)的知識。

  思考:雙曲線與其漸近線的方程之間有何內(nèi)在的變化規(guī)律?

  以上就是我對于《雙曲線的簡單幾何性質(zhì)》的教學(xué)設(shè)計,希望老師們給與批評與指正!我會不斷努力,力爭開拓創(chuàng)新,不斷進(jìn)步。

高一數(shù)學(xué)說課稿10

  一、教材分析

  1、教材的地位和作用:

  數(shù)列是高中數(shù)學(xué)重要內(nèi)容之一,它不僅有著廣泛的實際應(yīng)用,而且起著承前啟后的作用。一方面, 數(shù)列作為一種特殊的函數(shù)與函數(shù)思想密不可分;另一方面,學(xué)習(xí)數(shù)列也為進(jìn)一步學(xué)習(xí)數(shù)列的極限等內(nèi)容做好準(zhǔn)備。而等差數(shù)列是在學(xué)生學(xué)習(xí)了數(shù)列的有關(guān)概念和給出數(shù)列的兩種方法——通項公式和遞推公式的基礎(chǔ)上,對數(shù)列的知識進(jìn)一步深入和拓廣。同時等差數(shù)列也為今后學(xué)習(xí)等比數(shù)列提供了學(xué)習(xí)對比的依據(jù)。

  2、教學(xué)目標(biāo)

  根據(jù)教學(xué)大綱的要求和學(xué)生的實際水平,確定了本次課的教學(xué)目標(biāo)

  a在知識上:理解并掌握等差數(shù)列的概念;了解等差數(shù)列的通項公式的推導(dǎo)過程及思想;初步引入“數(shù)學(xué)建!钡乃枷敕椒ú⒛苓\用。

  b在能力上:培養(yǎng)學(xué)生觀察、分析、歸納、推理的`能力;在領(lǐng)會函數(shù)與數(shù)列關(guān)系的前提下,把研究函數(shù)的方法遷移來研究數(shù)列,培養(yǎng)學(xué)生的知識、方法遷移能力;通過階梯性練習(xí),提高學(xué)生分析問題和解決問題的能力。

  c在情感上:通過對等差數(shù)列的研究,培養(yǎng)學(xué)生主動探索、勇于發(fā)現(xiàn)的求知精神;養(yǎng)成細(xì)心觀察、認(rèn)真分析、善于總結(jié)的良好思維習(xí)慣。

  3、教學(xué)重點和難點

  根據(jù)教學(xué)大綱的要求我確定本節(jié)課的教學(xué)重點為:

 、俚炔顢(shù)列的概念。

 、诘炔顢(shù)列的通項公式的推導(dǎo)過程及應(yīng)用。

  由于學(xué)生第一次接觸不完全歸納法,對此并不熟悉因此用不完全歸納法推導(dǎo)等差數(shù)列的同項公式是這節(jié)課的一個難點。同時,學(xué)生對“數(shù)學(xué)建模”的思想方法較為陌生,因此用數(shù)學(xué)思想解決實際問題是本節(jié)課的另一個難點。

  二、學(xué)情分析

  對于三中的高一學(xué)生,知識經(jīng)驗已較為豐富,他們的智力發(fā)展已到了形式運演階段,具備了教強的抽象思維能力和演繹推理能力,所以我在授課時注重引導(dǎo)、啟發(fā)、研究和探討以符合這類學(xué)生的心理發(fā)展特點,從而促進(jìn)思維能力的進(jìn)一步發(fā)展。

  二、教法分析

  針對高中生這一思維特點和心理特征,本節(jié)課我采用啟發(fā)式、討論式以及講練結(jié)合的教學(xué)方法,通過問題激發(fā)學(xué)生求知欲,使學(xué)生主動參與數(shù)學(xué)實踐活動,以獨立思考和相互交流的形式,在教師的指導(dǎo)下發(fā)現(xiàn)、分析和解決問題。

  三、學(xué)法指導(dǎo)

  在引導(dǎo)分析時,留出學(xué)生的思考空間,讓學(xué)生去聯(lián)想、探索,同時鼓勵學(xué)生大膽質(zhì)疑,圍繞中心各抒己見,把思路方法和需要解決的問題弄清。

  四、教學(xué)程序

  本節(jié)課的教學(xué)過程由(一)復(fù)習(xí)引入(二)新課探究(三)應(yīng)用例解(四)反饋練習(xí)(五)歸納小結(jié)(六)布置作業(yè),六個教學(xué)環(huán)節(jié)構(gòu)成。

  (一)復(fù)習(xí)引入:

  1.從函數(shù)觀點看,數(shù)列可看作是定義域為__________對應(yīng)的一列函數(shù)值,從而數(shù)列的通項公式也就是相應(yīng)函數(shù)的______ 。(N﹡;解析式)

  通過練習(xí)1復(fù)習(xí)上節(jié)內(nèi)容,為本節(jié)課用函數(shù)思想研究數(shù)列問題作準(zhǔn)備。

  2. 小明目前會100個單詞,他她打算從今天起不再背單詞了,結(jié)果不知不覺地每天忘掉2個單詞,那么在今后的五天內(nèi)他的單詞量逐日依次遞減為: 100,98,96,94,92 ①

  3. 小芳只會5個單詞,他決定從今天起每天背記10個單詞,那么在今后的五天內(nèi)他的單詞量逐日依次遞增為 5,10,15,20,25 ②

  通過練習(xí)2和3 引出兩個具體的等差數(shù)列,初步認(rèn)識等差數(shù)列的特征,為后面的概念學(xué)習(xí)建立基礎(chǔ),為學(xué)習(xí)新知識創(chuàng)設(shè)問題情境,激發(fā)學(xué)生的求知欲。由學(xué)生觀察兩個數(shù)列特點,引出等差數(shù)列的概念,對問題的總結(jié)又培養(yǎng)學(xué)生由具體到抽象、由特殊到一般的認(rèn)知能力。

  (二) 新課探究

  1、由引入自然的給出等差數(shù)列的概念:

  如果一個數(shù)列,從第二項開始它的每一項與前一項之差都等于同一常數(shù),這個數(shù)列就叫等差數(shù)列, 這個常數(shù)叫做等差數(shù)列的公差,通常用字母d來表示。強調(diào):

 、 “從第二項起”滿足條件;

 、诠頳一定是由后項減前項所得;

  ③每一項與它的前一項的差必須是同一個常數(shù)(強調(diào)“同一個常數(shù)” );

  在理解概念的基礎(chǔ)上,由學(xué)生將等差數(shù)列的文字語言轉(zhuǎn)化為數(shù)學(xué)語言,歸納出數(shù)學(xué)表達(dá)式:

  an+1-an=d (n≥1)

  同時為了配合概念的理解,我找了5組數(shù)列,由學(xué)生判斷是否為等差數(shù)列,是等差數(shù)列的找出公差。

  1. 9 ,8,7,6,5,4,……;√ d=-1

  2. 0.70,0.71,0.72,0.73,0.74……;√ d=0.01

  3. 0,0,0,0,0,0,…….; √ d=0

  4. 1,2,3,2,3,4,……;×

  5. 1,0,1,0,1,……×

  其中第一個數(shù)列公差<0,>0,第三個數(shù)列公差=0

  由此強調(diào):公差可以是正數(shù)、負(fù)數(shù),也可以是0

高一數(shù)學(xué)說課稿11

  本節(jié)課是高中數(shù)學(xué)第二冊第七章《曲線和圓的方程》第五節(jié)《曲線和方程》,這是一節(jié)教學(xué)研討課,是在大力提倡改革課堂教學(xué)模式、提高課堂效益、開發(fā)學(xué)生智力等多方面能力的前提下開設(shè)的,目的是努力尋求一種全新的課堂教學(xué)模式,能夠讓信息技術(shù)和數(shù)學(xué)課本知識有效的融合在一起,讓學(xué)生知道,學(xué)習(xí)數(shù)學(xué),不僅僅是做題目,而且是研究題目,提高了學(xué)生的學(xué)習(xí)數(shù)學(xué)的興趣。

  一、教材分析

  《平面動點的軌跡》這部分內(nèi)容從理論上揭示了幾何中的“形”與代數(shù)中的“數(shù)”相統(tǒng)一的關(guān)系,為“作形判數(shù)”與“就數(shù)論形”的相互轉(zhuǎn)化開辟了途徑,同時也體現(xiàn)解析幾何的基本思想。軌跡問題具有深厚的生活背景,求平面動點的軌跡方程涉及集合、方程、三角平面幾何等基礎(chǔ)知識,其中滲透著運動與變化、數(shù)形結(jié)合的等思想,是中學(xué)數(shù)學(xué)的重要內(nèi)容,也是歷年高考數(shù)學(xué)考查的重點之一。

  二、對數(shù)學(xué)目標(biāo)的闡述

  “以知識為載體,注重學(xué)生的能力、良好的意志品質(zhì)及合作學(xué)習(xí)精神的培養(yǎng)”是本教學(xué)設(shè)計中貫穿始終的一個重要教學(xué)理念。為此本課的知識目標(biāo)設(shè)定為三條:

  (1)了解解析幾何的基本思想、明確它所研究的基本問題

 。2)了解用坐標(biāo)法研究幾何問題的有關(guān)知識和觀點

  (3)初步掌握根據(jù)已知條件求曲線方程的方法,同時進(jìn)一步加深理解“曲線的方程、方程的曲線”的概念。

  三、對學(xué)生能力目標(biāo)的培養(yǎng)

  本節(jié)課的設(shè)計著眼點是讓學(xué)生集體參與、主動參與,培養(yǎng)學(xué)生動手、動腦的能力,鼓勵多向思維、積極活動、勇于探索。知識的學(xué)習(xí)和能力的提高是同步的,從本課的設(shè)計不難看出對學(xué)生能力目標(biāo)是:通過自我思考、同桌交流、師生互議、實際探究等課堂活動,獲取知識。同時,培養(yǎng)學(xué)生探究學(xué)習(xí)、合作學(xué)習(xí)的意識,強化數(shù)形結(jié)合、化歸與轉(zhuǎn)化等數(shù)學(xué)思想,提高分析問題、解決問題的能力。

  四、對學(xué)生個性品質(zhì)和情感教育的培養(yǎng)

  設(shè)計者試圖利用動畫演示軌跡的形成過程,使課堂氣氛活躍,讓學(xué)生感受動點軌跡的動態(tài)美,使課堂教學(xué)內(nèi)容形象化,從而激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和學(xué)好教學(xué)的信心。而鼓勵學(xué)生積極思考、勇于探索,培養(yǎng)學(xué)生良好的意志品質(zhì),樹立競爭意識與合作精神,感受合作交流帶來的成功感,樹立自信心,激發(fā)提出問題和解決問題的勇氣則是本節(jié)課要達(dá)成的個性品質(zhì)和情感目標(biāo)。

  五、關(guān)于教學(xué)方法與教學(xué)法手段的選用

  新課程強調(diào)教師要調(diào)整自己的角色,改變傳統(tǒng)的教育方式,教師要由傳統(tǒng)意義上知識的傳授者和學(xué)生的管理者,改變成為以學(xué)生為中心,讓學(xué)生真正成為學(xué)習(xí)的主人而不是知識的奴隸,基于此,根據(jù)本節(jié)課的教學(xué)內(nèi)容和學(xué)生的實際水平,采用的是引導(dǎo)發(fā)現(xiàn)法和計算機軟件——《幾何畫板》實驗輔助教學(xué)。

  六、、關(guān)于教學(xué)程序的設(shè)計

  1、創(chuàng)設(shè)情景,引入課題

  平面解析幾何的核心是“坐標(biāo)法”,用代數(shù)的方法研究幾何圖的性質(zhì)。主要包括兩個部分:求曲線的方程;通過研究方程研究曲線的性質(zhì)。在傳統(tǒng)的教學(xué)中,動點并不動。《幾何畫板》的特點是“動”?梢栽趧討B(tài)中觀察數(shù)學(xué)現(xiàn)象,探究幾何圖形的性質(zhì)。在《幾何畫板》支持下,“動點”真的'動起來了。在動態(tài)中觀察,觀察變動中不變的規(guī)律觸及到問題的本質(zhì),可以更好地讓學(xué)生參與到教學(xué)過程中來。讓學(xué)生動手操作,發(fā)現(xiàn)數(shù)學(xué)規(guī)律。

  例 1、已知點P是圓上的一個動點,點A是X軸上的定點,坐標(biāo)是(12、0)當(dāng)點P在圓上運動時,線段PA的中點M的軌跡是什么?

  第一步:讓學(xué)生借助畫板動手探究軌跡

  第二步:要求學(xué)生求出軌跡方程、驗證軌跡

  解法一:設(shè)M(x,y)則,由點p是圓上的點得,,化簡得:

  2、問題提出,引入新課

  例2、已知B是定圓A內(nèi)一定點,C是圓上的動點,L是線段BC的垂直平分線。交點為P,M為L與直徑CD的交點,當(dāng)點C在圓上運動時,探索直線L上哪個點的運行時橢圓?

  設(shè)計意圖:借助數(shù)學(xué)實驗,把原本屬于教師行為的設(shè)疑激趣還原于學(xué)生,讓學(xué)生自己在實踐過程中發(fā)現(xiàn)疑問,更容易激發(fā)學(xué)生學(xué)習(xí)的熱情,促使他們主動發(fā)現(xiàn)、主動學(xué)習(xí)。

  第一步:分解動作,向?qū)W生提出幾個問題:

  問題1:當(dāng)點C在圓上運動時,直線 圍成一個橢圓,上哪個點在這個橢圓上?(為什么)注意觀察點P與點M

  問題2:CD是圓A的直徑,直線L與CD交于M,求M的軌跡方程。

  問題3、改變點B的位置,當(dāng)點B在圓外時,你的結(jié)論該做怎樣的修改呢?

  學(xué)生活動:第一步:利用網(wǎng)絡(luò)平臺展示學(xué)生得到的軌跡(教師有意識的整合在一起)

  第二步:課堂完成學(xué)生歸納出來的問題1,問題2和3課后完成。

  整個教學(xué)過程,體現(xiàn)了四個統(tǒng)一:既學(xué)習(xí)書本知識與投身實踐的統(tǒng)一、書本學(xué)習(xí)與現(xiàn)代信息技術(shù)學(xué)習(xí)的統(tǒng)一、書本知識與資源拓展的統(tǒng)一、課堂學(xué)習(xí)與課外實踐的統(tǒng)一。本節(jié)課學(xué)生精神飽滿、興趣濃厚、合作積極,與教師保持良好的互動,還不時產(chǎn)生一些爭執(zhí),給我提出了一些新的問題,折射出我不足的方面,促進(jìn)了我的進(jìn)步與提高,師生間的教與學(xué)就像一面鏡子,互相折射,共同進(jìn)步。

  通過本節(jié)課的學(xué)習(xí),學(xué)生不僅掌握了動點軌跡的求法,而且通過作圖掌握了《幾何畫板》這個軟件,通過方程的推導(dǎo),更加熟悉了動點軌跡的求法,而且通過作圖掌握了幾何的基本思想“以數(shù)論形,數(shù)形結(jié)合”,提高了運用數(shù)形結(jié)合、等價轉(zhuǎn)化等數(shù)學(xué)思想方法解決問題的能力,通過思路的探索和軌跡方程的推導(dǎo),學(xué)生的思維品質(zhì)得以優(yōu)化,學(xué)會辯證地看待問題,享受了數(shù)學(xué)的美。

高一數(shù)學(xué)說課稿12

  一、說教材

  1、教材的地位和作用

  《集合的概念》是人教版第一章的內(nèi)容(中職數(shù)學(xué))。本節(jié)課的主要內(nèi)容:集合以及集合有關(guān)的概念,元素與集合間的關(guān)系。初中數(shù)學(xué)課本中已現(xiàn)了一些數(shù)和點的集合,如:自然數(shù)的集合、有理數(shù)的集合、不等式解的集合等,但學(xué)生并不清楚“集合”在數(shù)學(xué)中的含義,集合是一個基礎(chǔ)性的概念,也是也是中職數(shù)學(xué)的開篇,是我們后續(xù)學(xué)習(xí)的重要工具,如:用集合的語言表示函數(shù)的定義域、值域、方程與不等式的解集,曲線上點的集合等。通過本章節(jié)的學(xué)習(xí),能讓學(xué)生領(lǐng)會到數(shù)學(xué)語言的簡潔和準(zhǔn)確性,幫助學(xué)生學(xué)會用集合的語言描述客觀,發(fā)展學(xué)生運用數(shù)學(xué)語言交流的能力。

  2、 教學(xué)目標(biāo)

 。1)知識目標(biāo):

  a、通過實例了解集合的含義,理解集合以及有關(guān)概念;

  b、初步體會元素與集合的“屬于”關(guān)系,掌握元素與集合關(guān)系的表示方法。

 。2)能力目標(biāo):

  a、讓學(xué)生感知數(shù)學(xué)知識與實際生活得密切聯(lián)系,培養(yǎng)學(xué)生解決實際的能力;

  b、學(xué)會借助實例分析,探究數(shù)學(xué)問題,發(fā)展學(xué)生的觀察歸納能力。

  (3)情感目標(biāo):

  a、通過聯(lián)系生活,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性,形成積極的學(xué)習(xí)態(tài)度;

  b、通過主動探究,合作交流,感受探索的樂趣和成功的體驗,體會數(shù)學(xué)的理性和嚴(yán)謹(jǐn)。

  3、重點和難點

  重點:集合的概念,元素與集合的關(guān)系。

  難點:準(zhǔn)確理解集合的概念。

  二、學(xué)情分析(說學(xué)情)

  對于中職生來說,學(xué)生的數(shù)學(xué)基礎(chǔ)相對薄弱,他們還沒具備一定的觀察、分析理解、解決實際問題的能力,在運算能力、思維能力等方面參差不齊,學(xué)生學(xué)好數(shù)學(xué)的自信心不強,學(xué)習(xí)積極性不高,有厭學(xué)情緒。

  三、說教法

  針對學(xué)生的實際情況,采用探究式教學(xué)法進(jìn)行教學(xué)。首先從學(xué)生較熟悉的實例出發(fā),提高學(xué)生的注意力和激發(fā)學(xué)生的學(xué)習(xí)興趣。在創(chuàng)設(shè)情境認(rèn)知策略上給予適當(dāng)?shù)狞c撥和引導(dǎo),引導(dǎo)學(xué)生主動思、交流、討論,提出問題。在此基礎(chǔ)上教師層層深入,啟發(fā)學(xué)生積極思維,逐步提升學(xué)生的數(shù)學(xué)學(xué)習(xí)能力。集合概念的形成遵循由感性到理性,由具體到抽象,便于學(xué)生的理解和掌握。

  四、學(xué)習(xí)指導(dǎo)(說學(xué)法)

  教學(xué)的矛盾主要方面是學(xué)生的學(xué),學(xué)是中心,會學(xué)是目的,因此在教學(xué)中要不斷指導(dǎo)學(xué)生學(xué)會學(xué)習(xí)。根據(jù)數(shù)學(xué)的特點這節(jié)課主要是教學(xué)生動腦思考、多訓(xùn)練、勤鉆研的研討,這樣做增加了學(xué)生主動參與的機會,增強了參與的意識,教學(xué)生獲取知識的途徑,思考問題的方法,使學(xué)生成為教學(xué)的主體,進(jìn)而才能達(dá)到預(yù)期的教學(xué)目的和效果。

  五、教學(xué)過程

  1、引入新課:

  a、創(chuàng)設(shè)情境,揭示本課主題,同時對集合的整體性有個初步的感性認(rèn)識。

  b、介紹集合論的創(chuàng)始者康托爾

  2、究竟什么是集合?(實例探究)切合學(xué)生現(xiàn)有的認(rèn)知水平, 以學(xué)生熟悉的事物(物體),以實際生活為背景進(jìn)行探究, 為本課教學(xué)創(chuàng)造出一種自然和諧的氛圍,充分調(diào)動學(xué)生的學(xué)習(xí)熱情接待探究過程學(xué)生積極思考、交流、作答,教師針對學(xué)生的回答啟發(fā),引導(dǎo)學(xué)生尋找實例中的共同特征,培養(yǎng)學(xué)生觀察,總結(jié)能力范圍由具體到抽象,由感性到理性,為下面水到渠成的介紹集合概念做好鋪墊。

  3、集合的概念,本課的重點。結(jié)合探究中的實例,讓學(xué)生說出集合和元素各是什么?知識的呈現(xiàn)由抽象到具體進(jìn)一步熟悉元素與集合的概念,讓學(xué)生分清實際問題中的集合和元素為后面學(xué)習(xí)兩者間的關(guān)系做好鋪墊。

  教師在這一環(huán)節(jié)做好學(xué)習(xí)指導(dǎo),確定的.對象組成的整體叫集合,如果對象不確定,就不能確定為集合(舉例)加深對概念的理解。

  4、 熟悉鞏固集合的概念通過例題,練習(xí)、幫助學(xué)生進(jìn)一步熟悉和理解集合的概念。

  5、集合的符號記法,為本節(jié)重點做好鋪墊。

  6、從實例入行手,探索元素和集合的關(guān)系,學(xué)生能用文字語言描述,如何用數(shù)學(xué)語言描述,給出元素與集合關(guān)系符號表示,在這個環(huán)節(jié)教師適當(dāng)引導(dǎo)學(xué)生積極主動參與到知識逐步形成過程,便于學(xué)生理解和掌握,落實本課的重點,學(xué)習(xí)指導(dǎo):⑴集合元素的確定。⑵理解兩符號的含義。

  7、 思考交流本課的重要環(huán)節(jié)在課堂上給學(xué)生提供充分的活動時間和空間。通過自由舉例,能深化概念。同時還能提升學(xué)生的分析能力表達(dá)自己見解的能力。

  8、 從所舉的例子中抽象出數(shù)集的概念,并給出常見數(shù)集的記法。

  9、 學(xué)生練習(xí):通過練習(xí),識記常見數(shù)集的記法,同時進(jìn)一步鞏固元素與集合間的關(guān)系。

  10、知識的實際應(yīng)用:

  問題不難,落實課本能力目標(biāo),培養(yǎng)學(xué)生運用數(shù)學(xué)的意識和能力初步培養(yǎng)學(xué)生應(yīng)用集合的眼光觀看世界。

  11、課堂小節(jié)

  以學(xué)生小節(jié)為主教師幫助為輔,鞏固所學(xué)知識,幫助學(xué)生認(rèn)識到要學(xué)會梳理所學(xué)內(nèi)容,要學(xué)會總結(jié)反思,使學(xué)生的認(rèn)識進(jìn)一步升華,培養(yǎng)學(xué)生的鬼納總結(jié)能力。

  六、評價

  教學(xué)評價的及時能有效調(diào)動課堂氣氛,感染學(xué)生的情緒,對課堂教學(xué)發(fā)揮著積極作用,教學(xué)過程尊重學(xué)生之間的差異培養(yǎng)學(xué)生應(yīng)用集合的眼光看研究對象,注重過程評價與多元評價將教學(xué)評價貫穿于本堂課的每個教學(xué)環(huán)節(jié)。

  七、教學(xué)反思

  1、 通過現(xiàn)實生活中的實例,從特殊到一般,在具體感知基礎(chǔ)上得出集合的描述概念,便于學(xué)生理解接受。

  2、 啟發(fā)探究教學(xué),營造學(xué)生的學(xué)習(xí)氛圍,培養(yǎng)學(xué)生自主學(xué)習(xí),合作交流的能力。

高一數(shù)學(xué)說課稿13

  說課的內(nèi)容是《對數(shù)函數(shù)》,現(xiàn)就教材、教法、學(xué)法、教學(xué)程序、板書五個方面進(jìn)行說明。懇請在座的各位專家、老師批評指正。

  一、說教材

  1、教材的地位、作用及編寫意圖

  《對數(shù)函數(shù)》出現(xiàn)在職業(yè)高中數(shù)學(xué)第一冊第四章第八節(jié)。函數(shù)是高中數(shù)學(xué)的核心,對數(shù)函數(shù)是函數(shù)的重要分支,對數(shù)函數(shù)的知識在數(shù)學(xué)和其 他許多學(xué)科中有著廣泛的應(yīng)用;學(xué)生已經(jīng)學(xué)習(xí)了對數(shù)、反函數(shù)以及指數(shù)函數(shù)等內(nèi)容,這為過渡到本節(jié)的學(xué)習(xí)起著鋪墊作用;“對數(shù)函數(shù)”這節(jié)教材,指出對數(shù)函數(shù)和指數(shù)函數(shù)互為反函數(shù),反映了兩個變量的相互關(guān)系,蘊含了函數(shù)與方程的數(shù)學(xué)思想與數(shù)學(xué)方法,是以后數(shù)學(xué)學(xué)習(xí)中不可缺少的部分,也是高考的必考內(nèi)容。

  2、教學(xué)目標(biāo)的確定及依據(jù)。

  依據(jù)教學(xué)大綱和學(xué)生獲得知識、培養(yǎng)能力及思想教育等方面的要求:我制定了如下教育教學(xué)目標(biāo):

  (1) 知識目標(biāo):理解對數(shù)函數(shù)的概念、掌握對數(shù)函數(shù)的圖象和性質(zhì)。

  (2) 能力目標(biāo):培養(yǎng)學(xué)生自主學(xué)習(xí)、綜合歸納、數(shù)形結(jié)合的能力。

  (3) 德育目標(biāo):培養(yǎng)學(xué)生對待知識的科學(xué)態(tài)度、勇于探索和創(chuàng)新的精神。

  (4) 情感目標(biāo):在民主、和諧的教學(xué)氣氛中,促進(jìn)師生的情感交流。

  3、教學(xué)重點、難點及關(guān)鍵

  重點:對數(shù)函數(shù)的概念、圖象和性質(zhì);

  難點:利用指數(shù)函數(shù)的圖象和性質(zhì)得到對數(shù)函數(shù)的圖象和性質(zhì);

  關(guān)鍵:抓住對數(shù)函數(shù)是指數(shù)函數(shù)的反函數(shù)這一要領(lǐng)。

  二、說教法

  教學(xué)過程是教師和學(xué)生共同參與的過程,啟發(fā)學(xué)生自主性學(xué)習(xí),充分調(diào)動學(xué)生的積極性、主動性;有效地滲透數(shù)學(xué)思想方法,提高學(xué)生素質(zhì)。根據(jù)這樣的原則和所要完成的教學(xué)目標(biāo),并為激發(fā)學(xué)生的學(xué)習(xí)興趣,我采用如下的教學(xué)方法:

  (1)啟發(fā)引導(dǎo)學(xué)生思考、分析、實驗、探索、歸納。

  (2)采用“從特殊到一般”、“從具體到抽象”的方法。

  (3)體現(xiàn)“對比聯(lián)系”、“數(shù)形結(jié)合”及“分類討論”的思想方法。

  (4)多媒體演示法。

  三、說學(xué)法

  教給學(xué)生方法比教給學(xué)生知識更重要,本節(jié)課注重調(diào)動學(xué)生積極思考、主動探索,盡可能地增加學(xué)生參與教學(xué)活動的時間和空間,我進(jìn)行了以下學(xué)法指導(dǎo):

  (1)對照比較學(xué)習(xí)法:學(xué)習(xí)對數(shù)函數(shù),處處與指數(shù)函數(shù)相對照。

  (2)探究式學(xué)習(xí)法:學(xué)生通過分析、探索、得出對數(shù)函數(shù)的定義。

  (3)自主性學(xué)習(xí)法:通過實驗畫出函數(shù)圖象、觀察圖象自得其性質(zhì)。

  (4)反饋練習(xí)法:檢驗知識的應(yīng)用情況,找出未掌握的內(nèi)容及其差距。

  這樣可發(fā)揮學(xué)生的主觀能動性,有利于提高學(xué)生的各種能力。

  四、說教學(xué)程序

  1、復(fù)習(xí)導(dǎo)入

 。1)復(fù)習(xí)提問:什么是對數(shù)?如何求反函數(shù)?指數(shù)函數(shù)的圖象和性質(zhì)如何?學(xué)生回答,并利用課件展示一下指數(shù)函數(shù)的圖象和性質(zhì)。

  設(shè)計意圖:設(shè)計的提問既與本節(jié)內(nèi)容有密切關(guān)系,又有利于引入新課,為學(xué)生理解新知清除了障礙,有意識地培養(yǎng)學(xué)生分析問題的能力。

 。2)導(dǎo)言:指數(shù)函數(shù)有沒有反函數(shù)?如果有,如何求指數(shù)函數(shù)的反函數(shù)?它的反函數(shù)是什么?

  設(shè)計意圖:這樣的導(dǎo)言可激發(fā)學(xué)生求知欲,使學(xué)生渴望知道問題的答案。

  2、認(rèn)定目標(biāo)(出示教學(xué)目標(biāo))

  3、導(dǎo)學(xué)達(dá)標(biāo)

  按"教師為主導(dǎo),學(xué)生為主體,訓(xùn)練為主線”的原則,安排師生互動活動.

  (1)對數(shù)函數(shù)的概念

  引導(dǎo)學(xué)生從對數(shù)式與指數(shù)式的關(guān)系及反函數(shù)的概念進(jìn)行分析并推導(dǎo)出,指數(shù)函數(shù)有反函數(shù),并且y=ax(a>0且a≠1)的反函數(shù)是 y=logax,見課件。 把函數(shù)y=logax叫做對數(shù)函數(shù),其中a>0且a≠1。從而引出對數(shù)函數(shù)的概念,展示課件。

  設(shè)計意圖:對數(shù)函數(shù)的概念比較抽象,利用已經(jīng)學(xué)過的知識逐步分析,這樣引出對數(shù)函數(shù)的概念過渡自然,學(xué)生易于接受。

  因為對數(shù)函數(shù)是指數(shù)函數(shù)的反函數(shù),讓學(xué)生比較它們的定義域、值域、對應(yīng)法則及圖象間的關(guān)系,培養(yǎng)學(xué)生參與意識,通過比較充分體現(xiàn)指數(shù)函數(shù)及對數(shù)函數(shù)的內(nèi)在聯(lián)系。

 。2)對數(shù)函數(shù)的圖象

  提問:同指數(shù)函數(shù)一樣,在學(xué)習(xí)了函數(shù)的定義之后,我們要畫函數(shù)的圖象,應(yīng)如何畫對數(shù)函數(shù)的圖象呢?讓學(xué)生思考并回答,用描點法畫圖。教師肯定,我們每學(xué)習(xí)一種新的函數(shù)都可以根據(jù)函數(shù)的解析式,列表、描點畫圖。再考慮一下,我們還可以用什么方法畫出對數(shù)函數(shù)的圖象呢?

  讓學(xué)生回答,畫出指數(shù)函數(shù)關(guān)于直線y=x對稱的圖象,就是對數(shù)函數(shù)的圖象。

  教師總結(jié):我們畫對數(shù)函數(shù)的圖象,既可用描點法,也可用圖象變換法,下邊我們利用兩種方法畫對數(shù)函數(shù)的圖象。

  方法一(描點法)首先列出x,y(y=log2x,y=log x)值的對應(yīng)表,因為對數(shù)函數(shù)的定義域為x>0,因此可取x= , , ,1,2,4,8,請計算對應(yīng)的y值,然后在坐標(biāo)系內(nèi)描點、畫出它們的圖象.

  方法二(圖象變換法)因為對數(shù)函數(shù)和指數(shù)函數(shù)互為反函數(shù), 圖象關(guān)于直線y=x對稱,所以只要畫出y=ax的圖象關(guān)于直線y=x對稱的曲線,就可以得到y(tǒng)=logax.的圖象。學(xué)生動手做實驗,先描出y=2x的圖象,畫出它關(guān)于直線y=x對稱的曲線,它就是y=log2x的圖象;類似的從y=( )x 的圖象畫出y=log x的圖象,再出示課件,教師加以解釋。

  設(shè)計意圖:用這種對稱變換的方法畫函數(shù)的圖象,可以加深和鞏固學(xué)生對互為反函數(shù)的兩個函數(shù)之間的認(rèn)識,便于將對數(shù)函數(shù)的圖象和性質(zhì)與指數(shù)函數(shù)的圖象和性質(zhì)對照,但使用描點法畫函數(shù)圖象更為方便,兩種方法可同時進(jìn)行,分析畫法之后,可讓學(xué)生自由選擇畫法。

  這樣可以充分調(diào)動學(xué)生自主學(xué)習(xí)的積極性。

 。3)對數(shù)函數(shù)的.性質(zhì)

  在理解對數(shù)函數(shù)定義的基礎(chǔ)上,掌握對數(shù)函數(shù)的圖象和性質(zhì)是本節(jié)的重點,關(guān)鍵在于抓住對數(shù)函數(shù)是指數(shù)函數(shù)的反函數(shù)這一要領(lǐng),講對數(shù)函數(shù)的性質(zhì),可先在同一坐標(biāo)系內(nèi)畫出上述兩個對數(shù)函數(shù)的圖象,根據(jù)圖象讓學(xué)生列表分析它們的圖象特征和性質(zhì),然后出示課件,教師補充。

  作了以上分析之后,再分a>1與0<a<1兩種情況列出對數(shù)函數(shù)圖象和性質(zhì)表,體現(xiàn)了從“特殊到一般”、“從具體到抽象”的方法。出示課件并進(jìn)行詳細(xì)講解,把對數(shù)函數(shù)圖象和性質(zhì)列成一個表以便讓學(xué)生對比著記憶。

  設(shè)計意圖:這種講法既嚴(yán)謹(jǐn)又直觀易懂,還能讓學(xué)生主動參與教學(xué)過程,對培養(yǎng)學(xué)生的創(chuàng)新能力有幫助,學(xué)生易于接受易于掌握,而且利用表格,可以突破難點。

  由于對數(shù)函數(shù)和指數(shù)函數(shù)互為反函數(shù),它們的定義域與值域正好互換,為了揭示這兩種函數(shù)之間的內(nèi)在聯(lián)系,列出指數(shù)函數(shù)與對數(shù)函數(shù)對照表(見課件)

  設(shè)計意圖:通過比較對照的方法,學(xué)生更好地掌握兩個函數(shù)的定義、圖象和性質(zhì),認(rèn)識兩個函數(shù)的內(nèi)在聯(lián)系,提高學(xué)生對函數(shù)思想方法的認(rèn)識和應(yīng)用意識。

  4、鞏固達(dá)標(biāo)(見課件)

  這一訓(xùn)練是為了培養(yǎng)學(xué)生利用所學(xué)知識解決實際問題的能力,通過這個環(huán)節(jié)學(xué)生可以加深對本節(jié)知識的理解和運用,并從講解過程中找出所涉及的知識點,予以總結(jié)。充分體現(xiàn)“數(shù)形結(jié)合”和“分類討論”的思想。

  5、反饋練習(xí)(見課件)

  習(xí)題是對學(xué)生所學(xué)知識的反饋過程,教師可以了解學(xué)生對知識掌握的情況。

  6、歸納總結(jié)(見課件)

  引導(dǎo)學(xué)生對主要知識進(jìn)行回顧,使學(xué)生對本節(jié)有一個整體的把握,因此,從三方面進(jìn)行總結(jié):對數(shù)函數(shù)的概念、對數(shù)函數(shù)的圖象和性質(zhì)、比較對數(shù)值大小的方法。

  7、課外作業(yè) :(1)完成P178 A組1、2、3題

 。2)當(dāng)?shù)讛?shù)a>1與0<a<1時,底數(shù)不同,對數(shù)函數(shù)圖象有什么持點?

  五、說板書

  板書設(shè)計為表格式(見課件),這樣的板書簡明清楚,重點突出,加深學(xué)生對圖象和性質(zhì)的理解和掌握,便于記憶,有利于提高教學(xué)效果。

高一數(shù)學(xué)說課稿14

  一.教材分析:

  集合概念及其基本理論,稱為集合論,是近、現(xiàn)代數(shù)學(xué)的一個重要的基礎(chǔ),一方面,許多重要的數(shù)學(xué)分支,都建立在集合理論的基礎(chǔ)上。另一方面,集合論及其所反映的數(shù)學(xué)思想,在越來越廣泛的領(lǐng)域種得到應(yīng)用。

  二.目標(biāo)分析:

  教學(xué)重點.難點

  重點:集合的含義與表示方法.難點:表示法的恰當(dāng)選擇.

  教學(xué)目標(biāo)

  l.知識與技能

  (1)通過實例,了解集合的含義,體會元素與集合的屬于關(guān)系;

  (2)知道常用數(shù)集及其專用記號;

  (3)了解集合中元素的確定性.互異性.無序性;

  (4)會用集合語言表示有關(guān)數(shù)學(xué)對象;

  2.過程與方法

  (1)讓學(xué)生經(jīng)歷從集合實例中抽象概括出集合共同特征的過程,感知集合的含義.

  (2)讓學(xué)生歸納整理本節(jié)所學(xué)知識.

  3.情感.態(tài)度與價值觀

  使學(xué)生感受到學(xué)習(xí)集合的必要性,增強學(xué)習(xí)的積極性.

  三.教法分析

  1.教學(xué)方法:學(xué)生通過閱讀教材,自主學(xué)習(xí).思考.交流.討論和概括,從而更好地完成本節(jié)課的教學(xué)目標(biāo).

  2.教學(xué)手段:在教學(xué)中使用投影儀來輔助教學(xué).

  四.過程分析

  (一)創(chuàng)設(shè)情景,揭示課題

  1.教師首先提出問題:

  (1)介紹自己的家庭、原來就讀的學(xué)校、現(xiàn)在的班級。

  (2)問題:像“家庭”、“學(xué)校”、“班級”等,有什么共同特征?

  引導(dǎo)學(xué)生互相交流.與此同時,教師對學(xué)生的活動給予評價.

  2.活動:

  (1)列舉生活中的集合的例子;

  (2)分析、概括各實例的.共同特征

  由此引出這節(jié)要學(xué)的內(nèi)容。

  設(shè)計意圖:既激發(fā)了學(xué)生濃厚的學(xué)習(xí)興趣,又為新知作好鋪墊

 。ǘ┭刑叫轮,建構(gòu)概念

  1.教師利用多媒體設(shè)備向?qū)W生投影出下面7個實例:

  (1)1—20以內(nèi)的所有質(zhì)數(shù);

  (2)我國古代的四大發(fā)明;

  (3)所有的安理會常任理事國;

  (4)所有的正方形;

  (5)海南省在20xx年9月之前建成的所有立交橋;

  (6)到一個角的兩邊距離相等的所有的點;

  (7)國興中學(xué)20xx年9月入學(xué)的高一學(xué)生的全體.

  2.教師組織學(xué)生分組討論:這7個實例的共同特征是什么?

  3.每個小組選出——位同學(xué)發(fā)表本組的討論結(jié)果,在此基礎(chǔ)上,師生共同概括出7個實例的特征,并給出集合的含義.一般地,指定的某些對象的全體稱為集合(簡稱為集).集合中的每個對象叫作這個集合的元素.

  4.教師指出:集合常用大寫字母A,B,C,D,?表示,元素常用小寫字母a,b,c,d?表示.

  設(shè)計意圖:通過實例讓學(xué)生感受集合的概念,激發(fā)學(xué)習(xí)的興趣,培養(yǎng)學(xué)生樂于求索的精神

  (三)質(zhì)疑答辯,發(fā)展思維

  1.教師引導(dǎo)學(xué)生閱讀教材中的相關(guān)內(nèi)容,思考:集合中元素有什么特點?并注意個別輔導(dǎo),解答學(xué)生疑難.使學(xué)生明確集合元素的三大特性,即:確定性.互異性和無序性.只要構(gòu)成兩個集合的元素是一樣的,我們就稱這兩個集合相等.

  2.教師組織引導(dǎo)學(xué)生思考以下問題:

  判斷以下元素的全體是否組成集合,并說明理由:

  (1)大于3小于11的偶數(shù);

  (2)我國的小河流.讓學(xué)生充分發(fā)表自己的建解.

  3.讓學(xué)生自己舉出一些能夠構(gòu)成集合的例子以及不能構(gòu)成集合的例子,并說明理由.教師對學(xué)生的學(xué)習(xí)活動給予及時的評價.

  4.教師提出問題,讓學(xué)生思考

  b是(1)如果用A表示高—(3)班全體學(xué)生組成的集合,用a表示高一(3)班的一位同學(xué),

  高一(4)班的一位同學(xué),那么a,b與集合A分別有什么關(guān)系?由此引導(dǎo)學(xué)生得出元素與集合的關(guān)系有兩種:屬于和不屬于.

  如果a是集合A的元素,就說a屬于集合A,記作a?

  如果a不是集合A的元素,就說a不屬于集合A,記作a?

  (2)如果用A表示“所有的安理會常任理事國”組成的集合,則中國.日本與集合A的關(guān)系分別是什么?請用數(shù)學(xué)符號分別表示.

  (3)讓學(xué)生完成教材第6頁練習(xí)第1題.

  5.教師引導(dǎo)學(xué)生回憶數(shù)集擴充過程,然后閱讀教材中的相交內(nèi)容,寫出常用數(shù)集的記號.并讓學(xué)生完成習(xí)題1.1A組第1題.

  6.教師引導(dǎo)學(xué)生閱讀教材中的相關(guān)內(nèi)容,并思考.討論下列問題:

  (1)要表示一個集合共有幾種方式?

  (2)試比較自然語言.列舉法和描述法在表示集合時,各自的特點?適用的對象是什么?

  (3)如何根據(jù)問題選擇適當(dāng)?shù)募媳硎痉?

  使學(xué)生弄清楚三種表示方式的優(yōu)缺點和體會它們存在的必要性和適用對象。

  設(shè)計意圖:明確集合元素的三大特性,使學(xué)生弄清楚三種表示方式的優(yōu)缺點,從而突破難點。

  (四)鞏固深化,反饋矯正

  教師投影學(xué)習(xí):

  (1)用自然語言描述集合{1,3,5,7,9};

  (2)用例舉法表示集合A?{x?N|1?x?8}

  (3)試選擇適當(dāng)?shù)姆椒ū硎鞠铝屑希航滩牡?頁練習(xí)第2題.

  設(shè)計意圖:使學(xué)生及時鞏固所學(xué)新知,體會三種表示方式存在的必要性和適用對象

  (五)歸納小結(jié),布置作業(yè)

  小結(jié):在師生互動中,讓學(xué)生了解或體會下例問題:

  1.本節(jié)課我們學(xué)習(xí)了哪些知識內(nèi)容?

  2.你認(rèn)為學(xué)習(xí)集合有什么意義?

  3.選擇集合的表示法時應(yīng)注意些什么?

  設(shè)計意圖:通過回顧,對概念的發(fā)生與發(fā)展過程有清晰的認(rèn)識,回顧集合元素的三大特性及集合的三種表示方式。

  作業(yè):

  1.課后書面作業(yè):第13頁習(xí)題1.1A組第4題.

  2.元素與集合的關(guān)系有多少種?如何表示?類似地集合與集合間的關(guān)系又有多少種

  呢?如何表示?請同學(xué)們通過預(yù)習(xí)教材.

  五.板書分析

高一數(shù)學(xué)說課稿15

  各位評委大家好,我要說課的內(nèi)容是人教版必修一1.1節(jié)《集合的含義與表示》,本次說課包括五部分:說教材、說教法、說學(xué)法、說教學(xué)程序和說板書。

  說教材

  1、教材分析:

  集合是現(xiàn)代數(shù)學(xué)的基本語言,可以簡潔、準(zhǔn)確地表達(dá)數(shù)學(xué)內(nèi)容。 本節(jié)是讓學(xué)生學(xué)會用集合的語言來描述對象,章末我們會用集合和對應(yīng)的語言來描述函數(shù)的概念,可見它是今后數(shù)學(xué)學(xué)習(xí)的基礎(chǔ),也是培養(yǎng)學(xué)生抽象概括能力的重要素材。

  2、教材目標(biāo):

  根據(jù)素質(zhì)教育的要求和新課改的精神,我確定教學(xué)目標(biāo)如下:

 、僦R與技能:(1)了解集合的含義與集合中元素的特征

  (2) 熟記常用數(shù)集符號

  (3) 能用列舉、描述法表示具體集合

 、谶^程與方法: 讓學(xué)生經(jīng)歷從集合實例中抽象概括出集合共同特征的過程,感知集合的含義. 讓學(xué)生通過觀察、歸納、總結(jié)的過程,提高抽象概括能力。

 、 情感態(tài)度與價值觀:使學(xué)生感受到學(xué)習(xí)集合的必要性,增強學(xué)習(xí)的積極性.

  3、教學(xué)重點、難點

  教學(xué)重點: 集合的基本概念與表示方法;

  教學(xué)難點: 運用集合的兩種常用表示方法——列舉法與描述法,正確表示一些簡單的集合; 說教法

  1.學(xué)情分析

  《集合的含義及表示》這一課時是學(xué)生進(jìn)入高中階段學(xué)習(xí)、接觸到高中數(shù)學(xué)的第一堂課,它直接影響到了學(xué)生對高中階段數(shù)學(xué)學(xué)習(xí)的認(rèn)識;如果我們教學(xué)上過于草率,學(xué)生很容易對數(shù)學(xué)失去學(xué)習(xí)興趣。再者,這是高中數(shù)學(xué)課程的第一章的第一課時,是整個高中數(shù)學(xué)的奠基部分,所以我們不僅要正確地傳授知識,更要把握好教學(xué)的難度。如果傳授得過于簡單,那么學(xué)生容易麻痹大意,對今后的學(xué)習(xí)埋下隱患;如果講得太深,那么學(xué)生會有畏難心理,也會對今后的學(xué)習(xí)造成影響。

  2. 方法選擇

  在教學(xué)中注意啟發(fā)引導(dǎo),通過預(yù)習(xí)學(xué)案的形式把知識問題化,通過實例引導(dǎo)學(xué)生觀察歸納,上課組織學(xué)生分組討論,讓他們經(jīng)歷觀察、猜測、推理、交流、反思的理性思維的基本過程,切實改變學(xué)生的學(xué)習(xí)方法。

  說學(xué)法

  讓學(xué)生通過課前結(jié)合學(xué)案,閱讀教材,自主預(yù)習(xí),課上交流、討論、概括,課后復(fù)習(xí)鞏固三個環(huán)節(jié),更好地完成本節(jié)課的教學(xué)目標(biāo)。值得提出的是:集合作為一種數(shù)學(xué)語言,最好的學(xué)習(xí)方法是使用,所以應(yīng)該多做轉(zhuǎn)換練習(xí),

  說教學(xué)程序

 。ㄒ唬 創(chuàng)設(shè)情境,揭示課題

  軍訓(xùn)前學(xué)校通知:*月*日*點,高一年段在體育館集合進(jìn)行軍訓(xùn)動員;試問這個通知的對象是全體的高一學(xué)生還是個別學(xué)生?

  在這里,集合是我們常用的一個詞語,我們感興趣的是問題中某些特定(是高一而不是高二、高三)對象的總體,而不是個別的對象,為此,我們將學(xué)習(xí)一個新的概念——集合(宣布課題),即是一些研究對象的總體。

  通過學(xué)生熟悉的實際生活問題引入課題,為概念學(xué)習(xí)創(chuàng)設(shè)情境,拉近數(shù)學(xué)與現(xiàn)實的距離,激發(fā)了學(xué)生求知欲,調(diào)動了學(xué)生主動參與的積極性。讓學(xué)生在課堂的一開始就感受到數(shù)學(xué)就在我們身邊,讓學(xué)生學(xué)會用數(shù)學(xué)的眼光去關(guān)注生活。

 。ǘ┭刑叫轮,建構(gòu)概念

  讓學(xué)生閱讀課本P2內(nèi)容,讓小組思考討論,代表發(fā)言,師生共同補充答案它們的共同特征:它們都是指定的一組對象。這時我借此引入集合的概念,把一些元素組成的總體叫做集合,簡稱集,通常用大寫字母A,B,C,?表示。 把研究的對象稱為元素,通常用小寫拉丁字母a,b,c,?表示;

  接下來,我引導(dǎo)學(xué)生把集合的涵義進(jìn)行拓展,期間結(jié)合一些師生互動:我們班上的女生能不能構(gòu)成一個集合,班上身高在1.75米以上的男生能不能構(gòu)成一個集合,班上高的`男生能不能構(gòu)成一個集合??,通過身邊這些大量例子,讓學(xué)生了解集合的概念,并切實感受到學(xué)習(xí)集合語言的重要性。

  對于集合元素的特征:確定性、互異性、無序性。我則在學(xué)生了解集合概念基礎(chǔ)上,通過設(shè)置三個問題(1)班里個子高的同學(xué)能否構(gòu)成一個集合?(2)在一個給定的集合中能否有相同的元素?(3)班里的全體同學(xué)組成一個集合,調(diào)整座位后這個集合有沒有變化?調(diào)整后的集合和原來的集合是什么關(guān)系?讓學(xué)生思考:任意一組對象是否都能組成一個集合?集合中的元素有什么特征?

  這樣設(shè)計將知識問題化,問題生活化,激發(fā)學(xué)生學(xué)習(xí)的主動性,引導(dǎo)學(xué)生歸納出集合中元素的三大特性,用簡練的語言概括為——確定性、互異性、無序性用兩集合相等的概念。

  思考3:(1)設(shè)集合A表示“1~20以內(nèi)的所有質(zhì)數(shù)”,那么3,4,5,6這四個元素哪些在集合A中?哪些不在集合A中?

  (2)對于一個給定的集合A,那么某元素a與集合A有哪幾種可能關(guān)系?

  (3)如果元素a是集合A中的元素,我們?nèi)绾斡脭?shù)學(xué)化的語言表達(dá)?

  (4)如果元素a不是集合A中的元素,我們?nèi)绾斡脭?shù)學(xué)化的語言表達(dá)?用符號∈或?填空:

  [設(shè)計說明]這幾個問題比較簡單,直接提問同學(xué)回答,并師生一起完善答案。通過問題的層層深入,目的是引導(dǎo)學(xué)生歸納出元素與集合的關(guān)系及表示方法。

  反饋練習(xí):

 。1)設(shè)A為所有亞洲國家組成的集合,則

  中國____A, 美國____A,

  印度____A, 英國____A;

  對于集合中常用的符號,我做了這樣處理:簡要介紹后,讓學(xué)生用兩三分鐘的時間結(jié)合符號特點記憶。目的在于給學(xué)生一個信號:課堂上能消化的東西要及時記住。

  2.集合的表示法:列舉法和描述法

  讓學(xué)生自習(xí)閱讀課本P3——P4的內(nèi)容5-7分鐘,接著讓同學(xué)試著解決如下三個問題

 。1) 由大于10小于20的所有整數(shù)組成的集合;

 。2) 表示不等式x-7《3的解集;

 。3) 由1——20以內(nèi)的所有素數(shù)組成的集合;

  把集合的元素一一列舉出來,并用花括號“{}”括起來表示的方法叫做列舉法。 用集合所含元素的共同特征表示集合的方法稱為描述法。具體方法是:在花括號內(nèi)先寫上表示這個集合元素的一般符號及取值(或變化)范圍,再畫一條豎線,在豎線后寫出這個集合中元素所具有的共同特征。

  通過三個問題不僅檢驗了學(xué)生的自學(xué)效果,同時也讓學(xué)生明白列舉法和描述法兩種方法各自的優(yōu)缺點,更重要的是對集合的列舉法和描述法的規(guī)范表達(dá)做進(jìn)一步強調(diào), 最后,我?guī)ьI(lǐng)學(xué)生分析了課本P4的例題,對集合的列舉法和描述法的規(guī)范表達(dá)做進(jìn)一

  步的強調(diào),讓學(xué)生完成書上的習(xí)題,并請幾個學(xué)生上臺來演練,通過練習(xí)達(dá)到及時的反饋。

 。ㄋ模w納整理,整體認(rèn)識

  1.本節(jié)課我們學(xué)習(xí)了哪些知識內(nèi)容?

  2.你認(rèn)為學(xué)習(xí)集合有什么意義?

  3. 比較列舉法與描述法的優(yōu)缺點。

 。ㄎ澹┎贾米鳂I(yè)

  作業(yè):習(xí)題1.1A組: 2、3、4.

  作業(yè)的布置是要突出本節(jié)課的重點——集合概念的理解以及集合的表示法,讓學(xué)生對數(shù)學(xué)符號的適用在課外進(jìn)行延伸和鞏固。

  說板書

  在教學(xué)中我把黑板分為三部分,把知識要點寫在左側(cè),中間是課本例題演練,右側(cè)是實例應(yīng)用。在左側(cè)的知識要點主要列出了集合、元素的概念、元素的特性:確定性,互異性,無序性,和集合的表示法:列舉法和描述法。

  以上是我對《集合的含義與表示》這節(jié)教材的認(rèn)識和對教學(xué)過程的設(shè)計。對這節(jié)課的設(shè)計,我始終在努力貫徹一教師為主導(dǎo),以學(xué)生為主題,以問題為基礎(chǔ),以能力、方法為主線,有計劃培養(yǎng)學(xué)生的自學(xué)能力、觀察和實踐能力、思維能力為指導(dǎo)思想,利用各種教學(xué)手段激發(fā)學(xué)生的學(xué)習(xí)興趣,體現(xiàn)了對學(xué)生創(chuàng)新意識的培養(yǎng)。

【高一數(shù)學(xué)說課稿】相關(guān)文章:

高一數(shù)學(xué)下冊說課稿09-21

高一數(shù)學(xué)說課稿06-07

高中高一數(shù)學(xué)說課稿06-23

高一數(shù)學(xué)等差數(shù)列說課稿07-28

高一數(shù)學(xué)說課稿(集錦15篇)06-07

高一年級數(shù)學(xué)說課稿12-11

高一語文的說課稿12-08

高一說課稿范文09-15

高一年級上冊數(shù)學(xué)說課稿12-10