當(dāng)前位置:育文網(wǎng)>初中>初中數(shù)學(xué)> 初中數(shù)學(xué)知識點(diǎn)總結(jié)

初中數(shù)學(xué)知識點(diǎn)總結(jié)

時(shí)間:2024-02-28 16:30:50 初中數(shù)學(xué) 我要投稿

初中數(shù)學(xué)知識點(diǎn)總結(jié)15篇[優(yōu)秀]

  總結(jié)是在某一時(shí)期、某一項(xiàng)目或某些工作告一段落或者全部完成后進(jìn)行回顧檢查、分析評價(jià),從而得出教訓(xùn)和一些規(guī)律性認(rèn)識的一種書面材料,它是增長才干的一種好辦法,是時(shí)候?qū)懸环菘偨Y(jié)了?偨Y(jié)怎么寫才能發(fā)揮它的作用呢?以下是小編為大家整理的初中數(shù)學(xué)知識點(diǎn)總結(jié),僅供參考,希望能夠幫助到大家。

初中數(shù)學(xué)知識點(diǎn)總結(jié)15篇[優(yōu)秀]

初中數(shù)學(xué)知識點(diǎn)總結(jié)1

  初中數(shù)學(xué)總復(fù)習(xí),是對初中三年來所學(xué)數(shù)學(xué)知識的回顧,鞏固提高,查漏補(bǔ)缺,它不是對知識的簡單重復(fù),而是引導(dǎo)學(xué)生對所學(xué)知識進(jìn)行系統(tǒng)歸納和升華,并用已學(xué)的知識解決新問題。進(jìn)一步加深對數(shù)學(xué)概念的理解,弄清各部分知識的內(nèi)在聯(lián)系,熟練掌握重要的數(shù)學(xué)方法和數(shù)學(xué)思想,從而達(dá)到開發(fā)智力、培養(yǎng)能力的目的因此,初中數(shù)學(xué)總復(fù)習(xí)是非常重要的,復(fù)習(xí)的好壞將決定學(xué)生成績的好壞、決定學(xué)生掌握知識的牢固程度。一直以來,如何有效提高復(fù)習(xí)效率,是廣大教師多年來探求的重要課題之一。筆者從1999年以來,一直擔(dān)任初中數(shù)學(xué)的教學(xué)任務(wù),所教班級的數(shù)學(xué)中考考試成績一直名列前茅。下面筆者根據(jù)對初中數(shù)學(xué)總復(fù)習(xí)的.實(shí)踐,總結(jié)出的一套較為實(shí)用的復(fù)習(xí)方法。

  一、復(fù)習(xí)基礎(chǔ)知識階段

  在初中數(shù)學(xué)復(fù)習(xí)中,第一階段要緊扣課本,疏理教材,使學(xué)生在頭腦中形成一個(gè)關(guān)于初中數(shù)學(xué)知識的前后相連、縱橫交錯(cuò)、融會(huì)貫通的知識結(jié)構(gòu)。在第一階段中,一般按初中數(shù)學(xué)知識體系把初中數(shù)學(xué)知識分成九個(gè)單元,即:“數(shù)與式”“方程和不等式(組)”“函數(shù)及其圖像”“統(tǒng)計(jì)與概率”“圖形初步認(rèn)識和三角形”“四邊形”“相似和解直角三角形”“圓”“圖形的變換、投影與視圖”。按單元進(jìn)行復(fù)習(xí)。每個(gè)單元按下面步驟進(jìn)行。

  1、疏理知識結(jié)構(gòu)

  首先,引導(dǎo)學(xué)生把本單元的知識用文字、圖表等方式編織知識網(wǎng)絡(luò),用簡表式的結(jié)構(gòu)表示本單元的知識結(jié)構(gòu);其次,引導(dǎo)學(xué)生回顧基礎(chǔ)知識;最后,以基本習(xí)題的形式再現(xiàn)知識的內(nèi)容,即通過一些判斷題、填空題、選擇題、簡單計(jì)算題的訓(xùn)練達(dá)到鞏固基礎(chǔ)知識的目的

  2、訓(xùn)練基本技能和解題技巧

  在理順知識結(jié)構(gòu)的基礎(chǔ)上,把每個(gè)單元按知識點(diǎn)分成若干課時(shí),然后按知識點(diǎn)精選例題和練習(xí)題,引導(dǎo)學(xué)生進(jìn)行多方練習(xí),多角度思考,正反求解,促進(jìn)學(xué)生掌握基礎(chǔ)知識和解題技巧。

  精選的例題和練習(xí)題最好從課本上尋找,因?yàn)橹锌嫉拿}原則是:“源于教材,高于教材!彼x例題、練習(xí)題力求典型,緊扣教材。另外,也可從近幾年中考試題中改編新穎的題目進(jìn)行訓(xùn)練。

  每課時(shí)的教學(xué)可按“理順知識――嘗試做例題――講解例題――練習(xí)――變式練習(xí)――作業(yè)”幾個(gè)步驟進(jìn)行。在“理解知識”階段力求簡單明了地揭示本節(jié)課所要復(fù)習(xí)的知識點(diǎn),領(lǐng)會(huì)概念、定理、公理和數(shù)學(xué)思想方法。講解的例題或作業(yè)一般可選擇一部分題進(jìn)行“一題多變”“一題多解”的題目。在分析、講解例題時(shí)切不可就題論題,應(yīng)注意揭示例題中所反映出的概念、原理和思想方法及解題技巧。

  3、單元測試

  在上述復(fù)習(xí)的基礎(chǔ)上,復(fù)習(xí)完每一個(gè)單元后,必須出示至少4份試卷。第一份試卷,以引導(dǎo)學(xué)生系統(tǒng)地梳理教材、構(gòu)建知識結(jié)構(gòu),歸納和總結(jié)各種概念、公理、定理、公式為主。第二份試卷,以歸納、總結(jié)本單元的常用結(jié)論、解題方法、一題多解、一題多變?yōu)橹。對學(xué)生進(jìn)行測試,以了解學(xué)生掌握知識的情況,及時(shí)查漏補(bǔ)缺。

  測試題應(yīng)以教學(xué)大綱、考標(biāo)、教材為依據(jù),要求內(nèi)容覆蓋面廣,題目搭配合理、難易適中、題型俱全,富有啟發(fā)性。通過測試,全面衡量復(fù)習(xí)效果,一般來說,測試題可從以下幾個(gè)方面精選題目:(1)全面體現(xiàn)本單元的基礎(chǔ)知識的填空題和選擇題;(2)本單元所反映出的基本技能和技巧的解答題;(3)綜合運(yùn)用本單元知識的綜合題。

  上面三方面試題的比例為6∶3∶1測試完后,教師進(jìn)行講評,對學(xué)生未弄懂的知識點(diǎn)及時(shí)進(jìn)行補(bǔ)救。

  二、綜合訓(xùn)練,加強(qiáng)重點(diǎn)知識階段

  在完成第一階段的基礎(chǔ)上,根據(jù)初中數(shù)學(xué)知識的重點(diǎn),選擇一些較為典型的綜合題,引導(dǎo)學(xué)生合作探索和研究,以培養(yǎng)學(xué)生綜合運(yùn)用知識來分析問題和解決問題的能力。選擇的題目一般從本市及全省近5年的中考試題中去精選。

  綜合題,一般來說有代數(shù)綜合題、幾何綜合題、代數(shù)和幾何相結(jié)合的綜合題。代數(shù)綜合題的重點(diǎn)應(yīng)是二次方程和二次函數(shù);幾何綜合題的重點(diǎn)是三角形、四邊形和圖;代數(shù)與幾何相結(jié)合的綜合題則是方程、函數(shù)與圖像相結(jié)合的題。

  對于綜合題的訓(xùn)練,一般采用“嘗試練習(xí)――分析――講解――歸納解題方法與技巧――練習(xí)”的方式進(jìn)行。對重點(diǎn)問題進(jìn)行一題多解、一題多變的訓(xùn)練。

  三、綜合測試,查漏補(bǔ)缺階段

  為了進(jìn)一步鞏固數(shù)學(xué)知識,全面考查復(fù)習(xí)效果,提高學(xué)生的心理素質(zhì),在第二階段復(fù)習(xí)結(jié)束時(shí),可進(jìn)行模擬測試。測試題一般自擬幾套和選擇其他省市上屆中考題和本省往屆的中考題,模擬試題,力求全面再現(xiàn)初中數(shù)學(xué)知識和方法,既要有考查雙基的基礎(chǔ)題,又要有考查學(xué)生能力的綜合題。有的知識還要與高中知識銜接并拓展。

  考完一套,及時(shí)講評,與學(xué)生一起分析,共同探討,列出知識清單使得每個(gè)學(xué)生經(jīng)歷知識收集、整理的過程,把書學(xué)“薄”,有效地回顧了一章書所學(xué)的知識。

初中數(shù)學(xué)知識點(diǎn)總結(jié)2

  1、多項(xiàng)式

  有有限個(gè)單項(xiàng)式的代數(shù)和組成的式子,叫做多項(xiàng)式。

  多項(xiàng)式里每個(gè)單項(xiàng)式叫做多項(xiàng)式的項(xiàng),不含字母的項(xiàng),叫做常數(shù)項(xiàng)。

  單項(xiàng)式可以看作是多項(xiàng)式的特例

  把同類單項(xiàng)式的系數(shù)相加或相減,而單項(xiàng)式中的字母的乘方指數(shù)不變。

  在多項(xiàng)式中,所含的'不同未知數(shù)的個(gè)數(shù),稱做這個(gè)多項(xiàng)式的元數(shù)經(jīng)過合并同類項(xiàng)后,多項(xiàng)式所含單項(xiàng)式的個(gè)數(shù),稱為這個(gè)多項(xiàng)式的項(xiàng)數(shù)所含個(gè)單項(xiàng)式中次項(xiàng)的次數(shù),就稱為這個(gè)多項(xiàng)式的次數(shù)。

  2、多項(xiàng)式的值

  任何一個(gè)多項(xiàng)式,就是一個(gè)用加、減、乘、乘方運(yùn)算把已知數(shù)和未知數(shù)連接起來的式子。

  3、多項(xiàng)式的恒等

  對于兩個(gè)一元多項(xiàng)式fx、gx來說,當(dāng)未知數(shù)x同取任一個(gè)數(shù)值a時(shí),如果它們所得的值都是相等的,即fa=ga,那么,這兩個(gè)多項(xiàng)式就稱為是恒等的記為fx==gx,或簡記為fx=gx。

  性質(zhì)1如果fx==gx,那么,對于任一個(gè)數(shù)值a,都有fa=ga。

  性質(zhì)2如果fx==gx,那么,這兩個(gè)多項(xiàng)式的個(gè)同類項(xiàng)系數(shù)就一定對應(yīng)相等。

  4、一元多項(xiàng)式的根

  一般地,能夠使多項(xiàng)式fx的值等于0的未知數(shù)x的值,叫做多項(xiàng)式fx的根。

  多項(xiàng)式的加、減法,乘法

  1、多項(xiàng)式的加、減法

  2、多項(xiàng)式的乘法

  單項(xiàng)式相乘,用它們系數(shù)作為積的系數(shù),對于相同的字母因式,則連同它的指數(shù)作為積的一個(gè)因式。

  3、多項(xiàng)式的乘法

  多項(xiàng)式與多項(xiàng)式相乘,先用一個(gè)多項(xiàng)式等每一項(xiàng)乘以另一個(gè)多項(xiàng)式的各項(xiàng),再把所得的積相加。

  常用乘法公式

  公式I平方差公式

  a+ba—b=a^2—b^2

  兩個(gè)數(shù)的和與這兩個(gè)數(shù)的差的積等于這兩個(gè)數(shù)的平方差。

初中數(shù)學(xué)知識點(diǎn)總結(jié)3

  動(dòng)點(diǎn)與函數(shù)圖象問題常見的四種類型:

  1、三角形中的動(dòng)點(diǎn)問題:動(dòng)點(diǎn)沿三角形的邊運(yùn)動(dòng),根據(jù)問題中的常量與變量之間的關(guān)系,判斷函數(shù)圖象。

  2、四邊形中的動(dòng)點(diǎn)問題:動(dòng)點(diǎn)沿四邊形的邊運(yùn)動(dòng),根據(jù)問題中的常量與變量之間的關(guān)系,判斷函數(shù)圖象。

  3、圓中的動(dòng)點(diǎn)問題:動(dòng)點(diǎn)沿圓周運(yùn)動(dòng),根據(jù)問題中的常量與變量之間的關(guān)系,判斷函數(shù)圖象。

  4、直線、雙曲線、拋物線中的動(dòng)點(diǎn)問題:動(dòng)點(diǎn)沿直線、雙曲線、拋物線運(yùn)動(dòng),根據(jù)問題中的常量與變量之間的關(guān)系,判斷函數(shù)圖象。

  圖形運(yùn)動(dòng)與函數(shù)圖象問題常見的三種類型:

  1、線段與多邊形的運(yùn)動(dòng)圖形問題:把一條線段沿一定方向運(yùn)動(dòng)經(jīng)過三角形或四邊形,根據(jù)問題中的常量與變量之間的關(guān)系,進(jìn)行分段,判斷函數(shù)圖象。

  2、多邊形與多邊形的運(yùn)動(dòng)圖形問題:把一個(gè)三角形或四邊形沿一定方向運(yùn)動(dòng)經(jīng)過另一個(gè)多邊形,根據(jù)問題中的常量與變量之間的關(guān)系,進(jìn)行分段,判斷函數(shù)圖象。

  3、多邊形與圓的運(yùn)動(dòng)圖形問題:把一個(gè)圓沿一定方向運(yùn)動(dòng)經(jīng)過一個(gè)三角形或四邊形,或把一個(gè)三角形或四邊形沿一定方向運(yùn)動(dòng)經(jīng)過一個(gè)圓,根據(jù)問題中的常量與變量之間的關(guān)系,進(jìn)行分段,判斷函數(shù)圖象。

  動(dòng)點(diǎn)問題常見的四種類型:

  1、三角形中的動(dòng)點(diǎn)問題:動(dòng)點(diǎn)沿三角形的邊運(yùn)動(dòng),通過全等或相似,探究構(gòu)成的新圖形與原圖形的邊或角的關(guān)系。

  2、四邊形中的動(dòng)點(diǎn)問題:動(dòng)點(diǎn)沿四邊形的邊運(yùn)動(dòng),通過探究構(gòu)成的新圖形與原圖形的全等或相似,得出它們的邊或角的'關(guān)系。

  3、圓中的動(dòng)點(diǎn)問題:動(dòng)點(diǎn)沿圓周運(yùn)動(dòng),探究構(gòu)成的新圖形的邊角等關(guān)系。

  4、直線、雙曲線、拋物線中的動(dòng)點(diǎn)問題:動(dòng)點(diǎn)沿直線、雙曲線、拋物線運(yùn)動(dòng),探究是否存在動(dòng)點(diǎn)構(gòu)成的三角形是等腰三角形或與已知圖形相似等問題。

  總結(jié)反思:

  本題是二次函數(shù)的綜合題,考查了待定系數(shù)法求二次函數(shù)的解析式,一次函數(shù)的解析式,三角形全等的判定和性質(zhì),等腰直角三角形的性質(zhì),平行線的性質(zhì)等,數(shù)形結(jié)合思想的應(yīng)用是解題的關(guān)鍵。

  解答動(dòng)態(tài)性問題通常是對幾何圖形運(yùn)動(dòng)過程有一個(gè)完整、清晰的認(rèn)識,發(fā)掘“動(dòng)”與“靜”的內(nèi)在聯(lián)系,尋求變化規(guī)律,從變中求不變,從而達(dá)到解題目的。

  解答函數(shù)的圖象問題一般遵循的步驟:

  1、根據(jù)自變量的取值范圍對函數(shù)進(jìn)行分段。

  2、求出每段的解析式。

  3、由每段的解析式確定每段圖象的形狀。

  對于用圖象描述分段函數(shù)的實(shí)際問題,要抓住以下幾點(diǎn):

  1、自變量變化而函數(shù)值不變化的圖象用水平線段表示。

  2、自變量變化函數(shù)值也變化的增減變化情況。

  3、函數(shù)圖象的最低點(diǎn)和最高點(diǎn)。

初中數(shù)學(xué)知識點(diǎn)總結(jié)4

  一、圓

  1、圓的有關(guān)性質(zhì)

  在一個(gè)平面內(nèi),線段OA繞它固定的一個(gè)端點(diǎn)O旋轉(zhuǎn)一周,另一個(gè)端點(diǎn)A隨之旋轉(zhuǎn)所形成的圖形叫圓,固定的端點(diǎn)O叫圓心,線段OA叫半徑。

  由圓的意義可知:

  圓上各點(diǎn)到定點(diǎn)(圓心O)的距離等于定長的點(diǎn)都在圓上。

  就是說:圓是到定點(diǎn)的距離等于定長的點(diǎn)的集合,圓的內(nèi)部可以看作是到圓。心的距離小于半徑的點(diǎn)的集合。

  圓的外部可以看作是到圓心的距離大于半徑的點(diǎn)的集合。連結(jié)圓上任意兩點(diǎn)的線段叫做弦,經(jīng)過圓心的弦叫直徑。圓上任意兩點(diǎn)間的部分叫圓弧,簡稱弧。

  圓的任意一條直徑的兩個(gè)端點(diǎn)分圓成兩條弧,每一條弧都叫半圓,大于半圓的弧叫優(yōu);小于半圓的弧叫劣弧。由弦及其所對的弧組成的圓形叫弓形。

  圓心相同,半徑不相等的兩個(gè)圓叫同心圓。

  能夠重合的兩個(gè)圓叫等圓。

  同圓或等圓的半徑相等。

  在同圓或等圓中,能夠互相重合的弧叫等弧。

  二、過三點(diǎn)的圓

  l、過三點(diǎn)的圓

  過三點(diǎn)的圓的作法:利用中垂線找圓心

  定理不在同一直線上的三個(gè)點(diǎn)確定一個(gè)圓。

  經(jīng)過三角形各頂點(diǎn)的圓叫三角形的外接圓,外接圓的圓心叫外心,這個(gè)三角形叫圓的內(nèi)接三角形。

  2、反證法

  反證法的三個(gè)步驟:

 、偌僭O(shè)命題的結(jié)論不成立;

 、趶倪@個(gè)假設(shè)出發(fā),經(jīng)過推理論證,得出矛盾;

 、塾擅艿贸黾僭O(shè)不正確,從而肯定命題的結(jié)論正確。

  例如:求證三角形中最多只有一個(gè)角是鈍角。

  證明:設(shè)有兩個(gè)以上是鈍角

  則兩個(gè)鈍角之和>180°

  與三角形內(nèi)角和等于180°矛盾。

  ∴不可能有二個(gè)以上是鈍角。

  即最多只能有一個(gè)是鈍角。

  三、垂直于弦的直徑

  圓是軸對稱圖形,經(jīng)過圓心的每一條直線都是它的對稱軸。

  垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的兩條弧。

  推理1:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對兩條弧。

  弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧。

  平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一個(gè)條弧。

  推理2:圓兩條平行弦所夾的弧相等。

  四、圓心角、弧、弦、弦心距之間的關(guān)系

  圓是以圓心為對稱中心的中心對稱圖形。

  實(shí)際上,圓繞圓心旋轉(zhuǎn)任意一個(gè)角度,都能夠與原來的圖形重合。

  頂點(diǎn)是圓心的角叫圓心角,從圓心到弦的距離叫弦心距。

  定理:在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦心距相等。

  推理:在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩條弦的弦心距中,有一組量相等,那么它們所對應(yīng)的其余各組量都分別相等。

  五、圓周角

  頂點(diǎn)在圓上,并且兩邊都和圓相交的角叫圓周角。

  推理1:同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等。

  推理2:半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑。

  推理3:如果三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形。

  由于以上的定理、推理,所添加輔助線往往是添加能構(gòu)成直徑上的圓周角的輔助線。

  相關(guān)的角:

  1、對頂角:一個(gè)角的兩邊分別是另一個(gè)角的兩邊的反向延長線,這兩個(gè)角叫做對頂角。

  2、互為補(bǔ)角:如果兩個(gè)角的和是一個(gè)平角,這兩個(gè)角做互為補(bǔ)角。

  3、互為余角:如果兩個(gè)角的和是一個(gè)直角,這兩個(gè)角叫做互為余角。

  4、鄰補(bǔ)角:有公共頂點(diǎn),一條公共邊,另兩條邊互為反向延長線的兩個(gè)角做互為鄰補(bǔ)角。

  注意:互余、互補(bǔ)是指兩個(gè)角的數(shù)量關(guān)系,與兩個(gè)角的位置無關(guān),而互為鄰補(bǔ)角則要求兩個(gè)角有特殊的位置關(guān)系。

  角的性質(zhì)

  1、對頂角相等。

  2、同角或等角的余角相等。

  3、同角或等角的補(bǔ)角相等。

  其實(shí)角的大小與邊的長短沒有關(guān)系,角的大小決定于角的兩條邊張開的程度。

  角的靜態(tài)定義

  具有公共端點(diǎn)的兩條射線組成的圖形叫做角(angle)。這個(gè)公共端點(diǎn)叫做角的頂點(diǎn),這兩條射線叫做角的兩條邊。

  角的動(dòng)態(tài)定義

  一條射線繞著它的端點(diǎn)從一個(gè)位置旋轉(zhuǎn)到另一個(gè)位置所形成的圖形叫做角。所旋轉(zhuǎn)射線的端點(diǎn)叫做角的頂點(diǎn),開始位置的射線叫做角的始邊,終止位置的射線叫做角的終邊

  角的.符號

  角的符號:∠

  角的種類

  在動(dòng)態(tài)定義中,取決于旋轉(zhuǎn)的方向與角度。角可以分為銳角、直角、鈍角、平角、周角、負(fù)角、正角、優(yōu)角、劣角、0角這10種。以度、分、秒為單位的角的度量制稱為角度制。此外,還有密位制、弧度制等。

  銳角:大于0°,小于90°的角叫做銳角。

  直角:等于90°的角叫做直角。

  鈍角:大于90°而小于180°的角叫做鈍角。

  平角:等于180°的角叫做平角。

  優(yōu)角:大于180°小于360°叫優(yōu)角。

  劣角:大于0°小于180°叫做劣角,銳角、直角、鈍角都是劣角。

  角周角:等于360°的角叫做周角。

  負(fù)角:按照順時(shí)針方向旋轉(zhuǎn)而成的角叫做負(fù)角。

  正角:逆時(shí)針旋轉(zhuǎn)的角為正角。

  0角:等于零度的角。

  特殊角

  余角和補(bǔ)角:兩角之和為90°則兩角互為余角,兩角之和為180°則兩角互為補(bǔ)角。等角的余角相等,等角的補(bǔ)角相等。

  對頂角:兩條直線相交后所得的只有一個(gè)公共頂點(diǎn)且兩個(gè)角的兩邊互為反向延長線,這樣的兩個(gè)角叫做互為對頂角。兩條直線相交,構(gòu)成兩對對頂角;閷斀堑膬蓚(gè)角相等。

  鄰補(bǔ)角:兩個(gè)角有一條公共邊,它們的另一條邊互為反向延長線,具有這種關(guān)系的兩個(gè)角,互為鄰補(bǔ)角。

  內(nèi)錯(cuò)角:互相平行的兩條直線直線,被第三條直線所截,如果兩個(gè)角都在兩條直線的

  內(nèi)側(cè),并且在第三條直線的兩側(cè),那么這樣的一對角叫做內(nèi)錯(cuò)角(alternate interior angle )。如:∠1和∠6,∠2和∠5

  同旁內(nèi)角:兩個(gè)角都在截線的同一側(cè),且在兩條被截線之間,具有這樣位置關(guān)系的一對角互為同旁內(nèi)角。如:∠1和∠5,∠2和∠6

  同位角:兩個(gè)角都在截線的同旁,又分別處在被截的兩條直線同側(cè),具有這樣位置關(guān)系的一對角叫做同位角(correspondingangles):∠1和∠8,∠2和∠7

  外錯(cuò)角:兩條直線被第三條直線所截,構(gòu)成了八個(gè)角。如果兩個(gè)角都在兩條被截線的外側(cè),并且在截線的兩側(cè),那么這樣的一對角叫做外錯(cuò)角。例如:∠4與∠7,∠3與∠8。

  同旁外角:兩個(gè)角都在截線的同一側(cè),且在兩條被截線之外,具有這樣位置關(guān)系的一對角互為同旁外角。如:∠4和∠8,∠3和∠7

  終邊相同的角:具有共同始邊和終邊的角叫終邊相同的角。與角a終邊相同的角屬于集合:

  A{bb=k_360+a,k∈Z}表示角度制;

  B{bb=2kπ+a,k∈Z}表示弧度制

  ①直線和圓無公共點(diǎn),稱相離。 AB與圓O相離,d>r。

 、谥本和圓有兩個(gè)公共點(diǎn),稱相交,這條直線叫做圓的割線。AB與⊙O相交,d

 、壑本和圓有且只有一公共點(diǎn),稱相切,這條直線叫做圓的切線,這個(gè)唯一的公共點(diǎn)叫做切點(diǎn)。AB與⊙O相切,d=r。(d為圓心到直線的距離)

  平面內(nèi),直線Ax+By+C=0與圓x^2+y^2+Dx+Ey+F=0的位置關(guān)系判斷一般方法是:

  1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成為一個(gè)關(guān)于x的方程

  如果b^2-4ac>0,則圓與直線有2交點(diǎn),即圓與直線相交。

  如果b^2-4ac=0,則圓與直線有1交點(diǎn),即圓與直線相切。

  如果b^2-4ac<0,則圓與直線有0交點(diǎn),即圓與直線相離。

  2.如果B=0即直線為Ax+C=0,即x=-C/A,它平行于y軸(或垂直于x軸),將x^2+y^2+Dx+Ey+F=0化為(x-a)^2+(y-b)^2=r^2。令y=b,求出此時(shí)的兩個(gè)x值x1、x2,并且規(guī)定x1

  當(dāng)x=-C/Ax2時(shí),直線與圓相離;

初中數(shù)學(xué)知識點(diǎn)總結(jié)5

  初中生經(jīng)過中考的奮力拼搏,剛跨入高中,都有十足的信心,旺盛的求知欲,都有把高中課程學(xué)好的愿望。但經(jīng)過一段時(shí)間,他們普遍感覺高中數(shù)學(xué)并非想象中那么簡單易學(xué),而是太枯燥,泛味,抽象,晦澀,有些章節(jié)如聽天書。在做習(xí)題,課外練習(xí)時(shí),又是磕磕碰碰,跌跌撞撞,常常感到茫然一片,不知從何下手。造成這種現(xiàn)象的原因是多方面的,但最主要的根源還在于初,高中數(shù)學(xué)教學(xué)上的銜接問題。下面就這個(gè)問題進(jìn)行分析,探討其原因,尋找解決對策。

  一、高一學(xué)生學(xué)習(xí)數(shù)學(xué)產(chǎn)生困難是造成數(shù)學(xué)成績下降的主要原因

  (一)教材的原因。

  由于實(shí)行九年制義務(wù)教育和倡導(dǎo)全面提高學(xué)生素質(zhì),現(xiàn)行初中數(shù)學(xué)教材在內(nèi)容上進(jìn)行了較大幅度的調(diào)整,難度,深度和廣度大大降低了,那些在高中學(xué)習(xí)中經(jīng)常應(yīng)用到的知識,如:對數(shù),二次不等式,解斜三角形,分?jǐn)?shù)指數(shù)冪等內(nèi)容,都轉(zhuǎn)移到高一階段補(bǔ)充學(xué)習(xí)。這樣初中教材就體現(xiàn)了"淺,少,易"的特點(diǎn),但卻加重了高一數(shù)學(xué)的份量。另外,初中數(shù)學(xué)教材中每一新知識的引入往往與學(xué)生日常生活實(shí)際很貼近,比較形象,并遵循從感性認(rèn)識上升到理性認(rèn)識的規(guī)律,學(xué)生一般都容易理解,接受和掌握。且目前初中教材敘述方法比較簡單,語言通俗易懂,直觀性,趣味性強(qiáng),結(jié)論容易記憶,應(yīng)試效果也比較理想。

  相對而言,高中數(shù)學(xué)一開始,概念抽象,定理嚴(yán)謹(jǐn),邏輯性強(qiáng),教材敘述比較嚴(yán)謹(jǐn),規(guī)范,抽象思維和空間想象明顯提高,知識難度加大,且習(xí)題類型多,解題技巧靈活多變,計(jì)算繁冗復(fù)雜,體現(xiàn)了"起點(diǎn)高,難度大,容量多"的特點(diǎn)。

 。ǘ┙谭ǖ脑。

  初中數(shù)學(xué)教學(xué)內(nèi)容少,知識難度不大,教學(xué)要求較低,因而教學(xué)進(jìn)度較慢,對于某些重點(diǎn),難點(diǎn),教師可以有充裕的時(shí)間反復(fù)講解,多次演練,從而各個(gè)擊破、另外,為了應(yīng)付中考,初中教師大多數(shù)采用"滿堂灌"填鴨式的教學(xué)模式,單純地向?qū)W生傳授知識,并讓學(xué)生通過機(jī)械模仿式的重復(fù)練習(xí)以達(dá)到熟能生巧的程度,結(jié)果造成"重知識,輕能力","重局部,輕整體","重試卷(復(fù)習(xí)資料),輕書本"的不良傾向。這種封閉被動(dòng)的傳統(tǒng)教學(xué)方式嚴(yán)重束縛了學(xué)生思維的發(fā)展,影響了學(xué)生發(fā)現(xiàn)意識的形成,創(chuàng)新思維受到了扼制。但是進(jìn)入高中以后,教材內(nèi)涵豐富,教學(xué)要求高,進(jìn)度快,知識信息廣泛,題目難度加深,知識的重點(diǎn)和難點(diǎn)也不可能象初中那樣通過反復(fù)強(qiáng)調(diào)來排難釋疑。而且高中教學(xué)往往通過設(shè)導(dǎo),設(shè)問,設(shè)陷,設(shè)變,啟發(fā)引導(dǎo),開拓思路,然后由學(xué)生自己去思考,去解答,比較注意知識的發(fā)生過程,傾重對學(xué)生思想方法的滲透和思維品質(zhì)的培養(yǎng)。這使得剛進(jìn)入高中的學(xué)生不容易適應(yīng)這種教學(xué)方法。聽課時(shí)就存在思維障礙,不容易跟上教師的思維,從而產(chǎn)生學(xué)習(xí)障礙,影響數(shù)學(xué)的學(xué)習(xí)。

  (三)學(xué)生自身的原因。

 、俦粍(dòng)學(xué)習(xí)

  在初中,教師講得細(xì),類型歸納得全,反復(fù)練習(xí)。考試時(shí),學(xué)生只要記憶概念,公式,及例題類型,一般都可以對號入座取得好成績。因此,學(xué)生習(xí)慣于圍著教師轉(zhuǎn),不需要獨(dú)立思考和對規(guī)律進(jìn)行歸納總結(jié)。學(xué)生滿足于你講我聽,你放我錄,缺乏學(xué)習(xí)主動(dòng)性。表現(xiàn)在不定計(jì)劃,坐等上課,課前沒有預(yù)習(xí),對老師上課的內(nèi)容不了解,上課忙于記筆記,沒聽到"門道",沒有真正理解所學(xué)內(nèi)容。而到了高中,數(shù)學(xué)學(xué)習(xí)要求學(xué)生勤于思考,善于歸納總結(jié)規(guī)律,掌握數(shù)學(xué)思想方法,做到舉一反三,觸類旁通。所以,剛?cè)雽W(xué)的高一新生,往往沿用初中學(xué)法,致使學(xué)習(xí)出現(xiàn)困難,完成當(dāng)天作業(yè)都很困難,更沒有預(yù)習(xí),復(fù)習(xí),總結(jié)等自我消化,自我調(diào)整的時(shí)間。這顯然不利于良好學(xué)法的形成和學(xué)習(xí)質(zhì)量的提高。造成高一學(xué)生數(shù)學(xué)學(xué)習(xí)的困難。

  ②學(xué)不得法

  老師上課一般都要講清知識的.來龍去脈,剖析概念的內(nèi)涵,分析重點(diǎn)難點(diǎn),突出思想方法。而一部分同學(xué)上課沒能專心聽課,對要點(diǎn)沒聽到或聽不全,筆記記了一大本,問題也有一大堆,課后又不能及時(shí)鞏固,總結(jié),尋找知識間的聯(lián)系,只是趕做作業(yè),亂套題型,對概念,法則,公式,定理一知半解,機(jī)械模仿,死記硬背。也有的晚上加班加點(diǎn),白天無精打采,或是上課根本不聽,自己另搞一套,結(jié)果是事倍功半,收效甚微。

  二、搞好初高中數(shù)學(xué)教學(xué)銜接,幫助學(xué)生渡過學(xué)習(xí)數(shù)學(xué)"困難期"的對策

 。ㄒ唬┳龊脺(zhǔn)備工作,為搞好銜接打好基礎(chǔ)。

  1、搞好入學(xué)教育。這是搞好銜接的基礎(chǔ)工作,也是首要工作。

  通過入學(xué)教育提高學(xué)生對初高中銜接重要性的認(rèn)識,增強(qiáng)緊迫感,消除松懈情緒,初步了解高中數(shù)學(xué)學(xué)習(xí)的特點(diǎn),為其它措施的落實(shí)奠定基礎(chǔ)。這里主要做好四項(xiàng)工作:一是給學(xué)生講清高一數(shù)學(xué)在整個(gè)中學(xué)數(shù)學(xué)中所占的位置和作用;二是結(jié)合實(shí)例,采取與初中對比的方法,給學(xué)生講清高中數(shù)學(xué)內(nèi)容體系特點(diǎn)和課堂教學(xué)特點(diǎn);三是結(jié)合實(shí)例給學(xué)生講明初高中數(shù)學(xué)在學(xué)法上存在的本質(zhì)區(qū)別,并向?qū)W生介紹一些優(yōu)秀學(xué)法,指出注意事項(xiàng);四是請高年級學(xué)生談體會(huì)講感受,引導(dǎo)學(xué)生少走彎路,盡快適應(yīng)高中學(xué)習(xí)。

  2、摸清底數(shù),規(guī)劃教學(xué)。為了搞好初高中銜接,教師首先要摸清學(xué)生的學(xué)習(xí)基礎(chǔ),然后以此來規(guī)劃自己的教學(xué)和落實(shí)教學(xué)要求,以提高教學(xué)的針對性。在教學(xué)實(shí)際中,一方面通過進(jìn)行摸底測試和對入學(xué)成績的分析,了解學(xué)生的基礎(chǔ);另一方面,認(rèn)真學(xué)習(xí)和比較初高中教學(xué)大綱和教材,以全面了解初高中數(shù)學(xué)知識體系,找出初高中知識的銜接點(diǎn),區(qū)別點(diǎn)和需要鋪路搭橋的知識點(diǎn),以使備課和講課更符合學(xué)生實(shí)際,更具有針對性。

 。ǘ﹥(yōu)化課堂教學(xué)環(huán)節(jié),搞好初高中數(shù)學(xué)知識銜接教學(xué)。

  1、立足于大綱和教材,尊重學(xué)生實(shí)際,實(shí)行層次教學(xué)。

  高一數(shù)學(xué)中有許多難理解和掌握的知識點(diǎn),如集合,映射等,對高一新生來講確實(shí)困難較大。因此,在教學(xué)中,應(yīng)從高一學(xué)生實(shí)際出發(fā),采用低起點(diǎn),小梯度,多訓(xùn)練,分層次"的方法,將教學(xué)目標(biāo)分解成若干遞進(jìn)層次逐層落實(shí)。在速度上,放慢起始進(jìn)度,逐步加快教學(xué)節(jié)奏。在知識導(dǎo)入上,多由實(shí)例和已知引入。在知識落實(shí)上,先落實(shí)"死"課本,后變通延伸用活課本。在難點(diǎn)知識講解上,從學(xué)生理解和掌握的實(shí)際出發(fā),對教材作必要層次處理和知識鋪墊,并對知識的理解要點(diǎn)和應(yīng)用注意點(diǎn)作必要總結(jié)及舉例說明。

  2、重視新舊知識的聯(lián)系與區(qū)別,建立知識網(wǎng)絡(luò)。

  初高中數(shù)學(xué)有很多銜接知識點(diǎn),如函數(shù)概念,平面幾何與立體幾何相關(guān)知識等,到高中,它們有的加深了,有的研究范圍擴(kuò)大了,有些在初中成立的結(jié)論到高中可能不成立。因此,在講授新知識時(shí),應(yīng)當(dāng)有意引導(dǎo)學(xué)生聯(lián)系舊知識,復(fù)習(xí)和區(qū)別舊知識,特別注重對那些易錯(cuò)易混的知識加以分析,比較和區(qū)別。這樣可達(dá)到溫故知新,溫故而探新的效果。

  3、重視展示知識的形成過程和方法探索過程,培養(yǎng)學(xué)生創(chuàng)造能力。

  高中數(shù)學(xué)比初中數(shù)學(xué)抽象性強(qiáng),應(yīng)用靈活,這就要求學(xué)生對知識理解要透,應(yīng)用要活,不能只停留在對知識結(jié)論的死記硬套上,這就要求教師應(yīng)向?qū)W生展示新知識和新解法的產(chǎn)生背景,形成和探索過程,不僅使學(xué)生掌握知識和方法的本質(zhì),提高應(yīng)用的靈活性,而且還使學(xué)生學(xué)會(huì)如何質(zhì)疑和釋疑的思想方法,促進(jìn)創(chuàng)造性思維能力的提高。

  4、重視培養(yǎng)學(xué)生自我反思自我總結(jié)的良好習(xí)慣,提高學(xué)習(xí)的自覺性。

  高中數(shù)學(xué)概括性強(qiáng),題目靈活多變,課上聽懂是不夠的,需要課后進(jìn)行認(rèn)真消化,認(rèn)真總結(jié)歸納。這就要求學(xué)生應(yīng)具備善于自我反思和自我總結(jié)的能力。因此,在教學(xué)中,應(yīng)當(dāng)抓住時(shí)機(jī)積極培養(yǎng)。在單元結(jié)束時(shí),幫助學(xué)生進(jìn)行自我章節(jié)小結(jié),在解題后,積極引導(dǎo)學(xué)生反思:思解題思路和步驟,思一題多解和一題多變,思解題方法和解題規(guī)律的總結(jié)。由此培養(yǎng)學(xué)生善于進(jìn)行自我反思的習(xí)慣,擴(kuò)大知識和方法的應(yīng)用范圍,提高學(xué)習(xí)效率。

 。ㄈ┘訌(qiáng)學(xué)法指導(dǎo),培養(yǎng)良好學(xué)習(xí)習(xí)慣

初中數(shù)學(xué)知識點(diǎn)總結(jié)6

  1、圓是以圓心為對稱中心的中心對稱圖形;同圓或等圓的半徑相等。

  2、到定點(diǎn)的距離等于定長的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長為半徑的圓。

  3、定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等。

  4、圓是定點(diǎn)的距離等于定長的點(diǎn)的集合。

  5、圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合;圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合。

  6、不在同一直線上的三點(diǎn)確定一個(gè)圓。

  7、垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧。

  推論1:

  ①平分弦(不是直徑)的`直徑垂直于弦,并且平分弦所對的兩條;

 、谙业拇怪逼椒志經(jīng)過圓心,并且平分弦所對的兩條;

 、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧。

  推論2:圓的兩條平行弦所夾的弧相等。

  8、推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等。

  9、定理圓的內(nèi)接四邊形的對角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對角。

  10、經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過圓心。

  11、切線的判定定理經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線。

  12、切線的性質(zhì)定理圓的切線垂直于經(jīng)過切點(diǎn)的半徑。

  13、經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點(diǎn)

  14、切線長定理從圓外一點(diǎn)引圓的兩條切線,它們的切線長相等,圓心和這一點(diǎn)的連線平分兩條切線的夾角。

  15、圓的外切四邊形的兩組對邊的和相等外角等于內(nèi)對角。

  16、如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上。

  17、

 、賰蓤A外離d>R+r

 、趦蓤A外切d=R+r

 、蹆蓤A相交d>R-r)

  ④兩圓內(nèi)切d=R-r(R>r)

  ⑤兩圓內(nèi)含d=r)

  18、定理把圓分成n(n≥3):

  ⑴依次連結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形

 、平(jīng)過各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形。

  19、定理任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓。

  20、弧長計(jì)算公式:L=n兀R/180;扇形面積公式:S扇形=n兀R^2/360=LR/2。

  21、內(nèi)公切線長= d-(R-r)外公切線長= d-(R+r)。

  22、定理一條弧所對的圓周角等于它所對的圓心角的一半。

  23、推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等。

  24、推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑。

初中數(shù)學(xué)知識點(diǎn)總結(jié)7

  一、基本知識

 、、數(shù)與代數(shù)A、數(shù)與式:

  1、有理數(shù)

  有理數(shù):

 、僬麛(shù)→正整數(shù)/0/負(fù)整數(shù)

  ②分?jǐn)?shù)→正分?jǐn)?shù)/負(fù)分?jǐn)?shù)

  數(shù)軸:

 、佼嬕粭l水平直線,在直線上取一點(diǎn)表示0(原點(diǎn)),選取某一長度作為單位長度,規(guī)定直線上向右的方

  向?yàn)檎较,就得到?shù)軸。

 、谌魏我粋(gè)有理數(shù)都可以用數(shù)軸上的一個(gè)點(diǎn)來表示。

  ③如果兩個(gè)數(shù)只有符號不同,那么我們稱其中一個(gè)數(shù)為另外一個(gè)數(shù)的相反數(shù),也稱這兩個(gè)數(shù)互為相反數(shù)。在數(shù)軸上,表示互為相反數(shù)的兩個(gè)點(diǎn),位于原點(diǎn)的兩側(cè),并且與原點(diǎn)距離相等。

 、軘(shù)軸上兩個(gè)點(diǎn)表示的數(shù),右邊的總比左邊的大。正數(shù)大于0,負(fù)數(shù)小于0,正數(shù)大于負(fù)數(shù)。

  絕對值:

 、僭跀(shù)軸上,一個(gè)數(shù)所對應(yīng)的點(diǎn)與原點(diǎn)的距離叫做該數(shù)的絕對值。②正數(shù)的絕對值是他的本身、負(fù)數(shù)的

  絕對值是他的相反數(shù)、0的絕對值是0。兩個(gè)負(fù)數(shù)比較大小,絕對值大的反而小。

  有理數(shù)的運(yùn)算:

  加法:

 、偻栂嗉樱∠嗤姆,把絕對值相加。

 、诋愄栂嗉,絕對值相等時(shí)和為0;絕對值不等時(shí),取絕對值較大的數(shù)的符號,并用較大的絕對值減去較小的絕對值。

  ③一個(gè)數(shù)與0相加不變。

  減法:減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù)。

  乘法:①兩數(shù)相乘,同號得正,異號得負(fù),絕對值相乘。

 、谌魏螖(shù)與0相乘得0。

 、鄢朔e為1的兩個(gè)有理數(shù)互為倒數(shù)。除法:①除以一個(gè)數(shù)等于乘以一個(gè)數(shù)的倒數(shù)。

 、0不能作除數(shù)。

  乘方:求N個(gè)相同因數(shù)A的積的運(yùn)算叫做乘方,乘方的結(jié)果叫冪,A叫底數(shù),N叫次數(shù);旌享樞颍合人愠朔,再算乘除,最后算加減,有括號要先算括號里的。2、實(shí)數(shù)

  無理數(shù):無限不循環(huán)小數(shù)叫無理數(shù)

  平方根:

 、偃绻粋(gè)正數(shù)X的平方等于A,那么這個(gè)正數(shù)X就叫做A的算術(shù)平方根。

 、谌绻粋(gè)數(shù)X的平方等于A,那么這個(gè)數(shù)X就叫做A的平方根。③一個(gè)正數(shù)有2個(gè)平方根/0的平方根為0/負(fù)數(shù)沒有平方根。

 、芮笠粋(gè)數(shù)A的平方根運(yùn)算,叫做開平方,其中A叫做被開方數(shù)。

  立方根:

 、偃绻粋(gè)數(shù)X的立方等于A,那么這個(gè)數(shù)X就叫做A的立方根。

 、谡龜(shù)的立方根是正數(shù)、0的立方根是0、負(fù)數(shù)的立方根是負(fù)數(shù)。③求一個(gè)數(shù)A的立方根的運(yùn)算叫開立方,其中A叫做被開方數(shù)。

  實(shí)數(shù):

 、賹(shí)數(shù)分有理數(shù)和無理數(shù)。

  ②在實(shí)數(shù)范圍內(nèi),相反數(shù),倒數(shù),絕對值的意義和有理數(shù)范圍內(nèi)的相反數(shù),倒數(shù),絕對值的意義完全一樣。③每一個(gè)實(shí)數(shù)都可以在數(shù)軸上的一個(gè)點(diǎn)來表示。3、代數(shù)式

  代數(shù)式:單獨(dú)一個(gè)數(shù)或者一個(gè)字母也是代數(shù)式。

  合并同類項(xiàng):①所含字母相同,并且相同字母的指數(shù)也相同的項(xiàng),叫做同類項(xiàng)。

 、诎淹愴(xiàng)合并成一項(xiàng)就叫做合并同類項(xiàng)。

  ③在合并同類項(xiàng)時(shí),我們把同類項(xiàng)的系數(shù)相加,字母和字母的指數(shù)不變。

  4、整式與分式

  整式:①數(shù)與字母的乘積的代數(shù)式叫單項(xiàng)式,幾個(gè)單項(xiàng)式的和叫多項(xiàng)式,單項(xiàng)式和多項(xiàng)式統(tǒng)稱整式。

 、谝粋(gè)單項(xiàng)式中,所有字母的指數(shù)和叫做這個(gè)單項(xiàng)式的次數(shù)。③一個(gè)多項(xiàng)式中,次數(shù)最高的項(xiàng)的次數(shù)叫做這個(gè)多項(xiàng)式的次數(shù)。整式運(yùn)算:加減運(yùn)算時(shí),如果遇到括號先去括號,再合并同類項(xiàng)。冪的運(yùn)算:AM+AN=A(M+N)

  (AM)N=AMN

 。ˋ/B)N=AN/BN除法一樣。

  整式的乘法:①單項(xiàng)式與單項(xiàng)式相乘,把他們的系數(shù),相同字母的冪分別相乘,其余字母連同他的指數(shù)不變,作

  為積的因式。

 、趩雾(xiàng)式與多項(xiàng)式相乘,就是根據(jù)分配律用單項(xiàng)式去乘多項(xiàng)式的每一項(xiàng),再把所得的積相加。③多項(xiàng)式與多項(xiàng)式相乘,先用一個(gè)多項(xiàng)式的每一項(xiàng)乘另外一個(gè)多項(xiàng)式的每一項(xiàng),再把所得的積相加。

  公式兩條:平方差公式/完全平方公式

  整式的除法:①單項(xiàng)式相除,把系數(shù),同底數(shù)冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則

  連同他的指數(shù)一起作為商的一個(gè)因式。

 、诙囗(xiàng)式除以單項(xiàng)式,先把這個(gè)多項(xiàng)式的每一項(xiàng)分別除以單項(xiàng)式,再把所得的商相加。

  分解因式:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,這種變化叫做把這個(gè)多項(xiàng)式分解因式。方法:提公因式法、運(yùn)用公式法、分組分解法、十字相乘法。

  分式:①整式A除以整式B,如果除式B中含有分母,那么這個(gè)就是分式,對于任何一個(gè)分式,分母不為0。

 、诜质降姆肿优c分母同乘以或除以同一個(gè)不等于0的整式,分式的值不變。分式的運(yùn)算:

  乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。除法:除以一個(gè)分式等于乘以這個(gè)分式的倒數(shù)。

  加減法:①同分母分式相加減,分母不變,把分子相加減。②異分母的分式先通分,化為同分母的分式,再加減。分式方程:①分母中含有未知數(shù)的方程叫分式方程。②使方程的分母為0的解稱為原方程的增根。B、方程與不等式1、方程與方程組

  一元一次方程:①在一個(gè)方程中,只含有一個(gè)未知數(shù),并且未知數(shù)的指數(shù)是1,這樣的方程叫一元一次方程。

  ②等式兩邊同時(shí)加上或減去或乘以或除以(不為0)一個(gè)代數(shù)式,所得結(jié)果仍是等式。

  解一元一次方程的步驟:去分母,移項(xiàng),合并同類項(xiàng),未知數(shù)系數(shù)化為1。

  二元一次方程:含有兩個(gè)未知數(shù),并且所含未知數(shù)的項(xiàng)的次數(shù)都是1的方程叫做二元一次方程。二元一次方程組:兩個(gè)二元一次方程組成的方程組叫做二元一次方程組。適合一個(gè)二元一次方程的一組未知數(shù)的值,叫做這個(gè)二元一次方程的一個(gè)解。二元一次方程組中各個(gè)方程的公共解,叫做這個(gè)二元一次方程的解。解二元一次方程組的方法:代入消元法/加減消元法。

  一元二次方程:只有一個(gè)未知數(shù),并且未知數(shù)的項(xiàng)的最高系數(shù)為2的方程1)一元二次方程的二次函數(shù)的關(guān)系

  大家已經(jīng)學(xué)過二次函數(shù)(即拋物線)了,對他也有很深的了解,好像解法,在圖象中表示等等,其實(shí)一元二次方程也可以用二次函數(shù)來表示,其實(shí)一元二次方程也是二次函數(shù)的'一個(gè)特殊情況,就是當(dāng)Y的0的時(shí)候就構(gòu)成了一元二次方程了。那如果在平面直角坐標(biāo)系中表示出來,一元二次方程就是二次函數(shù)中,圖象與X軸的交點(diǎn)。也就是該方程的解了2)一元二次方程的解法

  大家知道,二次函數(shù)有頂點(diǎn)式(-b/2a,4ac-b2/4a),這大家要記住,很重要,因?yàn)樵谏厦嬉呀?jīng)說過了,一元二次方程也是二次函數(shù)的一部分,所以他也有自己的一個(gè)解法,利用他可以求出所有的一元一次方程的解(1)配方法

  利用配方,使方程變?yōu)橥耆椒焦,在用直接開平方法去求出解(2)分解因式法

  提取公因式,套用公式法,和十字相乘法。在解一元二次方程的時(shí)候也一樣,利用這點(diǎn),把方程化為幾個(gè)乘積的

  形式去解(3)公式法

  這方法也可以是在解一元二次方程的萬能方法了,方程的根X1={-b+√[b2-4ac)]}/2a,X2={-b-√[b2-4ac)]}/2a3)解一元二次方程的步驟:(1)配方法的步驟:

  先把常數(shù)項(xiàng)移到方程的右邊,再把二次項(xiàng)的系數(shù)化為1,再同時(shí)加上1次項(xiàng)的系數(shù)的一半的平方,最后配成完全平方公式

  (2)分解因式法的步驟:

  把方程右邊化為0,然后看看是否能用提取公因式,公式法(這里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化為乘積的形式(3)公式法

  就把一元二次方程的各系數(shù)分別代入,這里二次項(xiàng)的系數(shù)為a,一次項(xiàng)的系數(shù)為b,常數(shù)項(xiàng)的系數(shù)為c4)韋達(dá)定理

  利用韋達(dá)定理去了解,韋達(dá)定理就是在一元二次方程中,二根之和=-b/a,二根之積=c/a

  也可以表示為x1+x2=-b/a,x1x2=c/a。利用韋達(dá)定理,可以求出一元二次方程中的各系數(shù),在題目中很常用5)一元一次方程根的情況

  利用根的判別式去了解,根的判別式可在書面上可以寫為“△”,讀作“diaota”,而△=b2-4ac,這里可以分為3種情況:

  I當(dāng)△>0時(shí),一元二次方程有2個(gè)不相等的實(shí)數(shù)根;II當(dāng)△=0時(shí),一元二次方程有2個(gè)相同的實(shí)數(shù)根;

  III當(dāng)△B,A+C>B+C在不等式中,如果減去同一個(gè)數(shù)(或加上一個(gè)負(fù)數(shù)),不等式符號不改向;例如:A>B,A-C>B-C在不等式中,如果乘以同一個(gè)正數(shù),不等號不改向;例如:A>B,A*C>B*C(C>0)在不等式中,如果乘以同一個(gè)負(fù)數(shù),不等號改向;例如:A>B,A*C系內(nèi)描出它的對應(yīng)點(diǎn),所有這些點(diǎn)組成的圖形叫做該函數(shù)的圖象。②正比例函數(shù)Y=KX的圖象是經(jīng)過原點(diǎn)的一條直線。

 、墼谝淮魏瘮(shù)中,當(dāng)K〈0,B〈O,則經(jīng)234象限;當(dāng)K〈0,B〉0時(shí),則經(jīng)124象限;當(dāng)K〉0,B〈0時(shí),則經(jīng)134象限;當(dāng)K〉0,B〉0時(shí),則經(jīng)123象限。

 、墚(dāng)K〉0時(shí),Y的值隨X值的增大而增大,當(dāng)X〈0時(shí),Y的值隨X值的增大而減少。

  ㈡空間與圖形A、圖形的認(rèn)識1、點(diǎn),線,面

  點(diǎn),線,面:①圖形是由點(diǎn),線,面構(gòu)成的。

 、诿媾c面相交得線,線與線相交得點(diǎn)。③點(diǎn)動(dòng)成線,線動(dòng)成面,面動(dòng)成體。

  展開與折疊:①在棱柱中,任何相鄰的兩個(gè)面的交線叫做棱,側(cè)棱是相鄰兩個(gè)側(cè)面的交線,棱柱的所有側(cè)棱長相

  等,棱柱的上下底面的形狀相同,側(cè)面的形狀都是長方體。②N棱柱就是底面圖形有N條邊的棱柱。

  截一個(gè)幾何體:用一個(gè)平面去截一個(gè)圖形,截出的面叫做截面。視圖:主視圖,左視圖,俯視圖。

  多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形; ⑸刃危孩儆梢粭l弧和經(jīng)過這條弧的端點(diǎn)的兩條半徑所組成的圖形叫扇形。

 、趫A可以分割成若干個(gè)扇形。

  2、角

  線:①線段有兩個(gè)端點(diǎn)。

  ②將線段向一個(gè)方向無限延長就形成了射線。射線只有一個(gè)端點(diǎn)。③將線段的兩端無限延長就形成了直線。直線沒有端點(diǎn)。④經(jīng)過兩點(diǎn)有且只有一條直線。

  比較長短:①兩點(diǎn)之間的所有連線中,線段最短。

 、趦牲c(diǎn)之間線段的長度,叫做這兩點(diǎn)之間的距離。

  角的度量與表示:①角由兩條具有公共端點(diǎn)的射線組成,兩條射線的公共端點(diǎn)是這個(gè)角的頂點(diǎn)。

 、谝欢鹊1/60是一分,一分的1/60是一秒。

  角的比較:①角也可以看成是由一條射線繞著他的端點(diǎn)旋轉(zhuǎn)而成的。

 、谝粭l射線繞著他的端點(diǎn)旋轉(zhuǎn),當(dāng)終邊和始邊成一條直線時(shí),所成的角叫做平角。始邊繼續(xù)旋轉(zhuǎn),當(dāng)他又和始邊重合時(shí),所成的角叫做周角。

 、蹚囊粋(gè)角的頂點(diǎn)引出的一條射線,把這個(gè)角分成兩個(gè)相等的角,這條射線叫做這個(gè)角的平分線。

  平行:①同一平面內(nèi),不相交的兩條直線叫做平行線。

 、诮(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行。

 、廴绻麅蓷l直線都與第3條直線平行,那么這兩條直線互相平行。垂直:①如果兩條直線相交成直角,那么這兩條直線互相垂直。

 、诨ハ啻怪钡膬蓷l直線的交點(diǎn)叫做垂足。

 、燮矫鎯(nèi),過一點(diǎn)有且只有一條直線與已知直線垂直。垂直平分線:垂直和平分一條線段的直線叫垂直平分線。

  垂直平分線垂直平分的一定是線段,不能是射線或直線,這根據(jù)射線和直線可以無限延長有關(guān),再看后面的,垂直平分線是一條直線,所以在畫垂直平分線的時(shí)候,確定了2點(diǎn)后(關(guān)于畫法,后面會(huì)講)一定要把線段穿出2點(diǎn)。

  垂直平分線定理:

  性質(zhì)定理:在垂直平分線上的點(diǎn)到該線段兩端點(diǎn)的距離相等;判定定理:到線段2端點(diǎn)距離相等的點(diǎn)在這線段的垂直平分線上角平分線:把一個(gè)角平分的射線叫該角的角平分線。

  定義中有幾個(gè)要點(diǎn)要注意一下的,就是角的角平分線是一條射線,不是線段也不是直線,很多時(shí),在題目中會(huì)出

  現(xiàn)直線,這是角平分線的對稱軸才會(huì)用直線的,這也涉及到軌跡的問題,一個(gè)角個(gè)角平分線就是到角兩邊距離相等的點(diǎn)

  性質(zhì)定理:角平分線上的點(diǎn)到該角兩邊的距離相等

  判定定理:到角的兩邊距離相等的點(diǎn)在該角的角平分線上正方形:一組鄰邊相等的矩形是正方形

  性質(zhì):正方形具有平行四邊形、菱形、矩形的一切性質(zhì)判定:1、對角線相等的菱形2、鄰邊相等的矩形

  二、基本定理

  1、過兩點(diǎn)有且只有一條直線2、兩點(diǎn)之間線段最短

  3、同角或等角的補(bǔ)角相等4、同角或等角的余角相等

  5、過一點(diǎn)有且只有一條直線和已知直線垂直

  6、直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短

  7、平行公理經(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行9、同位角相等,兩直線平行10、內(nèi)錯(cuò)角相等,兩直線平行11、同旁內(nèi)角互補(bǔ),兩直線平行12、兩直線平行,同位角相等13、兩直線平行,內(nèi)錯(cuò)角相等14、兩直線平行,同旁內(nèi)角互補(bǔ)

  15、定理三角形兩邊的和大于第三邊16、推論三角形兩邊的差小于第三邊

  17、三角形內(nèi)角和定理三角形三個(gè)內(nèi)角的和等于180°18、推論1直角三角形的兩個(gè)銳角互余

  19、推論2三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和20、推論3三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角21、全等三角形的對應(yīng)邊、對應(yīng)角相等

  22、邊角邊公理(SAS)有兩邊和它們的夾角對應(yīng)相等的兩個(gè)三角形全等23、角邊角公理(ASA)有兩角和它們的夾邊對應(yīng)相等的兩個(gè)三角形全等24、推論(AAS)有兩角和其中一角的對邊對應(yīng)相等的兩個(gè)三角形全等25、邊邊邊公理(SSS)有三邊對應(yīng)相等的兩個(gè)三角形全等

  26、斜邊、直角邊公理(HL)有斜邊和一條直角邊對應(yīng)相等的兩個(gè)直角三角形全等27、定理1在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等

  28、定理2到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上29、角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合

  30、等腰三角形的性質(zhì)定理等腰三角形的兩個(gè)底角相等(即等邊對等角)31、推論1等腰三角形頂角的平分線平分底邊并且垂直于底邊

  32、等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合33、推論3等邊三角形的各角都相等,并且每一個(gè)角都等于60°

  34、等腰三角形的判定定理如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對的邊也相等(等角對等邊)35、推論1三個(gè)角都相等的三角形是等邊三角形

  36、推論2有一個(gè)角等于60°的等腰三角形是等邊三角形

  37、在直角三角形中,如果一個(gè)銳角等于30°那么它所對的直角邊等于斜邊的一半38、直角三角形斜邊上的中線等于斜邊上的一半

  5

  39、定理線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等

  40、逆定理和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上41、線段的垂直平分線可看作和線段兩端點(diǎn)距離相等的所有點(diǎn)的集合42、定理1關(guān)于某條直線對稱的兩個(gè)圖形是全等形

  43、定理2如果兩個(gè)圖形關(guān)于某直線對稱,那么對稱軸是對應(yīng)點(diǎn)連線的垂直平分線

  44、定理3兩個(gè)圖形關(guān)于某直線對稱,如果它們的對應(yīng)線段或延長線相交,那么交點(diǎn)在對稱軸上45、逆定理如果兩個(gè)圖形的對應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線對稱46、勾股定理直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2

  47、勾股定理的逆定理如果三角形的三邊長a、b、c有關(guān)系a2+b2=c2,那么這個(gè)三角形是直角三角形48、定理四邊形的內(nèi)角和等于360°49、四邊形的外角和等于360°

  50、多邊形內(nèi)角和定理n邊形的內(nèi)角的和等于(n-2)×180°51、推論任意多邊的外角和等于360°

  52、平行四邊形性質(zhì)定理1平行四邊形的對角相等53、平行四邊形性質(zhì)定理2平行四邊形的對邊相等54、推論夾在兩條平行線間的平行線段相等

  55、平行四邊形性質(zhì)定理3平行四邊形的對角線互相平分

  56、平行四邊形判定定理1兩組對角分別相等的四邊形是平行四邊形57、平行四邊形判定定理2兩組對邊分別相等的四邊形是平行四邊形58、平行四邊形判定定理3對角線互相平分的四邊形是平行四邊形59、平行四邊形判定定理4一組對邊平行相等的四邊形是平行四邊形60、矩形性質(zhì)定理1矩形的四個(gè)角都是直角61、矩形性質(zhì)定理2矩形的對角線相等

  62、矩形判定定理1有三個(gè)角是直角的四邊形是矩形63、矩形判定定理2對角線相等的平行四邊形是矩形64、菱形性質(zhì)定理1菱形的四條邊都相等

  65、菱形性質(zhì)定理2菱形的對角線互相垂直,并且每一條對角線平分一組對角66、菱形面積=對角線乘積的一半,即S=(a×b)÷267、菱形判定定理1四邊都相等的四邊形是菱形

  68、菱形判定定理2對角線互相垂直的平行四邊形是菱形

  69、正方形性質(zhì)定理1正方形的四個(gè)角都是直角,四條邊都相等

  70、正方形性質(zhì)定理2正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角71、定理1關(guān)于中心對稱的兩個(gè)圖形是全等的

  72、定理2關(guān)于中心對稱的兩個(gè)圖形,對稱點(diǎn)連線都經(jīng)過對稱中心,并且被對稱中心平分

  73、逆定理如果兩個(gè)圖形的對應(yīng)點(diǎn)連線都經(jīng)過某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對稱74、等腰梯形性質(zhì)定理等腰梯形在同一底上的兩個(gè)角相等75、等腰梯形的兩條對角線相等

  76、等腰梯形判定定理在同一底上的兩個(gè)角相等的梯形是等腰梯形77、對角線相等的梯形是等腰梯形

  78、平行線等分線段定理如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等79、推論1經(jīng)過梯形一腰的中點(diǎn)與底平行的直線,必平分另一腰

  80、推論2經(jīng)過三角形一邊的中點(diǎn)與另一邊平行的直線,必平分第三邊81、三角形中位線定理三角形的中位線平行于第三邊,并且等于它的一半

  82、梯形中位線定理梯形的中位線平行于兩底,并且等于兩底和的一半L=(a+b)÷2S=L×h83、(1)比例的基本性質(zhì):如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84、(2)合比性質(zhì):如果a/b=c/d,那么(a±b)/b=(c±d)/d85、(3)等比性質(zhì):如果a/b=c/d==m/n(b+d++n≠0),

  那么(a+c++m)/(b+d++n)=a/b

  86、平行線分線段成比例定理三條平行線截兩條直線,所得的對應(yīng)線段成比例87、推論平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應(yīng)線段成比例

  88、定理如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應(yīng)線段成比例,那么這條直線平行于三角形的第三邊

  89、平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應(yīng)成比例90、定理平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似91、相似三角形判定定理1兩角對應(yīng)相等,兩三角形相似(ASA)92、直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似93、判定定理2兩邊對應(yīng)成比例且夾角相等,兩三角形相似(SAS)94、判定定理3三邊對應(yīng)成比例,兩三角形相似(SSS)95、定理如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊對應(yīng)成比例,那么這兩個(gè)直角三角形相似

  96、性質(zhì)定理1相似三角形對應(yīng)高的比,對應(yīng)中線的比與對應(yīng)角平分線的比都等于相似比97、性質(zhì)定理2相似三角形周長的比等于相似比

  98、性質(zhì)定理3相似三角形面積的比等于相似比的平方

  99、任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值100、任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值101、圓是定點(diǎn)的距離等于定長的點(diǎn)的集合

  102、圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合103、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合104、同圓或等圓的半徑相等

  105、到定點(diǎn)的距離等于定長的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長為半徑的圓106、和已知線段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著條線段的垂直平分線107、到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線

  108、到兩條平行線距離相等的點(diǎn)的軌跡,是和這兩條平行線平行且距離相等的一條直線109、定理不在同一直線上的三點(diǎn)確定一個(gè)圓。

  110、垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧111、推論1

 、倨椒窒遥ú皇侵睆剑┑闹睆酱怪庇谙,并且平分弦所對的兩條、谙业拇怪逼椒志經(jīng)過圓心,并且平分弦所對的兩條弧

 、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧112、推論2圓的兩條平行弦所夾的弧相等113、圓是以圓心為對稱中心的中心對稱圖形

  114、定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

  115、推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等

  116、定理一條弧所對的圓周角等于它所對的圓心角的一半

  117、推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等118、推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑

  119、推論3如果三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形120、定理圓的內(nèi)接四邊形的對角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對角121、①直線L和⊙O相交dr②直線L和⊙O相切d=r③直線L和⊙O相離dr

  122、切線的判定定理經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線123、切線的性質(zhì)定理圓的切線垂直于經(jīng)過切點(diǎn)的半徑

  124、推論1經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點(diǎn)125、推論2經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過圓心

  126、切線長定理從圓外一點(diǎn)引圓的兩條切線,它們的切線長相等圓心和這一點(diǎn)的連線平分兩條切線的夾角127、圓的外切四邊形的兩組對邊的和相等

  128、弦切角定理弦切角等于它所夾的弧對的圓周角

  129、推論如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等130、相交弦定理圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長的積相等

  131、推論如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項(xiàng)

  132、切割線定理從圓外一點(diǎn)引圓的切線和割線,切線長是這點(diǎn)到割線與圓交點(diǎn)的兩條線段長的比例中項(xiàng)133、推論從圓外一點(diǎn)引圓的兩條割線,這一點(diǎn)到每條割線與圓的交點(diǎn)的兩條線段長的積相等134、如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上

  135、①兩圓外離dR+r②兩圓外切d=R+r③兩圓相交R-rdR+r(Rr)

 、軆蓤A內(nèi)切d=R-r(Rr)⑤兩圓內(nèi)含dR-r(Rr)136、定理相交兩圓的連心線垂直平分兩圓的公共弦137、定理把圓分成n(n≥3):

 、乓来芜B結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形

 、平(jīng)過各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形138、定理任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓139、正n邊形的每個(gè)內(nèi)角都等于(n-2)×180°/n

  140、定理正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形141、正n邊形的面積Sn=pnrn/2p表示正n邊形的周長142、正三角形面積√3a/4a表示邊長

  143、如果在一個(gè)頂點(diǎn)周圍有k個(gè)正n邊形的角,由于這些角的和應(yīng)為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4

  144、弧長計(jì)算公式:L=n兀R/180

  145、扇形面積公式:S扇形=n兀R^2/360=LR/2146、內(nèi)公切線長=d-(R-r)外公切線長=d-(R+r)

  一、常用數(shù)學(xué)公式

  公式分類公式表達(dá)式乘法與因式分解a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)

  三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b|

  |a|≤b-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|

  一元二次方程的解-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a

  根與系數(shù)的關(guān)系X1+X2=-b/aX1*X2=c/a注:韋達(dá)定理判別式

  b2-4ac=0注:方程有兩個(gè)相等的實(shí)根b2-4ac>0注:方程有兩個(gè)不等的實(shí)根

  b2-4ac歸謬是反證法的關(guān)鍵,導(dǎo)出矛盾的過程沒有固定的模式,但必須從反設(shè)出發(fā),否則推導(dǎo)將成為無源之水,無本之木。推理必須嚴(yán)謹(jǐn)。導(dǎo)出的矛盾有如下幾種類型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設(shè)矛盾;自相矛盾。8、面積法

  平面幾何中講的面積公式以及由面積公式推出的與面積計(jì)算有關(guān)的性質(zhì)定理,不僅可用于計(jì)算面積,而且用它來證明平面幾何題有時(shí)會(huì)收到事半功倍的效果。運(yùn)用面積關(guān)系來證明或計(jì)算平面幾何題的方法,稱為面積方法,它是幾何中的一種常用方法。

  用歸納法或分析法證明平面幾何題,其困難在添置輔助線。面積法的特點(diǎn)是把已知和未知各量用面積公式聯(lián)系起來,通過運(yùn)算達(dá)到求證的結(jié)果。所以用面積法來解幾何題,幾何元素之間關(guān)系變成數(shù)量之間的關(guān)系,只需要計(jì)算,有時(shí)可以不添置補(bǔ)助線,即使需要添置輔助線,也很容易考慮到。9、幾何變換法

  在數(shù)學(xué)問題的研究中,常常運(yùn)用變換法,把復(fù)雜性問題轉(zhuǎn)化為簡單性的問題而得到解決。所謂變換是一個(gè)集合的任一元素到同一集合的元素的一個(gè)一一映射。中學(xué)數(shù)學(xué)中所涉及的變換主要是初等變換。有一些看來很難甚至于無法下手的習(xí)題,可以借助幾何變換法,化繁為簡,化難為易。另一方面,也可將變換的觀點(diǎn)滲透到中學(xué)數(shù)學(xué)教學(xué)中。將圖形從相等靜止條件下的研究和運(yùn)動(dòng)中的研究結(jié)合起來,有利于對圖形本質(zhì)的認(rèn)識。幾何變換包括:(1)平移;(2)旋轉(zhuǎn);(3)對稱。10、客觀性題的解題方法

  選擇題是給出條件和結(jié)論,要求根據(jù)一定的關(guān)系找出正確答案的一類題型。選擇題的題型構(gòu)思精巧,形式靈活,可以比較全面地考察學(xué)生的基礎(chǔ)知識和基本技能,從而增大了試卷的容量和知識覆蓋面。

  填空題是標(biāo)準(zhǔn)化考試的重要題型之一,它同選擇題一樣具有考查目標(biāo)明確,知識復(fù)蓋面廣,評卷準(zhǔn)確迅速,有利于考查學(xué)生的分析判斷能力和計(jì)算能力等優(yōu)點(diǎn),不同的是填空題未給出答案,可以防止學(xué)生猜估答案的情況。要想迅速、正確地解選擇題、填空題,除了具有準(zhǔn)確的計(jì)算、嚴(yán)密的推理外,還要有解選擇題、填空題的方法與技巧。下面通過實(shí)例介紹常用方法。

 。1)直接推演法:直接從命題給出的條件出發(fā),運(yùn)用概念、公式、定理等進(jìn)行推理或運(yùn)算,得出結(jié)論,選擇正確答案,這就是傳統(tǒng)的解題方法,這種解法叫直接推演法。

  (2)驗(yàn)證法:由題設(shè)找出合適的驗(yàn)證條件,再通過驗(yàn)證,找出正確答案,亦可將供選擇的答案代入條件中去驗(yàn)證,找出正確答案,此法稱為驗(yàn)證法(也稱代入法)。當(dāng)遇到定量命題時(shí),常用此法。

 。3)特殊元素法:用合適的特殊元素(如數(shù)或圖形)代入題設(shè)條件或結(jié)論中去,從而獲得解答。這種方法叫特殊元素法。

 。4)排除、篩選法:對于正確答案有且只有一個(gè)的選擇題,根據(jù)數(shù)學(xué)知識或推理、演算,把不正確的結(jié)論排除,余下的結(jié)論再經(jīng)篩選,從而作出正確的結(jié)論的解法叫排除、篩選法。

 。5)圖解法:借助于符合題設(shè)條件的圖形或圖象的性質(zhì)、特點(diǎn)來判斷,作出正確的選擇稱為圖解法。圖解法是解選擇題常用方法之一。

  (6)分析法:直接通過對選擇題的條件和結(jié)論,作詳盡的分析、歸納和判斷,從而選出正確的結(jié)果,為分析法。

初中數(shù)學(xué)知識點(diǎn)總結(jié)8

  一、數(shù)與代數(shù)

  a、數(shù)與式:

  1、有理數(shù):

 、僬麛(shù)→正整數(shù)/0/負(fù)整數(shù)

 、诜?jǐn)?shù)→正分?jǐn)?shù)/負(fù)分?jǐn)?shù)

  數(shù)軸:

  ①畫一條水平直線,在直線上取一點(diǎn)表示0(原點(diǎn)),選取某一長度作為單位長度,規(guī)定直線上向右的方向?yàn)檎较颍偷玫綌?shù)軸。

 、谌魏我粋(gè)有理數(shù)都可以用數(shù)軸上的一個(gè)點(diǎn)來表示。

 、廴绻麅蓚(gè)數(shù)只有符號不同,那么我們稱其中一個(gè)數(shù)為另外一個(gè)數(shù)的相反數(shù),也稱這兩個(gè)數(shù)互為相反數(shù)。在數(shù)軸上,表示互為相反數(shù)的兩個(gè)點(diǎn),位于原點(diǎn)的兩側(cè),并且與原點(diǎn)距離相等。

  ④數(shù)軸上兩個(gè)點(diǎn)表示的數(shù),右邊的總比左邊的大。正數(shù)大于0,負(fù)數(shù)小于0,正數(shù)大于負(fù)數(shù)。

  絕對值:

  ①在數(shù)軸上,一個(gè)數(shù)所對應(yīng)的點(diǎn)與原點(diǎn)的距離叫做該數(shù)的絕對值。

 、谡龜(shù)的絕對值是他的本身、負(fù)數(shù)的絕對值是他的相反數(shù)、0的絕對值是0。兩個(gè)負(fù)數(shù)比較大小,絕對值大的反而小。

  有理數(shù)的運(yùn)算:加法:

 、偻栂嗉樱∠嗤姆,把絕對值相加。

 、诋愄栂嗉樱^對值相等時(shí)和為0;絕對值不等時(shí),取絕對值較大的數(shù)的符號,并用較大的絕對值減去較小的絕對值。

  ③一個(gè)數(shù)與0相加不變。

  減法:減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù)。

  乘法:

 、賰蓴(shù)相乘,同號得正,異號得負(fù),絕對值相乘。

 、谌魏螖(shù)與0相乘得0。

 、鄢朔e為1的兩個(gè)有理數(shù)互為倒數(shù)。

  除法:

 、俪砸粋(gè)數(shù)等于乘以一個(gè)數(shù)的倒數(shù)。

 、0不能作除數(shù)。

  乘方:求n個(gè)相同因數(shù)a的積的運(yùn)算叫做乘方,乘方的結(jié)果叫冪,a叫底數(shù),n叫次數(shù)。

  混合順序:先算乘法,再算乘除,最后算加減,有括號要先算括號里的。

  2、實(shí)數(shù)無理數(shù):無限不循環(huán)小數(shù)叫無理數(shù)

  平方根:

 、偃绻粋(gè)正數(shù)x的平方等于a,那么這個(gè)正數(shù)x就叫做a的算術(shù)平方根。

 、谌绻粋(gè)數(shù)x的平方等于a,那么這個(gè)數(shù)x就叫做a的平方根。

 、垡粋(gè)正數(shù)有2個(gè)平方根/0的平方根為0/負(fù)數(shù)沒有平方根。

 、芮笠粋(gè)數(shù)a的平方根運(yùn)算,叫做開平方,其中a叫做被開方數(shù)。

  立方根:

 、偃绻粋(gè)數(shù)x的立方等于a,那么這個(gè)數(shù)x就叫做a的立方根。

 、谡龜(shù)的立方根是正數(shù)、0的立方根是0、負(fù)數(shù)的立方根是負(fù)數(shù)。

 、矍笠粋(gè)數(shù)a的立方根的運(yùn)算叫開立方,其中a叫做被開方數(shù)。

  實(shí)數(shù):

 、賹(shí)數(shù)分有理數(shù)和無理數(shù)。

 、谠趯(shí)數(shù)范圍內(nèi),相反數(shù),倒數(shù),絕對值的意義和有理數(shù)范圍內(nèi)的相反數(shù),倒數(shù),絕對值的意義完全一樣。

 、勖恳粋(gè)實(shí)數(shù)都可以在數(shù)軸上的一個(gè)點(diǎn)來表示。

  3、代數(shù)式

  代數(shù)式:單獨(dú)一個(gè)數(shù)或者一個(gè)字母也是代數(shù)式。

  合并同類項(xiàng):

  ①所含字母相同,并且相同字母的指數(shù)也相同的項(xiàng),叫做同類項(xiàng)。

 、诎淹愴(xiàng)合并成一項(xiàng)就叫做合并同類項(xiàng)。

  ③在合并同類項(xiàng)時(shí),我們把同類項(xiàng)的系數(shù)相加,字母和字母的指數(shù)不變。

  4、整式與分式

  整式:

 、贁(shù)與字母的乘積的代數(shù)式叫單項(xiàng)式,幾個(gè)單項(xiàng)式的和叫多項(xiàng)式,單項(xiàng)式和多項(xiàng)式統(tǒng)稱整式。

 、谝粋(gè)單項(xiàng)式中,所有字母的指數(shù)和叫做這個(gè)單項(xiàng)式的次數(shù)。

 、垡粋(gè)多項(xiàng)式中,次數(shù)最高的項(xiàng)的次數(shù)叫做這個(gè)多項(xiàng)式的'次數(shù)。

  整式運(yùn)算:加減運(yùn)算時(shí),如果遇到括號先去括號,再合并同類項(xiàng)。

  冪的運(yùn)算:am+an=a(m+n)

  (am)n=amn

  (a/b)n=an/bn除法一樣。

  整式的乘法:

 、賳雾(xiàng)式與單項(xiàng)式相乘,把他們的系數(shù),相同字母的冪分別相乘,其余字母連同他的指數(shù)不變,作為積的因式。

  ②單項(xiàng)式與多項(xiàng)式相乘,就是根據(jù)分配律用單項(xiàng)式去乘多項(xiàng)式的每一項(xiàng),再把所得的積相加。

 、鄱囗(xiàng)式與多項(xiàng)式相乘,先用一個(gè)多項(xiàng)式的每一項(xiàng)乘另外一個(gè)多項(xiàng)式的每一項(xiàng),再把所得的積相加。

  公式兩條:平方差公式/完全平方公式

  整式的除法:

 、賳雾(xiàng)式相除,把系數(shù),同底數(shù)冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則連同他的指數(shù)一起作為商的一個(gè)因式。

 、诙囗(xiàng)式除以單項(xiàng)式,先把這個(gè)多項(xiàng)式的每一項(xiàng)分別除以單項(xiàng)式,再把所得的商相加。

  分解因式:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,這種變化叫做把這個(gè)多項(xiàng)式分解因式。

  方法:提公因式法、運(yùn)用公式法、分組分解法、十字相乘法。

  分式:

 、僬絘除以整式b,如果除式b中含有分母,那么這個(gè)就是分式,對于任何一個(gè)分式,分母不為0。

  ②分式的分子與分母同乘以或除以同一個(gè)不等于0的整式,分式的值不變。

  初中數(shù)學(xué)知識點(diǎn):直線的位置與常數(shù)的關(guān)系

 、賙>0則直線的傾斜角為銳角

 、趉<0則直線的傾斜角為鈍角

  ③圖像越陡|k|越大

  ④b>0直線與y軸的交點(diǎn)在x軸的上方

 、輇<0直線與y軸的交點(diǎn)在x軸的下方

初中數(shù)學(xué)知識點(diǎn)總結(jié)9

  常用數(shù)學(xué)公式

  乘法與因式分a2-b2=(a+b)(a-b)

  a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)

  三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b-b≤a≤b

  |a-b|≥|a|-|b|-|a|≤a≤|a|

  一元二次方程的解x1=-b+√(b2-4ac)/2ax2=-b-√(b2-4ac)/2a

  根與系數(shù)的關(guān)系X1+X2=-b/aX1*X2=c/a注:韋達(dá)定理

  判別式

  b2-4ac=0注:方程有兩個(gè)相等的實(shí)根b2-4ac>0注:方程有兩個(gè)不等的實(shí)根

  b2-4ac

  某些數(shù)列前n項(xiàng)和

  1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n2

  2+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n+1)2/4

  1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

  正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圓半徑

  余弦定理b2=a2+c2-2accosB注:角B是邊a和邊c的夾角

  圓的標(biāo)準(zhǔn)方程(x-a)2+(y-b)2=r2注:(a,b)是圓心坐標(biāo)圓的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0拋物線標(biāo)準(zhǔn)方程y2=2pxy2=-2pxx2=2pyx2=-2py

  直棱柱側(cè)面積S=c*h斜棱柱側(cè)面積S=c"*h

  正棱錐側(cè)面積S=1/2c*h"正棱臺(tái)側(cè)面積S=1/2(c+c")h"圓臺(tái)側(cè)面積S=1/2(c+c")l=pi(R+r)l球的表面積S=4pi*r2圓柱側(cè)面積S=c*h=2pi*h圓錐側(cè)面積S=1/2*c*l=pi*r*l

  弧長公式l=a*ra是圓心角的弧度數(shù)r>0扇形面積公式s=1/2*l*r

  錐體體積公式V=1/3*S*H圓錐體體積公式V=1/3*pi*r2h斜棱柱體積V=S"L注:其中,S"是直截面面積,L是側(cè)棱長柱體體積公式V=s*h圓柱體V=pi*r2h

  1過兩點(diǎn)有且只有一條直線2兩點(diǎn)之間線段最短3同角或等角的補(bǔ)角相等4同角或等角的余角相等

  5過一點(diǎn)有且只有一條直線和已知直線垂直

  6直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短

  7平行公理經(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行8如果兩條直線都和第三條直線平行,這兩條直線也互相平行9同位角相等,兩直線平行10內(nèi)錯(cuò)角相等,兩直線平行11同旁內(nèi)角互補(bǔ),兩直線平行12兩直線平行,同位角相等13兩直線平行,內(nèi)錯(cuò)角相等14兩直線平行,同旁內(nèi)角互補(bǔ)

  15定理三角形兩邊的和大于第三邊16推論三角形兩邊的差小于第三邊

  17三角形內(nèi)角和定理三角形三個(gè)內(nèi)角的和等于180°18推論1直角三角形的兩個(gè)銳角互余

  19推論2三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和20推論3三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角21全等三角形的對應(yīng)邊、對應(yīng)角相等

  22邊角邊公理(SAS)有兩邊和它們的夾角對應(yīng)相等的兩個(gè)三角形全等23角邊角公理(ASA)有兩角和它們的夾邊對應(yīng)相等的兩個(gè)三角形全等24推論(AAS)有兩角和其中一角的對邊對應(yīng)相等的兩個(gè)三角形全等25邊邊邊公理(SSS)有三邊對應(yīng)相等的兩個(gè)三角形全等

  26斜邊、直角邊公理(HL)有斜邊和一條直角邊對應(yīng)相等的兩個(gè)直角三角形全等27定理1在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等

  28定理2到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上29角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合

  30等腰三角形的性質(zhì)定理等腰三角形的兩個(gè)底角相等(即等邊對等角)31推論1等腰三角形頂角的平分線平分底邊并且垂直于底邊

  32等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合33推論3等邊三角形的各角都相等,并且每一個(gè)角都等于60°

  34等腰三角形的判定定理如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對的邊也相等(等角對等邊)

  35推論1三個(gè)角都相等的三角形是等邊三角形36推論2有一個(gè)角等于60°的等腰三角形是等邊三角形37在直角三角形中,如果一個(gè)銳角等于30°那么它所對的直角邊等于斜邊的一半38直角三角形斜邊上的中線等于斜邊上的一半

  39定理線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等

  40逆定理和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上41線段的垂直平分線可看作和線段兩端點(diǎn)距離相等的所有點(diǎn)的集合42定理1關(guān)于某條直線對稱的兩個(gè)圖形是全等形

  43定理2如果兩個(gè)圖形關(guān)于某直線對稱,那么對稱軸是對應(yīng)點(diǎn)連線的垂直平分線

  44定理3兩個(gè)圖形關(guān)于某直線對稱,如果它們的對應(yīng)線段或延長線相交,那么交點(diǎn)在對稱軸上

  45逆定理如果兩個(gè)圖形的對應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線對稱

  46勾股定理直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三邊長a、b、c有關(guān)系a^2+b^2=c^2,那么這個(gè)三角形是直角三角形48定理四邊形的內(nèi)角和等于360°49四邊形的外角和等于360°

  50多邊形內(nèi)角和定理n邊形的內(nèi)角的和等于(n-2)×180°51推論任意多邊的外角和等于360°

  52平行四邊形性質(zhì)定理1平行四邊形的對角相等53平行四邊形性質(zhì)定理2平行四邊形的對邊相等54推論夾在兩條平行線間的平行線段相等

  55平行四邊形性質(zhì)定理3平行四邊形的對角線互相平分

  56平行四邊形判定定理1兩組對角分別相等的四邊形是平行四邊形57平行四邊形判定定理2兩組對邊分別相等的四邊形是平行四邊形58平行四邊形判定定理3對角線互相平分的四邊形是平行四邊形

  59平行四邊形判定定理4一組對邊平行相等的四邊形是平行四邊形60矩形性質(zhì)定理1矩形的四個(gè)角都是直角61矩形性質(zhì)定理2矩形的對角線相等

  62矩形判定定理1有三個(gè)角是直角的四邊形是矩形63矩形判定定理2對角線相等的平行四邊形是矩形64菱形性質(zhì)定理1菱形的四條邊都相等

  65菱形性質(zhì)定理2菱形的對角線互相垂直,并且每一條對角線平分一組對角66菱形面積=對角線乘積的一半,即S=(a×b)÷267菱形判定定理1四邊都相等的四邊形是菱形

  68菱形判定定理2對角線互相垂直的平行四邊形是菱形

  69正方形性質(zhì)定理1正方形的四個(gè)角都是直角,四條邊都相等

  70正方形性質(zhì)定理2正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角

  71定理1關(guān)于中心對稱的兩個(gè)圖形是全等的

  72定理2關(guān)于中心對稱的兩個(gè)圖形,對稱點(diǎn)連線都經(jīng)過對稱中心,并且被對稱中心平分73逆定理如果兩個(gè)圖形的對應(yīng)點(diǎn)連線都經(jīng)過某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對稱

  74等腰梯形性質(zhì)定理等腰梯形在同一底上的兩個(gè)角相等75等腰梯形的兩條對角線相等

  76等腰梯形判定定理在同一底上的兩個(gè)角相等的梯形是等腰梯形77對角線相等的梯形是等腰梯形

  78平行線等分線段定理如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等

  79推論1經(jīng)過梯形一腰的中點(diǎn)與底平行的直線,必平分另一腰

  80推論2經(jīng)過三角形一邊的中點(diǎn)與另一邊平行的直線,必平分第三邊81三角形中位線定理三角形的中位線平行于第三邊,并且等于它的一半82梯形中位線定理梯形的中位線平行于兩底,并且等于兩底和的一半L=(a+b)÷2S=L×h83(1)比例的基本性質(zhì)如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84(2)合比性質(zhì)如果a/b=c/d,那么(a±b)/b=(c±d)/d

  85(3)等比性質(zhì)如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b

  86平行線分線段成比例定理三條平行線截兩條直線,所得的對應(yīng)線段成比例87推論平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應(yīng)線段成比例88定理如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應(yīng)線段成比例,那么這條直線平行于三角形的第三邊

  89平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應(yīng)成比例

  90定理平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似

  91相似三角形判定定理1兩角對應(yīng)相等,兩三角形相似(ASA)92直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似93判定定理2兩邊對應(yīng)成比例且夾角相等,兩三角形相似(SAS)

  94判定定理3三邊對應(yīng)成比例,兩三角形相似(SSS)

  95定理如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊對應(yīng)成比例,那么這兩個(gè)直角三角形相似96性質(zhì)定理1相似三角形對應(yīng)高的比,對應(yīng)中線的比與對應(yīng)角平分線的比都等于相似比

  97性質(zhì)定理2相似三角形周長的比等于相似比

  98性質(zhì)定理3相似三角形面積的比等于相似比的平方

  99任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值

  100任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值

  101圓是定點(diǎn)的距離等于定長的點(diǎn)的集合

  102圓的內(nèi)部可以看作是圓心的距離小于半徑的'點(diǎn)的集合103圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合104同圓或等圓的半徑相等

  105到定點(diǎn)的距離等于定長的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長為半徑的圓

  106和已知線段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著條線段的垂直平分線

  107到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線

  108到兩條平行線距離相等的點(diǎn)的軌跡,是和這兩條平行線平行且距離相等的一條直線

  109定理不在同一直線上的三點(diǎn)確定一個(gè)圓。110垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

  111推論1①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條、谙业拇怪逼椒志經(jīng)過圓心,并且平分弦所對的兩條弧

 、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧112推論2圓的兩條平行弦所夾的弧相等113圓是以圓心為對稱中心的中心對稱圖形

  114定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

  115推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等116定理一條弧所對的圓周角等于它所對的圓心角的一半

  117推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等118推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑

  119推論3如果三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形120定理圓的內(nèi)接四邊形的對角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對角

  121①直線L和⊙O相交d<r②直線L和⊙O相切d=r③直線L和⊙O相離d>r

  122切線的判定定理經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線

  123切線的性質(zhì)定理圓的切線垂直于經(jīng)過切點(diǎn)的半徑124推論1經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點(diǎn)125推論2經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過圓心

  126切線長定理從圓外一點(diǎn)引圓的兩條切線,它們的切線長相等,圓心和這一點(diǎn)的連線平分兩條切線的夾角127圓的外切四邊形的兩組對邊的和相等

  128弦切角定理弦切角等于它所夾的弧對的圓周角

  129推論如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等130相交弦定理圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長的積相等

  131推論如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項(xiàng)

  132切割線定理從圓外一點(diǎn)引圓的切線和割線,切線長是這點(diǎn)到割線與圓交點(diǎn)的兩條線段長的比例中項(xiàng)

  133推論從圓外一點(diǎn)引圓的兩條割線,這一點(diǎn)到每條割線與圓的交點(diǎn)的兩條線段長的積相等

  134如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上135①兩圓外離d>R+r②兩圓外切d=R+r③兩圓相交R-r<d<R+r(R>r)

  ④兩圓內(nèi)切d=R-r(R>r)⑤兩圓內(nèi)含d<R-r(R>r)136定理相交兩圓的連心線垂直平分兩圓的公共弦137定理把圓分成n(n≥3):

 、乓来芜B結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形

 、平(jīng)過各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形138定理任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓139正n邊形的每個(gè)內(nèi)角都等于(n-2)×180°/n

  140定理正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形141正n邊形的面積Sn=pnrn/2p表示正n邊形的周長142正三角形面積√3a/4a表示邊長

  143如果在一個(gè)頂點(diǎn)周圍有k個(gè)正n邊形的角,由于這些角的和應(yīng)為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4144弧長計(jì)算公式:L=n兀R/180

  145扇形面積公式:S扇形=n兀R^2/360=LR/2146內(nèi)公切線長=d-(R-r)外公切線長=d-(R+r)147完全平方公式:(a+b)^2=a^2+2ab+b^2(a-b)^2=a^2-2ab+b^2148平方差公式:(a+b)(a-b)=a^2-b^2

初中數(shù)學(xué)知識點(diǎn)總結(jié)10

  知識點(diǎn)總結(jié)

  1.定義:兩組對邊分別平行的四邊形叫平行四邊形

  2.平行四邊形的性質(zhì)

  (1)平行四邊形的對邊平行且相等;

 。2)平行四邊形的鄰角互補(bǔ),對角相等;

  (3)平行四邊形的對角線互相平分;

  3.平行四邊形的判定

  平行四邊形是幾何中一個(gè)重要內(nèi)容,如何根據(jù)平行四邊形的性質(zhì),判定一個(gè)四邊形是平行四邊形是個(gè)重點(diǎn),下面就對平行四邊形的五種判定方法,進(jìn)行劃分:

  第一類:與四邊形的對邊有關(guān)

 。1)兩組對邊分別平行的四邊形是平行四邊形;

 。2)兩組對邊分別相等的四邊形是平行四邊形;

 。3)一組對邊平行且相等的四邊形是平行四邊形;

  第二類:與四邊形的對角有關(guān)

 。4)兩組對角分別相等的四邊形是平行四邊形;

  第三類:與四邊形的對角線有關(guān)

 。5)對角線互相平分的四邊形是平行四邊形

  常見考法

  (1)利用平行四邊形的'性質(zhì),求角度、線段長、周長;

 。2)求平行四邊形某邊的取值范圍;

  (3)考查一些綜合計(jì)算問題;

  (4)利用平行四邊形性質(zhì)證明角相等、線段相等和直線平行;

  (5)利用判定定理證明四邊形是平行四邊形。

  誤區(qū)提醒

 。1)平行四邊形的性質(zhì)較多,易把對角線互相平分,錯(cuò)記成對角線相等;

 。2)“一組對邊平行且相等的四邊形是平行四邊形”錯(cuò)記成“一組對邊平行,一組對邊相等的四邊形是平行四邊形”后者不是平行四邊形的判定定理,它只是個(gè)等腰梯形。

初中數(shù)學(xué)知識點(diǎn)總結(jié)11

  第十一章三角形

  一、知識框架:

  二、知識概念:

  1.三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形.

  2.三邊關(guān)系:三角形任意兩邊的和(大于或小于)第三邊,任意兩邊的差(大于或小于)第三邊.

  3.高:從三角形的一個(gè)頂點(diǎn)向它的對邊所在直線作,頂點(diǎn)和間的線段叫做三角形的高.4.中線:在三角形中,連接一個(gè)頂點(diǎn)和它對邊的線段叫做三角形的中線.

  5.角平分線:三角形的一個(gè)內(nèi)角的平分線與這個(gè)角的對邊相交,這個(gè)角的頂點(diǎn)和之間的線段叫做三角形的角平分線.

  6.三角形的穩(wěn)定性:三角形的形狀是,三角形的這個(gè)性質(zhì)叫三角形的穩(wěn)定性.

  7.多邊形:在平面內(nèi),由一些線段首尾順次相接組成的圖形叫做多邊形.

  8.多邊形的內(nèi)角:多邊形兩邊組成的角叫做它的內(nèi)角.

  9.多邊形的外角:多邊形的一邊與它的鄰邊的線組成的角叫做多邊形的外角.

  10.多邊形的對角線:連接多邊形的兩個(gè)頂點(diǎn)的線段,叫做多邊形的對角線.

  11.正多邊形:在平面內(nèi),各個(gè)角都相等,各條邊都相等的多邊形叫正多邊形.

  12.平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面,

  13.公式與性質(zhì):

 、湃切蔚膬(nèi)角和:三角形的內(nèi)角和為度。

  ⑵三角形外角的性質(zhì):

  性質(zhì)1:三角形的一個(gè)外角等于和它不相鄰的的和.

  性質(zhì)2:三角形的一個(gè)外角大于任何一個(gè)和它的內(nèi)角.

 、嵌噙呅蝺(nèi)角和公式:n邊形的內(nèi)角和等于。

  學(xué)無慮課后輔導(dǎo)中心編制

 、榷噙呅蔚耐饨呛停憾噙呅蔚耐饨呛蜑槎.

 、啥噙呅螌蔷的條數(shù):

  ①從n邊形的一個(gè)頂點(diǎn)出發(fā)可以引條對角線,把多邊形分成個(gè)三角形.

  ②n邊形共有條對角線.

  第十二章全等三角形

  一、知識框架:

  二、知識概念:

  1.基本定義:

 、湃刃危耗軌蛲耆膬蓚(gè)圖形叫做全等形.

  ⑵全等三角形:能夠完全的兩個(gè)三角形叫做全等三角形.

  ⑶對應(yīng)頂點(diǎn):全等三角形中互相的頂點(diǎn)叫做對應(yīng)頂點(diǎn).

 、葘(yīng)邊:全等三角形中互相的邊叫做對應(yīng)邊.

 、蓪(yīng)角:全等三角形中互相的角叫做對應(yīng)角.

  2.基本性質(zhì):

 、湃切蔚姆(wěn)定性:三角形三邊的確定了,這個(gè)三角形的形狀、大小就全確定,這個(gè)性質(zhì)叫做三角形的穩(wěn)定性.

 、迫热切蔚男再|(zhì):全等三角形的相等,對應(yīng)角相等.

  3.全等三角形的判定定理:

 、胚呥呥叄⊿SS):。

 、七吔沁叄⊿AS):。

 、墙沁吔牵ˋSA):。

 、冉墙沁叄ˋAS):。

 、尚边、直角邊(HL):。

  4.角平分線:⑴畫法:⑵性質(zhì)定理:角平分線上的點(diǎn)到角的兩邊的距離.⑶性質(zhì)定理的逆定理:角的內(nèi)部到角的兩邊距離相等的點(diǎn)在角的上.

  5.證明的基本方法:

 、琶鞔_命題中的已知和求證.(包括隱含條件,如公共邊、公共角、對頂角、角平分線、中線、高、等腰三角形等所隱含的邊角關(guān)系)⑵根據(jù)題意,畫出圖形,并用數(shù)字符號表示已知和求證.⑶經(jīng)過分析,找出由已知推出求證的途徑,寫出證明過程.

  第十三章軸對稱

  一、知識框架:

  二、知識概念:

  1.基本概念:

 、泡S對稱圖形:如果一個(gè)圖形沿一條直線折疊,直線兩旁的部分能夠互相,這個(gè)圖形就叫做軸對稱圖形.

 、苾蓚(gè)圖形成軸對稱:把一個(gè)圖形沿某一條直線折疊,如果它能夠與另一個(gè)圖形重合,那么就說這兩個(gè)圖形關(guān)于這條直線對稱.⑶線段的垂直平分線:經(jīng)過線段中點(diǎn)并且這條線段的直線,叫做這條線段的垂直平分線.

 、鹊妊切危河袃蓷l邊相等的三角形叫做等腰三角形.相等的兩條邊叫做腰,另一條邊叫做底邊,兩腰所夾的角叫做頂角,底邊與腰的夾角叫做底角.

 、傻冗吶切危憾枷嗟鹊娜切谓凶龅冗吶切.2.基本性質(zhì):⑴對稱的性質(zhì):①不管是軸對稱圖形還是兩個(gè)圖形關(guān)于某條直線對稱,對稱軸都是任何一對對應(yīng)點(diǎn)所連線段的垂直平分線.②對稱的圖形都全等.⑵線段垂直平分線的`性質(zhì):①線段垂直平分線上的點(diǎn)與這條線段的距離相等.②與一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn)在這條線段的上.⑶關(guān)于坐標(biāo)軸對稱的點(diǎn)的坐標(biāo)性質(zhì)①點(diǎn)P(x,y)關(guān)于x軸對稱的點(diǎn)的坐標(biāo)為P"(,).②點(diǎn)P(x,y)關(guān)于y軸對稱的點(diǎn)的坐標(biāo)為P"(,).⑷等腰三角形的性質(zhì):

  ①等腰三角形兩腰.

 、诘妊切蝺傻捉窍嗟龋ǖ冗厡Φ冉牵.

  ③等腰三角形的、,相互重合.④等腰三角形是圖形,對稱軸是三線合一(1條).⑸等邊三角形的性質(zhì):

 、俚冗吶切稳叾枷嗟.

 、诘冗吶切稳齻(gè)內(nèi)角都相等,都等于度。③等邊三角形每條邊上都存在三線合一.

 、艿冗吶切问禽S對稱圖形,對稱軸是三線合一(3條).3.基本判定:

  ⑴等腰三角形的判定:

  ①相等的三角形是等腰三角形.

 、谌绻粋(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對的邊也(等角對等邊).

 、频冗吶切蔚呐卸ǎ

 、俣枷嗟鹊娜切问堑冗吶切.②三個(gè)角都相等的三角形是三角形.

 、塾幸粋(gè)角是度。的等腰三角形是等邊三角形.

  4.基本方法:

 、抛鲆阎本的垂線:

 、谱鲆阎段的垂直平分線:

 、亲鲗ΨQ軸:連接兩個(gè)對應(yīng)點(diǎn),作所連線段的垂直平分線.

  ⑷作已知圖形關(guān)于某直線的對稱圖形:

 、稍谥本上做一點(diǎn),使它到該直線同側(cè)的兩個(gè)已知點(diǎn)的距離之和最短.

  第十四章整式的乘除與分解因式

  一、知識框架:

  整式乘法乘法法則整式除法因式分解

  二、知識概念:

  基本運(yùn)算:⑴同底數(shù)冪的乘法公式:。⑵冪的乘方公式:。⑶積的乘方公式:。

  2.整式的乘法:⑴單項(xiàng)式單項(xiàng)式:系數(shù),同字母,不同字母為積的因式.⑵單項(xiàng)式多項(xiàng)式:。⑶多項(xiàng)式多項(xiàng)式:.

  3.計(jì)算公式:

 、牌椒讲罟剑篴babab

  222222⑵完全平方公式:aba2abb;aba2abb

  224.整式的除法:

 、磐讛(shù)冪的除法:aaamnmn

 、茊雾(xiàng)式單項(xiàng)式:系數(shù),同字母,不同字母作為商的因式.⑶多項(xiàng)式單項(xiàng)式:.⑷多項(xiàng)式多項(xiàng)式:用豎式.

  5.因式分解:把一個(gè)多項(xiàng)式化成的積的形式,這種變形叫做把這個(gè)式子因式分解.

  6.因式分解方法:

 、盘峁蚴椒ǎ赫页鲎畲蠊蚴.⑵公式法:①平方差公式:。②完全平方公式:。③立方和:。④立方差:。⑶十字相乘法:。⑷拆項(xiàng)法⑸添項(xiàng)法第十五章分式一、知識框架:

  二、知識概念:A1.分式:形如,A、B是整式,B中含有字母且B不等于的整式叫做分式.其中AB叫做分式的,B叫做分式的2.分式有意義的條件:分母不等于.3.分式的基本性質(zhì):分式的分子和分母同時(shí)乘以(或除以)同一個(gè)不為的整式,分式的值不變.4.約分:把一個(gè)分式的分子和分母的(不為1的數(shù))約去,這種變形稱為約分.5.通分:異分母的分式可以化成的分式,這一過程叫做通分.

  6.最簡分式:一個(gè)分式的分子和分母沒有時(shí),這個(gè)分式稱為最簡分式,約分時(shí),一般將一個(gè)分式化為最簡分式.7.分式的四則運(yùn)算:

 、磐帜阜质郊訙p法則:同分母的分式相加減,分母,把相加減.用字

  母表示

  為:。

 、飘惙帜阜质郊訙p法則:異分母的分式相加減,先,化為同分母的分

  式,然后再按同分母分式的加減法法則進(jìn)行計(jì)算.用字母表示為:。

 、欠质降某朔ǚ▌t:兩個(gè)分式相乘,把相乘的積作為積的分子,把相乘的積作為積的分母.用字母表示為:。

 、确质降某ǚ▌t:兩個(gè)分式相除,把除式的和顛倒位置后再與被除式相乘.用字母表示為:。⑸分式的乘方法則:、分別乘方.用字母表示為:。8.整數(shù)指數(shù)冪:⑴aaam⑵amnmn(m、n是正整數(shù))namn(m、n是正整數(shù))nn⑶abab(n是正整數(shù))n⑷aaanmnmn(a0,m、n是正整數(shù),mn)ana⑸n(n是正整數(shù))bb⑹an1(a0,n是正整數(shù))na9.分式方程的意義:分母中含有未知數(shù)的方程叫做分式方程.10.分式方程的解法:

 、(方程兩邊同時(shí)乘以最簡公分母,將分式方程化為整式方程);②按解整式方程的步驟求出未知數(shù)的值;

 、(求出未知數(shù)的值后必須驗(yàn)根,因?yàn)樵诎逊质椒匠袒癁檎椒匠痰倪^程中,擴(kuò)大了未知數(shù)的取值范圍,可能產(chǎn)生增根).

初中數(shù)學(xué)知識點(diǎn)總結(jié)12

  一、在創(chuàng)新中培養(yǎng)學(xué)生的歸納意?R

  在初中數(shù)學(xué)教學(xué)中,重點(diǎn)是對學(xué)生的創(chuàng)新精神和實(shí)踐能力的培養(yǎng),體現(xiàn)出現(xiàn)代素質(zhì)教育。學(xué)生創(chuàng)新能力的培養(yǎng)在學(xué)習(xí)中占據(jù)非常重要的作用,在創(chuàng)新中學(xué)生可以鞏固自身所學(xué)的知識,使數(shù)學(xué)知識在自己的頭腦中根深蒂固,各類知識點(diǎn)在學(xué)生的頭腦中形成清晰的框架,有助于學(xué)生歸納意識的培養(yǎng)。歸納意識的培養(yǎng),可以減輕學(xué)生的學(xué)習(xí)負(fù)擔(dān),提升學(xué)生對知識的理解能力。

  初中生在學(xué)習(xí)數(shù)學(xué)的環(huán)節(jié)中,常常會(huì)接觸到大量的圖像,在數(shù)學(xué)學(xué)習(xí)中,老師應(yīng)該鼓勵(lì)學(xué)生大膽創(chuàng)新,在創(chuàng)新環(huán)節(jié)中完成對知識點(diǎn)的歸納。數(shù)學(xué)學(xué)習(xí)并不死板,不僅僅學(xué)習(xí)教科書上的知識,還應(yīng)該學(xué)習(xí)書本以外的知識,從而創(chuàng)新自己的思維。例如在進(jìn)行函數(shù)的學(xué)習(xí)中,老師可以讓學(xué)生繪制函數(shù)圖像,對函數(shù)進(jìn)行分類討論,從而掌握遞增函數(shù)和遞減函數(shù)的定義,在分類討論后,學(xué)生結(jié)合圖像進(jìn)行歸納。在數(shù)學(xué)教學(xué)中,老師不僅僅要重視書本上的邏輯內(nèi)容,而且在把握邏輯內(nèi)容的基礎(chǔ)上,將圖像和數(shù)學(xué)知識有機(jī)結(jié)合起來,使學(xué)生可以大膽創(chuàng)新。

  很多學(xué)生在數(shù)學(xué)學(xué)習(xí)中存在困難,認(rèn)為數(shù)學(xué)的學(xué)習(xí)就是解答大量的難題,他們在大量的題海戰(zhàn)術(shù)后不善于歸納,導(dǎo)致數(shù)學(xué)學(xué)習(xí)的效率不高。

  二、在交流中歸納知識點(diǎn)

  在數(shù)學(xué)學(xué)習(xí)中,如果學(xué)生只是自己探究,那么在學(xué)習(xí)中不會(huì)得到靈感。數(shù)學(xué)學(xué)習(xí)不僅僅要求學(xué)生具有認(rèn)真的鉆研態(tài)度,而且也需要老師幫助學(xué)生養(yǎng)成歸納的意識。溝通和交流不僅僅在語言的學(xué)習(xí)中發(fā)揮非常重要的作用,而且在數(shù)學(xué)學(xué)習(xí)中同樣非常重要。學(xué)生在解答數(shù)學(xué)問題中,常常會(huì)遇到一些問題,學(xué)生自己探究會(huì)陷入到死胡同中,需要老師和同學(xué)的幫助才能進(jìn)一步完成。

  為了切實(shí)在初中數(shù)學(xué)教學(xué)中培養(yǎng)學(xué)生的歸納意識,老師可以將班級內(nèi)的學(xué)生分成幾個(gè)不同的小組,組內(nèi)的`同學(xué)可以通過合作的方式,對知識點(diǎn)進(jìn)行歸納,在數(shù)學(xué)的學(xué)習(xí)中更加變通,將數(shù)學(xué)這門學(xué)科應(yīng)用到生活中。

  例如,在進(jìn)行二次函數(shù)的學(xué)習(xí)中,老師可以將學(xué)生分成不同的小組,留給學(xué)生充足的時(shí)間,讓他們互相幫助,在溝通中對知識點(diǎn)進(jìn)行歸納。學(xué)生很快就能得到結(jié)論,如果函數(shù)有兩個(gè)解,那么函數(shù)與數(shù)軸會(huì)有兩個(gè)交點(diǎn),如果方程只有一個(gè)解,那么函數(shù)與數(shù)軸只有一個(gè)交點(diǎn),如果方程沒有解,那么函數(shù)與數(shù)軸沒有交點(diǎn)。學(xué)生通過分組討論的方式得到結(jié)論,通過歸納,學(xué)生對二次函數(shù)知識點(diǎn)的印象非常深刻。

  三、學(xué)會(huì)正確歸納

  在數(shù)學(xué)學(xué)習(xí)中,歸納思想非常重要,數(shù)學(xué)這門學(xué)科的知識非常細(xì)碎,是一門系統(tǒng)性很強(qiáng)的學(xué)科。數(shù)學(xué)知識錯(cuò)綜復(fù)雜,很多學(xué)生在學(xué)習(xí)數(shù)學(xué)中力不從心,掌握合理的歸納方式,可以切實(shí)提升學(xué)生的數(shù)學(xué)成績。初中生的思維還不是特別完善,在進(jìn)行數(shù)學(xué)學(xué)習(xí)環(huán)節(jié)中,對知識點(diǎn)進(jìn)行合理的歸納,是每位老師應(yīng)該采取的方法。如果學(xué)生不懂得歸納,那么在數(shù)學(xué)考試中,學(xué)生會(huì)將知識點(diǎn)混淆。為了提升學(xué)生的歸納能力,老師在課堂上應(yīng)該將一些容易混淆和容易出現(xiàn)錯(cuò)誤的習(xí)題讓學(xué)生總結(jié)。

  例如,在學(xué)習(xí)圓和直線這部分內(nèi)容中,老師都會(huì)將重點(diǎn)內(nèi)容,圓和圓的位置關(guān)系,直線和圓的位置關(guān)系進(jìn)行重點(diǎn)分析。老師可以借助一些參考書目和資料,總結(jié)一些相似的題目,讓學(xué)生在課堂上解答這些題目,使學(xué)生對這部分知識點(diǎn)進(jìn)行總結(jié),從而加深對這部分知識的理解。歸納思想在數(shù)學(xué)學(xué)習(xí)中應(yīng)用非常多,在進(jìn)行初中數(shù)學(xué)教學(xué)環(huán)節(jié)中,學(xué)生應(yīng)該花更多的時(shí)間進(jìn)行歸納。

  在進(jìn)行初中數(shù)學(xué)的學(xué)習(xí)中,學(xué)生歸納意識的養(yǎng)成可以完善學(xué)生的數(shù)學(xué)思維,學(xué)生學(xué)會(huì)歸納,在學(xué)習(xí)中就會(huì)如魚得水,在考試中取得好成績。

  四、在反思中完成知識點(diǎn)的歸納

初中數(shù)學(xué)知識點(diǎn)總結(jié)13

  誘導(dǎo)公式的本質(zhì)

  所謂三角函數(shù)誘導(dǎo)公式,就是將角n(/2)的三角函數(shù)轉(zhuǎn)化為角的三角函數(shù)。

  常用的誘導(dǎo)公式

  公式一: 設(shè)為任意角,終邊相同的角的同一三角函數(shù)的值相等:

  sin(2k)=sin kz

  cos(2k)=cos kz

  tan(2k)=tan kz

  cot(2k)=cot kz

  公式二: 設(shè)為任意角,的三角函數(shù)值與的三角函數(shù)值之間的關(guān)系:

  sin()=-sin

  cos()=-cos

  tan()=tan

  cot()=cot

  公式三: 任意角與 -的.三角函數(shù)值之間的關(guān)系:

  sin(-)=-sin

  cos(-)=cos

  tan(-)=-tan

  cot(-)=-cot

  公式四: 利用公式二和公式三可以得到與的三角函數(shù)值之間的關(guān)系:

  sin()=sin

  cos()=-cos

  tan()=-tan

  cot()=-cot

初中數(shù)學(xué)知識點(diǎn)總結(jié)14

  直線、射線、線段

 。1)直線、射線、線段的表示方法

 、僦本:用一個(gè)小寫字母表示,如:直線l,或用兩個(gè)大寫字母(直線上的)表示,如直線AB。

 、谏渚:是直線的一部分,用一個(gè)小寫字母表示,如:射線l;用兩個(gè)大寫字母表示,端點(diǎn)在前,如:射線OA。注意:用兩個(gè)字母表示時(shí),端點(diǎn)的字母放在前邊。

 、劬段:線段是直線的一部分,用一個(gè)小寫字母表示,如線段a;用兩個(gè)表示端點(diǎn)的字母表示,如:線段AB(或線段BA)。

  (2)點(diǎn)與直線的位置關(guān)系:

 、冱c(diǎn)經(jīng)過直線,說明點(diǎn)在直線上;

 、邳c(diǎn)不經(jīng)過直線,說明點(diǎn)在直線外。

  兩點(diǎn)間的距離

 。1)兩點(diǎn)間的距離:連接兩點(diǎn)間的線段的'長度叫兩點(diǎn)間的距離。

 。2)平面上任意兩點(diǎn)間都有一定距離,它指的是連接這兩點(diǎn)的線段的長度,學(xué)習(xí)此概念時(shí),注意強(qiáng)調(diào)最后的兩個(gè)字“長度”,也就是說,它是一個(gè)量,有大小,區(qū)別于線段,線段是圖形。線段的長度才是兩點(diǎn)的距離?梢哉f畫線段,但不能說畫距離。

  正方體

 。1)對于此類問題一般方法是用紙按圖的樣子折疊后可以解決,或是在對展開圖理解的基礎(chǔ)上直接想象。

 。2)從實(shí)物出發(fā),結(jié)合具體的問題,辨析幾何體的展開圖,通過結(jié)合立體圖形與平面圖形的轉(zhuǎn)化,建立空間觀念,是解決此類問題的關(guān)鍵。

  (3)正方體的展開圖有11種情況,分析平面展開圖的各種情況后再認(rèn)真確定哪兩個(gè)面的對面。

初中數(shù)學(xué)知識點(diǎn)總結(jié)15

  1 圓、圓心、半徑、直徑、圓弧、弦、半圓的定義

  2 垂直于弦的直徑

  圓是軸對稱圖形,任何一條直徑所在的直線都是它的對稱軸;

  垂直于弦的直徑平分弦,并且平方弦所對的兩條。

  平分弦的直徑垂直弦,并且平分弦所對的兩條弧。

  3 弧、弦、圓心角

  在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦也相等。

  4 圓周角

  在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半;

  半圓(或直徑)所對的圓周角是直角,90度的圓周角所對的弦是直徑。

  5 點(diǎn)和圓的位置關(guān)系

  點(diǎn)在圓外

  點(diǎn)在圓上 d=r

  點(diǎn)在圓內(nèi) d

  定理:不在同一條直線上的三個(gè)點(diǎn)確定一個(gè)圓。

  三角形的外接圓:經(jīng)過三角形的三個(gè)頂點(diǎn)的圓,外接圓的圓心是三角形的三條邊的垂直平分線的交點(diǎn),叫做三角形的外心。

  6直線和圓的位置關(guān)系

  相交 d

  相切 d=r

  相離 d>r

  切線的性質(zhì)定理:圓的切線垂直于過切點(diǎn)的半徑;

  切線的判定定理:經(jīng)過圓的外端并且垂直于這條半徑的直線是圓的切線;

  切線長定理:從圓外一點(diǎn)引圓的兩條切線,它們的切線長相等,這一點(diǎn)和圓心的連線平分兩條切線的夾角。

  三角形的`內(nèi)切圓:和三角形各邊都相切的圓為它的內(nèi)切圓,圓心是三角形的三條角平分線的交點(diǎn),為三角形的內(nèi)心。

  7 圓和圓的位置關(guān)系

  外離 d>R+r

  外切 d=R+r

  相交 R-r

  內(nèi)切 d=R-r

  內(nèi)含 d

  8 正多邊形和圓

  正多邊形的中心:外接圓的圓心

  正多邊形的半徑:外接圓的半徑

  正多邊形的中心角:沒邊所對的圓心角

  正多邊形的邊心距:中心到一邊的距離

【初中數(shù)學(xué)知識點(diǎn)總結(jié)】相關(guān)文章:

初中數(shù)學(xué)必考知識點(diǎn)總結(jié)04-25

初中數(shù)學(xué)蘇教版知識點(diǎn)總結(jié)04-25

初中數(shù)學(xué)代數(shù)知識點(diǎn)總結(jié)04-25

數(shù)學(xué)初中全部知識點(diǎn)總結(jié)04-25

初中數(shù)學(xué)必備知識點(diǎn)總結(jié)03-01

數(shù)學(xué)初中函數(shù)知識點(diǎn)總結(jié)04-29

初中數(shù)學(xué)知識點(diǎn)總結(jié)07-15

初中數(shù)學(xué)知識點(diǎn)總結(jié)04-07

初中數(shù)學(xué)圓知識點(diǎn)總結(jié)04-06

初中數(shù)學(xué)幾何知識點(diǎn)總結(jié)11-05