初中數學知識點實用(15篇)
在我們平凡無奇的學生時代,相信大家一定都接觸過知識點吧!知識點是知識中的最小單位,最具體的內容,有時候也叫“考點”。相信很多人都在為知識點發(fā)愁,以下是小編為大家整理的初中數學知識點,供大家參考借鑒,希望可以幫助到有需要的朋友。
初中數學知識點1
關于初中數學幾何知識點總結
1、三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。
2、三角形的分類
3、三角形的三邊關系:三角形任意兩邊的和大于第三邊,任意兩邊的差小于第三邊。
4、高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。
5、中線:在三角形中,連接一個頂點和它的對邊中點的線段叫做三角形的中線。
6、角平分線:三角形的一個內角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線。
7、高線、中線、角平分線的意義和做法
8、三角形的穩(wěn)定性:三角形的形狀是固定的,三角形的這個性質叫三角形的穩(wěn)定性。
9、三角形內角和定理:三角形三個內角的和等于180°
推論1直角三角形的兩個銳角互余
推論2三角形的一個外角等于和它不相鄰的兩個內角和
推論3三角形的一個外角大于任何一個和它不相鄰的內角;三角形的內角和是外角和的一半
10、三角形的外角:三角形的一條邊與另一條邊延長線的夾角,叫做三角形的外角。
11、三角形外角的'性質
(1)頂點是三角形的一個頂點,一邊是三角形的一邊,另一邊是三角形的一邊的延長線;
(2)三角形的一個外角等于與它不相鄰的兩個內角和;
(3)三角形的一個外角大于與它不相鄰的任一內角;
(4)三角形的外角和是360°。
四邊形(含多邊形)知識點、概念總結
一、平行四邊形的定義、性質及判定
1、兩組對邊平行的四邊形是平行四邊形。
2、性質:
(1)平行四邊形的對邊相等且平行
(2)平行四邊形的對角相等,鄰角互補
(3)平行四邊形的對角線互相平分
3、判定:
(1)兩組對邊分別平行的四邊形是平行四邊形
(2)兩組對邊分別相等的四邊形是平行四邊形
(3)一組對邊平行且相等的四邊形是平行四邊形
(4)兩組對角分別相等的四邊形是平行四邊形
(5)對角線互相平分的四邊形是平行四邊形
4、對稱性:平行四邊形是中心對稱圖形
二、矩形的定義、性質及判定
1、定義:有一個角是直角的平行四邊形叫做矩形
2、性質:矩形的四個角都是直角,矩形的對角線相等
3、判定:
(1)有一個角是直角的平行四邊形叫做矩形
(2)有三個角是直角的四邊形是矩形
(3)兩條對角線相等的平行四邊形是矩形
4、對稱性:矩形是軸對稱圖形也是中心對稱圖形。
三、菱形的定義、性質及判定
1、定義:有一組鄰邊相等的平行四邊形叫做菱形
(1)菱形的四條邊都相等
(2)菱形的對角線互相垂直,并且每一條對角線平分一組對角
(3)菱形被兩條對角線分成四個全等的直角三角形
(4)菱形的面積等于兩條對角線長的積的一半
2、s菱=爭6(n、6分別為對角線長)
3、判定:
(1)有一組鄰邊相等的平行四邊形叫做菱形
(2)四條邊都相等的四邊形是菱形
(3)對角線互相垂直的平行四邊形是菱形
4、對稱性:菱形是軸對稱圖形也是中心對稱圖形
四、正方形定義、性質及判定
1、定義:有一組鄰邊相等并且有一個角是直角的平行四邊形叫做正方形
2、性質:
(1)正方形四個角都是直角,四條邊都相等
(2)正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角
(3)正方形的一條對角線把正方形分成兩個全等的等腰直角三角形
(4)正方形的對角線與邊的夾角是45°
(5)正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形
3、判定:
(1)先判定一個四邊形是矩形,再判定出有一組鄰邊相等
(2)先判定一個四邊形是菱形,再判定出有一個角是直角
4、對稱性:正方形是軸對稱圖形也是中心對稱圖形
五、梯形的定義、等腰梯形的性質及判定
1、定義:一組對邊平行,另一組對邊不平行的四邊形是梯形。兩腰相等的梯形是等腰梯形。一腰垂直于底的梯形是直角梯形
2、等腰梯形的性質:等腰梯形的兩腰相等;同一底上的兩個角相等;兩條對角線相等
3、等腰梯形的判定:兩腰相等的梯形是等腰梯形;同一底上的兩個角相等的梯形是等腰梯形;兩條對角線相等的梯形是等腰梯形
4、對稱性:等腰梯形是軸對稱圖形
六、三角形的中位線平行于三角形的第三邊并等于第三邊的一半;梯形的中位線平行于梯形的兩底并等于兩底和的一半。
七、線段的重心是線段的中點;平行四邊形的重心是兩對角線的交點;三角形的重心是三條中線的交點。
八、依次連接任意一個四邊形各邊中點所得的四邊形叫中點四邊形。
九、多邊形
為什么要學習數學
作為一門普及度極廣的學科,數學在人類文明的發(fā)展史上一直占據著重要的地位。雖然很多人可能會對數學產生排斥,認為它枯燥無味,但事實上,數學是所有學科的基石之一,對我們日常生活以及未來的職業(yè)發(fā)展有著重大影響。下面我將詳細闡述學習數學的重要性。
首先,數學可以幫助我們提高邏輯思維能力。數學的學科性質使我們在學習的過程中時時刻刻面臨著思考、推理、證明等諸多問題,而這些問題正是鍛煉我們邏輯思維的好機會。通過長期的學習和練習,我們的思維能力得到提升,可以更加清晰地分析問題,更快速地找到正確的答案。這對我們在工作和生活中都非常有幫助,尤其是在解決復雜問題時更能得心應手。
其次,數學在現(xiàn)代科技中起著至關重要的作用。在計算機科學、物理學、經濟學、工程學等領域,數學可以幫助我們建立模型、分析數據、預測趨勢,并且可以在實際應用中優(yōu)化和改進。例如,在人工智能領域,深度學習技術所涉及的數學概念包括線性代數、微積分和概率論等,如果沒有深厚的數學基礎,很難理解和應用這些技術。同時,在工程學領域,許多機械、電子、化工等產品的設計和制造過程,也需要運用到數學知識,因此學習數學可以使我們更好地參與到現(xiàn)代科技的發(fā)展中。
除此之外,數學也是一種普遍使用的語言,許多學科和領域都使用數學語言進行表達和交流。例如,在自然科學領域,生物學、化學、物理學等學科都使用數學語言來描述自然世界的規(guī)律和現(xiàn)象。在社會科學和商科領域,經濟學和金融學運用的數學概念,如微積分、線性代數和統(tǒng)計學等,使得我們能夠更好地理解經濟和財務數據,并進行決策。因此,學習數學可以讓我們更好地理解、溝通和交流各個領域的知識。
最后,學習數學也可以為我們的職業(yè)發(fā)展帶來廣泛的機遇和發(fā)展空間。在許多領域,數學專業(yè)的畢業(yè)生都有很廣泛的就業(yè)機會,如金融界、數據科學、研究機構、教育等。數學專業(yè)的人才,不只會提供理論支持,同時也能夠解決現(xiàn)實中具體的問題,使其在各自領域脫穎而出。
怎樣快速提高數學成績?
一、查缺補漏,主攻薄弱
請制作“失分分析表”,包括“不會做的”和“不該丟分的”兩部分,分析模擬考試等試卷失分情況,在緊跟老師復習的基礎上,針對自己的薄弱環(huán)節(jié)重點彌補、改進。
別一味沖刺難題。做題是對理論知識的進一步鞏固與實檢,我們要在理解的基礎上加強練習,以達到鞏固的目的,但不能一味追求難題偏題。
因為中考試卷中有30%是比較靈活的題型,只有10%是真正的難題。30%那部分題目是我們能拿但容易失分的題目,我們要做到盡量多拿分,但如果我們一味求難求險,就會因為忽視基礎題型的夯實和鞏固而失掉這部分該得的分。在基礎掌握后,有條件的同學可再進行一些難題怪題的攻關,這樣的策略才更能保證效率。
二、反思錯題
不要盲目找題做,陷入題海中,不要“就題論題”停留在“這題我會了”的低水平上。解題能力是在反思中提升的。懂、會、悟是數學水平的三個層次。簡單說,聽懂了,但不一定會,更不意味著真正領悟了。
三、克服無謂失分
如何避免審題出錯?
原因:看太快。
應對策略:
1.默讀法;2.重點字詞圈點勾畫法;3.審圖法。
如何降低計算失誤?
表面原因是粗心,其實是計算能力不足。平時對計算不以為然,認為“沒有技術含量”。事實上計算也有很多“聰明算法”,如:邊化簡邊計算、寧加勿減、寧乘勿除、小數化分數、找最小最短的設元、放縮法、湊整法、圖象法等等計算技巧。
應對策略:
1.不要為了趕時間而跳步計算;
2.寧可筆算,少用口算,更不要再抱著計算器;
3.對平時易算錯的題型,可以驗算一遍。
四、關注幾個重點問題
1.新定義題型、非常規(guī)題型、存在性問題。
2.分析法—執(zhí)果索因,逆向思維,倒過來想,假設存在;不完全歸納法—根據例子,大膽猜想、努力驗證。反例排除法、特殊圖形(特殊位置、極端值)探究法等。
提高數學成績常用方法有哪些
1、預習
預期常常由于“沒時間,看不懂,不必要”等等原因被忽略。實際上預習是學習的必要過程,更是提高自學能力的好方法。
2、學會聽課
聽分析、聽思路、聽應用,關鍵內容一字不漏,注意記錄。
3、做好錯題本
每個會學習的學生都會有錯題本。調查發(fā)現(xiàn)那些沒有錯題本,或者是只做不用的同學,學習效果都不好。
4、用好課外書
正確認識網絡課程和課外書籍,是副食,是幫助吸收的良藥。
5、注重數學思維方法的培養(yǎng)
要注意數學思想和方法的指導,站得高,才能看得遠。
初中數學知識點2
一、初中數學基本概念
1.方程:含有未知數的等式叫做方程。
2.一元一次方程:只含有一個未知數,并且未知數的次數是1,并且含未知數項的系數不是零的整式方程是一元一次方程。
3.二元一次方程:含有兩個未知數,并且未知數的次數是1的二元一次方程。
4.二元一次方程組:由兩個二元一次方程組成的方程組。
5.一元二次方程:含有一個未知數,并且未知數的最高次數是2的整式方程。
6.一元二次方程的解:使一元二次方程左右兩邊相等的未知數的值。
7.一元二次方程的根:一元二次方程的解。
8.一元二次方程的判別式:當a是正數時,如果一元二次方程左右兩邊相等時,那么這個一元二次方程有兩個不相等的'實數根;當a是負數時,如果一元二次方程左右兩邊相等時,那么這個一元二次方程沒有實數根;當a是零時,如果一元二次方程左右兩邊相等時,那么這個一元二次方程有兩個相等的實數根。
9.函數:在某變化過程中有兩個變量x、y,如果對于x在某一范圍內的每一個確定的值,y都有唯一的值與它對應,那么稱y是x的函數,x叫做自變量。
10.一次函數:在某個變化過程中有兩個變量x、y,如果對于x在某一范圍內的每一個確定的值,y都有唯一的值與它對應,那么稱y是x的一次函數。
11.正比例函數:在某個變化過程中有兩個變量x、y,如果對于x在某一范圍內的每一個確定的值,y都有唯一的值與它對應,并且這個數值在比例上成正比,那么稱y是x的比例函數。
12.反比例函數:在某個變化過程中有兩個變量x、y,如果對于x在某一范圍內的每一個確定的值,y都有唯一的值與它對應,并且這個數值在比例上成反比,那么稱y是x的反比例函數。
13.平行四邊形:在同一個平面內兩組對角分別平行的四邊形叫做平行四邊形。
14.矩形:有一個內角是直角的平行四邊形叫做矩形。
15.菱形:有兩組鄰邊相等的平行四邊形叫做菱形。
16.正方形:四邊相等的矩形叫做正方形。
17.等腰梯形:兩條腰相等的梯形叫做等腰梯形。
18.三角形:在同一個平面內由不在同一條直線上的三條線段首尾順次相接所組成的圖形叫做三角形。
19.中線:連接一個頂點和它對邊的中點的線段叫做中線。
20.高線:從三角形的一個頂點向它的對邊作垂線,垂足與頂點之間的線段叫做高線。
21.角平分線:三角形的一個內角的平分線與它的對邊相交,這個角的頂點與交點之間的線段叫做角平分線。
22.中位線:連接三角形兩邊中點的線段叫做中位線。
23.軸對稱圖形:一條物體沿一條直線折疊后,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形。
24.直接開平方法:形如x2=p或者(nx+m)2=p(p≥0)的一元二次方程可采用直接開平方的方法解一元二次方程的方法。
25.配方法:把一元二次方程的常數項移到方程的右邊,兩邊加上一次項系數的一半的平方,再用右邊的式子除以左邊的式子,得到一個平方的形式,再用直接開平方的方法求解一元二次方程的方法。
26.公式法:用求根公式解一元二次方程的方法。
27.因式分解法:將一元二次方程分解成兩個一次因式的積等于0的一元二次方程,然后將各個因式分解,得到一元一次方程,再用直接開方法求解一元一次方程的方法。
二、初中數學基本運算
1.整式:單項式和多項式的統(tǒng)稱。
2.單項式:由數字和字母的積組成的代數式叫做單項式。單獨的一個數字或字母也叫做單項式。
3.多項式:幾個單項式的和叫做多項式。每個單項式叫做多項式的項。其中不含字母的項叫做常數
初中數學知識點3
1.通過猜想,驗證,計算得到的定理:
(1)全等三角形的判定定理:
(2)與等腰三角形的相關結論:
、俚妊切蝺傻捉窍嗟(等邊對等角)
②等腰三角形頂角的平分線,底邊上的中線,底邊上的高互相重合(三線合一)
、塾袃蓚角相等的三角形是等腰三角形(等角對等邊)
(3)與等邊三角形相關的結論:
①有一個角是60°得等腰三角形是等邊三角形
、谌齻角都相等的三角形是等邊三角形
、廴龡l邊都相等的三角形是等邊三角形
(4)與直角三角形相關的結論:
①勾股定理:在直角三角形中,兩直角邊的平方和等于斜邊的平方
②勾股定理逆定理:在一個三角形中兩直角邊的平方和等于斜邊的平方,那么這個三角形一定是直角三角形
③HL定理:斜邊和一條直角邊對應相等的兩個三角形全等
、茉谌切沃30°角所對的直角邊等于斜邊的`一半
2.兩條特殊線
(1)線段的垂直平分線
①線段的垂直平分線上的點到線段兩邊的距離相等互為逆定理{
、诘揭粭l線段兩個端點距離相等的點在這條線段的垂直平分線上
③三角形的三條垂直平分線交于一點,并且這一點到這三個頂點的距離相等
(2)角平分線
①角平分線上的點到這個角的兩邊距離相等互為逆定理{
、谠谝粋角的內部,并且到這個角的兩邊距離相等的的點,在這個角的角平分線上
3.命題的逆命題及真假
①在兩個命題中,如果一個命題的條件與結論是另一個命題的結論與條件,我們就說這兩個命題互為逆命題,其中一個是另一個的逆命題
②如果一個定理的逆命題是真命題,那么他也是一個定理,我們稱這兩個定理為互逆定理
、鄯凑ǎ簭姆穸}的結論入手,并把對命題結論的否定作為推理的已知條件,進行正確的邏輯推理,使之得到與已知條件,定理相矛盾,矛盾的原因是假設不成立,所以肯定了命題的結論,使命題獲得了證明
第二章一元二次方程
1.一元二次方程:只含有一個未知數X的整式方程,并且可以化成aX?+bX+C=0(a≠0)形式稱它為一元二次方程
aX?+bX+C=0(a≠0)→一般形式
aX?叫二次項bX叫一次項C叫常數項a叫二次項系數b叫一次項系數
2.一元二次方程解法:
(1)配方法:(X±a)?=b(b≥0)注:二次項系數必須化為1
(2)公式法:aX?+bX+C=0(a≠0)確定a,b,c的值,計算b?-4ac≥0
若b?-4ac>0則有兩個不相等的實根,若b?-4ac=0則有兩個相等的實根,若b?-4ac<0則無解
若b?-4ac≥0則用公式X=-b±√b?-4ac/2a注:必須化為一般形式
(3)分解因式法
、偬峁蚴椒ǎ簃a+mb=0→m(a+b)=0
平方差公式:a?-b?=0→(a+b)(a-b)=0
②運用公式法:{
完全平方公式:a?±2ab+b?=0→(a±b)?=0
、凼窒喑朔
例題:X?-2X-3=0
1/111
×}X?的系數為1則可以寫成{常數項系數為3則可寫成{
1/-31-3
--------
-3+1=-2交叉相乘在相加求值,值必須等于一次項系數
(X+1)(X-3)=o
初中數學知識點4
整式及其運算:
【考點歸納】
1.代數式:用運算符號(加、減、乘、除、乘方、開方)把()或表示()連接而成的式子叫做代數式.
2.代數式的值:用()代替代數式里的字母,按照代數式里的運算關系,計算后所得的()叫做代數式的值.
3.整式
(1)單項式:由數與字母的()組成的代數式叫做單項式(單獨一個數或()也是單項式).單項式中的()叫做這個單項式的系數;單項式中的所有字母的()叫做這個單項式的次數.
(2)多項式:幾個單項式的()叫做多項式.在多項式中,每個單項式叫()做多項式的(),其中次數最高的項的.()叫做這個多項式的次數.不含字母的項叫做.
(3)整式:()與()統(tǒng)稱整式.
4.同類項:在一個多項式中,所含()相同并且相同字母的()也分別相等的項叫做同類項.合并同類項的法則是()。
20xx人教版七年級數學有理數知識點
1.有理數:
(1)凡能寫成形式的數,都是有理數.正整數、0、負整數統(tǒng)稱整數;正分數、負分數統(tǒng)稱分數;整數和分數統(tǒng)稱有理數.注意:0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;不是有理數;
(2)有理數的分類:①②
(3)注意:有理數中,1、0、-1是三個特殊的數,它們有自己的特性;這三個數把數軸上的數分成四個區(qū)域,這四個區(qū)域的數也有自己的特性;
(4)自然數0和正整數;a>0a是正數;a<0a是負數;
a≥0a是正數或0a是非負數;a≤0a是負數或0a是非正數.
2.數軸:數軸是規(guī)定了原點、正方向、單位長度的一條直線.
7.整式的除法
、艈雾検匠詥雾検降姆▌t:把()、()分別相除后,作為商的因式;對于只在被除武里含有的字母,則連同它的指數一起作為商的一個因式.
、贫囗検匠詥雾検降姆▌t:先把這個多項式的每一項分別除以(),再把所得的商().
初中數學知識點5
1、一元一次方程根的情況
△=b2-4ac
當△>0時,一元二次方程有2個不相等的實數根;
當△=0時,一元二次方程有2個相同的實數根;
當△<0時,一元二次方程沒有實數根
2、平行四邊形的性質:
① 兩組對邊分別平行的四邊形叫做平行四邊形。
② 平行四邊形不相鄰的兩個頂點連成的線段叫他的對角線。
③ 平行四邊形的對邊/對角相等。
④平行四邊形的對角線互相平分。
菱形:
①一組鄰邊相等的平行四邊形是菱形
、陬I心的四條邊相等,兩條對角線互相垂直平分,每一組對角線平分一組對角。
、叟卸l件:定義/對角線互相垂直的平行四邊形/四條邊都相等的四邊形。
矩形與正方形:
① 有一個內角是直角的平行四邊形叫做矩形。
② 矩形的對角線相等,四個角都是直角。
、 對角線相等的平行四邊形是矩形。
、 正方形具有平行四邊形,矩形,菱形的一切性質。
、菀唤M鄰邊相等的矩形是正方形。
多邊形:
、貼邊形的內角和等于(N-2)180度
②多邊心內角的一邊與另一邊的反向延長線所組成的角叫做這個多邊形的外角,在每個頂點處取這個多邊形的一個外角,他們的和叫做這個多邊形的內角和(都等于360度)
平均數:對于N個數X1,X2…XN,我們把(X1+X2+…+XN)/N叫做這個N個數的算術平均數,記為X
加權平均數:一組數據里各個數據的重要程度未必相同,因而,在計算這組數據的平均數時往往給每個數據加一個權,這就是加權平均數。
二、基本定理
1、過兩點有且只有一條直線
2、兩點之間線段最短
3、同角或等角的補角相等
4、同角或等角的余角相等
5、過一點有且只有一條直線和已知直線垂直
6、直線外一點與直線上各點連接的所有線段中,垂線段最短
7、平行公理 經過直線外一點,有且只有一條直線與這條直線平行
8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9、同位角相等,兩直線平行
10、內錯角相等,兩直線平行
11、同旁內角互補,兩直線平行
12、兩直線平行,同位角相等
13、兩直線平行,內錯角相等
14、兩直線平行,同旁內角互補
15、定理 三角形兩邊的和大于第三邊
16、推論 三角形兩邊的差小于第三邊
17、三角形內角和定理 三角形三個內角的和等于180°
18、推論1 直角三角形的兩個銳角互余
19、推論2 三角形的一個外角等于和它不相鄰的兩個內角的和
20、推論3 三角形的一個外角大于任何一個和它不相鄰的內角
21、全等三角形的對應邊、對應角相等
22、邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等
23、角邊角公理( ASA)有兩角和它們的夾邊對應相等的 兩個三角形全等
24、推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等
25、邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等
26、斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等
27、定理1 在角的平分線上的點到這個角的兩邊的.距離相等
28、定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上
29、角的平分線是到角的兩邊距離相等的所有點的集合
30、等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角)
31、推論1 等腰三角形頂角的平分線平分底邊并且垂直于底邊
32、等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
33、推論3 等邊三角形的各角都相等,并且每一個角都等于60°
34、等腰三角形的判定定理 如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)
35、推論1 三個角都相等的三角形是等邊三角形
36、推論 2 有一個角等于60°的等腰三角形是等邊三角形
37、在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半
38、直角三角形斜邊上的中線等于斜邊上的一半
39、定理 線段垂直平分線上的點和這條線段兩個端點的距離相等
40、逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
41、線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
42、定理1 關于某條直線對稱的兩個圖形是全等形
43、定理 2 如果兩個圖形關于某直線對稱,那么對稱軸是對應點連線的垂直平分線
44、定理3 兩個圖形關于某直線對稱,如果它們的對應線段或延長線相交,那么交點在對稱軸上
45、逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那么這兩個圖形關于這條直線對稱
46、勾股定理 直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2
47、勾股定理的逆定理 如果三角形的三邊長a、b、c有關系a2+b2=c2,那么這個三角形是直角三角形
48、定理 四邊形的內角和等于360°
49、四邊形的外角和等于360°
50、多邊形內角和定理 n邊形的內角的和等于(n-2)×180°
51、推論 任意多邊的外角和等于360°
52、平行四邊形性質定理1 平行四邊形的對角相等
53、平行四邊形性質定理2 平行四邊形的對邊相等
54、推論 夾在兩條平行線間的平行線段相等
55、平行四邊形性質定理3 平行四邊形的對角線互相平分
56、平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形
57、平行四邊形判定定理2 兩組對邊分別相等的四邊 形是平行四邊形
58、平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形
59、平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形
60、矩形性質定理1 矩形的四個角都是直角
61、矩形性質定理2 矩形的對角線相等
62、矩形判定定理1 有三個角是直角的四邊形是矩形
63、矩形判定定理2 對角線相等的平行四邊形是矩形
64、菱形性質定理1 菱形的四條邊都相等
65、菱形性質定理2 菱形的對角線互相垂直,并且每一條對角線平分一組對角
66、菱形面積=對角線乘積的一半,即S=(a×b)÷2
67、菱形判定定理1 四邊都相等的四邊形是菱形
68、菱形判定定理2 對角線互相垂直的平行四邊形是菱形
69、正方形性質定理1 正方形的四個角都是直角,四條邊都相等
70、正方形性質定理2正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角
71、定理1 關于中心對稱的兩個圖形是全等的
72、定理2 關于中心對稱的兩個圖形,對稱點連線都經過對稱中心,并且被對稱中心平分
73、逆定理 如果兩個圖形的對應點連線都經過某一點,并且被這一點平分,那么這兩個圖形關于這一點對稱
74、等腰梯形性質定理 等腰梯形在同一底上的兩個角相等
75、等腰梯形的兩條對角線相等
76、等腰梯形判定定理 在同一底上的兩個角相等的梯 形是等腰梯形
77、對角線相等的梯形是等腰梯形
78、平行線等分線段定理 如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等
79、推論1 經過梯形一腰的中點與底平行的直線,必平分另一腰
80、推論2 經過三角形一邊的中點與另一邊平行的直線,必平分第三邊
81、三角形中位線定理 三角形的中位線平行于第三邊,并且等于它的一半
82、梯形中位線定理 梯形的中位線平行于兩底,并且等于兩底和的一半 L=(a+b)÷2 S=L×h
83、(1)比例的基本性質: 如果a:b=c:d,那么ad=bc , 如果 ad=bc ,那么a:b=c:d
84、(2)合比性質: 如果a/b=c/d,那么(a±b)/b=(c±d)/d
85、(3)等比性質: 如果a/b=c/d=…=m/n(b+d+…+n≠0), 那么(a+c+…+m)/(b+d+…+n)=a/b
86、平行線分線段成比例定理 三條平行線截兩條直線,所得的對應線段成比例
87、推論 平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例
88、定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那么這條直線平行于三角形的第三邊
89、平行于三角形的一邊,并且和其他兩邊相交的直線, 所截得的三角形的三邊與原三角形三邊對應成比例
90、定理 平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似
91、相似三角形判定定理1 兩角對應相等,兩三角形相似(ASA)
92、直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似
93、判定定理2 兩邊對應成比例且夾角相等,兩三角形相似(SAS)
94、判定定理3 三邊對應成比例,兩三角形相似(SSS)
95、定理 如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那么這兩個直角三角形相似
96、性質定理1 相似三角形對應高的比,對應中線的比與對應角平分線的比都等于相似比
97、性質定理2 相似三角形周長的比等于相似比
98、性質定理3 相似三角形面積的比等于相似比的平方
99、任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值
100、任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值
初中數學知識點6
從科學的立場來看,數學是時代的特征,數學是美妙的樂章,數學是科學的皇后、科學的仆人、科學的伙伴。以下是小編為大家?guī)淼挠嘘P初中數學函數知識點匯總,歡迎參閱呀!
有關初中數學函數知識點匯總
I.定義與定義表達式
一般地,自變量x和因變量y之間存在如下關系:y=ax^2+bx+c
(a,b,c為常數,a≠0,且a決定函數的開口方向,a>0時,開口方向向上,a<0時,開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大)則稱y為x的二次函數。
二次函數表達式的右邊通常為二次三項式。
II.二次函數的三種表達式
一般式:y=ax^2+bx+c(a,b,c為常數,a≠0)
頂點式:y=a(x-h)^2+k[拋物線的頂點P(h,k)]
交點式:y=a(x-x)(x-x)[僅限于與x軸有交點A(x,0)和B(x,0)的拋物線]
注:在3種形式的互相轉化中,有如下關系:
h=-b/2a k=(4ac-b^2)/4a x,x=(-b±√b^2-4ac)/2a
III.二次函數的圖像
在平面直角坐標系中作出二次函數y=x^2的圖像,可以看出,二次函數的圖像是一條拋物線。
IV.拋物線的性質
1.拋物線是軸對稱圖形。對稱軸為直線x=-b/2a。
對稱軸與拋物線唯一的交點為拋物線的頂點P。特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)
2.拋物線有一個頂點P,坐標為:P(-b/2a,(4ac-b^2)/4a)當-b/2a=0時,P在y軸上;當Δ=b^2-4ac=0時,P在x軸上。
3.二次項系數a決定拋物線的開口方向和大小。
當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。|a|越大,則拋物線的開口越小。
4.一次項系數b和二次項系數a共同決定對稱軸的位置。
當a與b同號時(即ab>0),對稱軸在y軸左;
當a與b異號時(即ab<0),對稱軸在y軸右。
5.常數項c決定拋物線與y軸交點。
拋物線與y軸交于(0,c)
6.拋物線與x軸交點個數
Δ=b^2-4ac>0時,拋物線與x軸有2個交點。
Δ=b^2-4ac=0時,拋物線與x軸有1個交點。
Δ=b^2-4ac<0時,拋物線與x軸沒有交點。X的取值是虛數(x=-b±√b^2-4ac的值的相反數,乘上虛數i,整個式子除以2a)
V.二次函數與一元二次方程
特別地,二次函數(以下稱函數)y=ax^2+bx+c,當y=0時,二次函數為關于x的一元二次方程(以下稱方程),即ax^2+bx+c=0
此時,函數圖像與x軸有無交點即方程有無實數根。函數與x軸交點的'橫坐標即為方程的根。
1、二次函數y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同,它們的頂點坐標及對稱軸如下表:
當h>0時,y=a(x-h)^2的圖象可由拋物線y=ax^2向右平行移動h個單位得到,當h<0時,則向左平行移動|h|個單位得到。
當h>0,k>0時,將拋物線y=ax^2向右平行移動h個單位,再向上移動k個單位,就可以得到y(tǒng)=a(x-h)^2+k的圖象;
當h>0,k<0時,將拋物線y=ax^2向右平行移動h個單位,再向下移動|k|個單位可得到y(tǒng)=a(x-h)^2+k的圖象;
當h<0,k>0時,將拋物線向左平行移動|h|個單位,再向上移動k個單位可得到y(tǒng)=a(x-h)^2+k的圖象;
當h<0,k<0時,將拋物線向左平行移動|h|個單位,再向下移動|k|個單位可得到y(tǒng)=a(x-h)^2+k的圖象;
因此,研究拋物線y=ax^2+bx+c(a≠0)的圖象,通過配方,將一般式化為y=a(x-h)^2+k的形式,可確定其頂點坐標、對稱軸,拋物線的大體位置就很清楚了。這給畫圖象提供了方便。
2、拋物線y=ax^2+bx+c(a≠0)的圖象:當a>0時,開口向上,當a<0時開口向下,對稱軸是直線x=-b/2a,頂點坐標是(-b/2a,[4ac-b^2]/4a)。
3、拋物線y=ax^2+bx+c(a≠0),若a>0,當x≤-b/2a時,y隨x的增大而減小;當x≥-b/2a時,y隨x的增大而增大。若a<0,當x≤-b/2a時,y隨x的增大而增大;當x≥-b/2a時,y隨x的增大而減小。
4、拋物線y=ax^2+bx+c的圖象與坐標軸的交點:
(1)圖象與y軸一定相交,交點坐標為(0,c);
(2)當△=b^2-4ac>0,圖象與x軸交于兩點A(x,0)和B(x,0),其中的x1,x2是一元二次方程ax^2+bx+c=0
(a≠0)的兩根。這兩點間的`距離AB=|x-x|
當△=0。圖象與x軸只有一個交點;
當△<0。圖象與x軸沒有交點。當a>0時,圖象落在x軸的上方,x為任何實數時,都有y>0;當a<0時,圖象落在x軸的下方,x為任何實數時,都有y<0。
5、拋物線y=ax^2+bx+c的最值:如果a>0(a<0),則當x=-b/2a時,y最小(大)值=(4ac-b^2)/4a。
頂點的橫坐標,是取得最值時的自變量值,頂點的縱坐標,是最值的取值。
6、用待定系數法求二次函數的解析式
(1)當題給條件為已知圖象經過三個已知點或已知x、y的三對對應值時,可設解析式為一般形式:
y=ax^2+bx+c(a≠0)。
(2)當題給條件為已知圖象的頂點坐標或對稱軸時,可設解析式為頂點式:y=a(x-h)^2+k(a≠0)。
(3)當題給條件為已知圖象與x軸的兩個交點坐標時,可設解析式為兩根式:y=a(x-x)(x-x)(a≠0)。
7、二次函數知識很容易與其它知識綜合應用,而形成較為復雜的綜合題目。因此,以二次函數知識為主的綜合性題目是中考的熱點考題,往往以大題形式出現(xiàn)。
如何整理數學學科課堂筆記
一、內容提綱。老師講課大多有提綱,并且講課時老師會將一堂課的線索脈絡、重點難點等,簡明清晰地呈現(xiàn)在黑板上。同時,教師會使之富有條理性和直觀性。記下這些內容提綱,便于課后復習回顧,整體把握知識框架,對所學知識做到胸有成竹、清晰完整。
二、疑難問題。將課堂上未聽懂的問題及時記下來,便于課后請教同學或老師,把問題弄懂弄通。教師在組織課堂教學時,受到時空的限制,不可能做到顧及每一位同學。相應的,一些問題對部分學生來說,是屬于疑難問題,由于課堂上來不及思考成熟,記下疑難問題,可在課后繼續(xù)加以思考和探究,加以理解和掌握,不致出現(xiàn)知識的斷層、方法的缺陷。
三、思路方法。對老師在課堂上介紹的解題方法和分析思路也應及時記下,課后加以消化,若有疑惑,先作獨立分析,因為有可能是自己理解錯誤造成的,也有可能是老師講課疏忽造成的,記下來后,便于課后及時與老師商榷和探討。勤記老師講的解題技巧、思路及方法,這對于啟迪思維,開闊視野,開發(fā)智力,培養(yǎng)能力,并對提高解題水平大有益處。在這基礎上,若能主動鉆研,另辟蹊徑,則更難能可貴。
四、歸納總結。注意記下老師的課后總結,這對于濃縮一堂課的內容,找出重點及各部分之間的聯(lián)系,掌握基本概念、公式、定理,尋找規(guī)律,融會貫通課堂內容都很有作用。同時,很多有經驗的老師在課后小結時,一方面是承上歸納所學內容,另一方面又是啟下布置預習任務或點明后面所要學的內容,做好筆記可以把握學習的主動權,提前作準備,做到目標任務明確。
五、錯誤反思。學習過程中不可避免地會犯這樣或那樣的錯誤,記下自己所犯的錯誤,并用紅筆醒目地加以標注,以警示自己,同時也應注明錯誤成因,正確思路及方法,在反思中成熟,在反思中提高。
數學常用解題技巧有哪些
第一,應堅持由易到難的做題順序。近年來高考數學試題的設置是8道選擇題、6道填空題、6到大題,通常稱為866結構。在實體設置的結構中有三個小高峰,選擇題是由易到難,最難的題是第8題。填空題同樣是這樣設置的。也是第9題容易到第14題最難,大題從第15題到第20題,它們的設置也是這樣的。根據這樣的試題結構,應先做前面容易的,基礎好一點的考生就先做前7個選擇,前5個填空、前5個大題,稱為是755結構。基礎差的就是644,先把自己能做的、會做的拿到手。這是第一點。
第二,審題是關鍵。把題給看清楚了再動筆答題,看清楚題以后問什么、已知什么、讓你做什么,把這些問題搞清楚了,自己制訂了一個完整的解題策略,在開始寫的時候,這個時候是很快就可以完成的。
第三,屬于非智力因素導致想不起來。本來是很簡單的題比如說是做到第三題、第四題的時候不是難題,但想不起來了,卡住了,這時候怎么辦?雖然是簡單題卻不會做怎么辦?應先跳過去,不是這道題不會做嗎?后面還有很多的簡單題呢,把后面的題做一做,不要在考場上愣神,先跳過去做其他的題,等穩(wěn)定下來以后再回過頭來看會頓悟,豁然開朗。
第四,做選擇題的時候應運用最好的解題方法。因為選擇題和填空題都是看結果不看過程,因此在這個過程中都應不擇手段,只要是能把正確的結論找到就行。考生常用的方法是直接法,從已知的開始也不看它的四個選項,從頭到尾寫完了之后一看答案就寫上去了。另外就是特質法(音),一些出現(xiàn)字母、特別是不等式,這時候給它賦一個值,代進去這時候速度會比較快,正確地找出結果來。再就是數形結合法。最后實在不行了,就將四個選項代入驗證,看看哪個符合就是哪個了。填空題用上述的直接法、特質法、數形結合法三種方法都適合。做大題的時候要特別注意解題步驟,規(guī)范答題可以減少失分。簡單地說,規(guī)范答題就是從上一步的原因到下一步的結論,這是一個必然的過程,讓誰寫、誰看都是這樣的。因為什么所以什么是一個必然的過程,這是規(guī)范答題。
學霸分享的數學復習技巧
1、把答案蓋住看例題
例題不能帶著答案去看,不然會認為自己就是這么,其實自己并沒有理解透徹。
所以,在看例題時,把解答蓋住,自己去做,做完或做不出時再去看。這時要想一想,自己做的哪里與解答不同,哪里沒想到,該注意什么,哪一種方法更好,還有沒有另外的解法。
經過上面的訓練,自己的思維空間擴展了,看問題也全面了。如果把題目徹底搞清了,在題后精煉幾個批注,說明此題的“題眼”及巧妙之處,收獲會更大。
2、研究每題都考什么
數學能力的提高離不開做題,“熟能生巧”這個簡單的道理大家都懂。但做題不是搞題海戰(zhàn)術,而是要通過一題聯(lián)想到很多題。
3、錯一次反思一次
每次業(yè)及考試或多或少會發(fā)生些錯誤,這并不可怕,要緊的是避免類似的錯誤再次重現(xiàn)。因此平時注意把錯題記下來。
學生若能將每次考試或練習中出現(xiàn)的錯誤記錄下來分析,并盡力保證在下次考試時不發(fā)生同樣錯誤,那么以后人生中最重要的高考也就能避免犯錯了.
4、分析試卷總結經驗
每次考試結束試卷發(fā)下來,要認真分析得失,總結經驗教訓。特別是將試卷中出現(xiàn)的錯誤進行分類。
初中數學知識點7
1.相似三角形定義:
對應角相等,對應邊成比例的三角形,叫做相似三角形。
2.相似三角形的表示方法:用符號"∽"表示,讀作"相似于"。
3.相似三角形的相似比:
相似三角形的對應邊的比叫做相似比。
4.相似三角形的預備定理:
平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所截成的三角形與原三角形相似。
從表中可以看出只要將全等三角形判定定理中的"對應邊相等"的條件改為"對應邊
成比例"就可得到相似三角形的判定定理,這就是我們數學中的.用類比的方法,在舊知識的基礎上找出新知識并從中探究新知識掌握的方法。
6.直角三角形相似:
(1)直角三角形被斜邊上的高分成兩個直角三角形和原三角形相似。
(2)如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那么這兩個直角三角形相似。
7.相似三角形的性質定理:
(1)相似三角形的對應角相等。
(2)相似三角形的對應邊成比例。
(3)相似三角形的對應高線的比,對應中線的比和對應角平分線的比都等于相似比。
(4)相似三角形的周長比等于相似比。
(5)相似三角形的面積比等于相似比的平方。
8. 相似三角形的傳遞性
如果△ABC∽△A1B1C1,△A1B1C1∽△A2B2C2,那么△ABC∽A2B2C2
初中數學知識點8
一、數與代數A:數與式:
1:有理數
有理數:①整數→正整數/0/負整數 ②分數→正分數/負分數
數軸:①畫一條水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規(guī)定直線上向右的方向為正方向,就得到數軸
、谌魏我粋有理數都可以用數軸上的一個點來表示。
、廴绻麅蓚數只有符號不同,那么我們稱其中一個數為另外一個數的相反數,也稱這兩個數互為相反數。
在數軸上,表示互為相反數的兩個點,位于原點的兩側,并且與原點距離相等。
、軘递S上兩個點表示的數,右邊的總比左邊的大。正數大于0,負數小于0,正數大于負數。
絕對值:①在數軸上,一個數所對應的點與原點的距離叫做該數的絕對值。
、谡龜档慕^對值是他本身/負數的絕對值是他的相反數/0的絕對值是0。兩個負數比較大小,絕對值大的反而小。
有理數的運算:加法:①同號相加,取相同的符號,把絕對值相加。②異號相加,絕對值相等時和為0;絕對值不等時,取絕對值較大的數的符號,并用較大的絕對值減去較小的絕對值。③一個數與0相加不變。
減法: 減去一個數,等于加上這個數的相反數。
乘法:①兩數相乘,同號得正,異號得負,絕對值相乘。②任何數與0相乘得0。③乘積為1的兩個有理數互為倒數。
除法:①除以一個數等于乘以一個數的倒數。②0不能作除數。
乘方:求N個相同因數A的積的運算叫做乘方,乘方的結果叫冪,A叫底數,N叫次數。
混合順序:先算乘法,再算乘除,最后算加減,有括號要先算括號里的。
2:實數
無理數:無限不循環(huán)小數叫無理數
平方根:①如果一個正數X的平方等于A,那么這個正數X就叫做A的算術平方根。②如果一個數X的平方等于A,那么這個數X就叫做A的平方根。③一個正數有2個平方根/0的平方根為0/負數沒有平方根。④求一個數A的平方根運算,叫做開平方,其中A叫做被開方數。
立方根:①如果一個數X的立方等于A,那么這個數X就叫做A的立方根。②正數的立方根是正數/0的立方根是0/負數的立方根是負數。③求一個數A的立方根的運算叫開立方,其中A叫做被開方數。
實數:①實數分有理數和無理數。②在實數范圍內,相反數,倒數,絕對值的意義和有理數范圍內的相反數,倒數,絕對值的意義完全一樣。③每一個實數都可以在數軸上的`一個點來表示。
3:代數式
代數式:單獨一個數或者一個字母也是代數式。
合并同類項:①所含字母相同,并且相同字母的指數也相同的項,叫做同類項。②把同類項合并成一項就叫做合并同類項。③在合并同類項時,我們把同類項的系數相加,字母和字母的指數不變。
4:整式與分式
整式:①數與字母的乘積的代數式叫單項式,幾個單項式的和叫多項式,單項式和多項式統(tǒng)稱整式。②一個單項式中,所有字母的指數和叫做這個單項式的次數。③一個多項式中,次數最高的項的次數叫做這個多項式的次數。
整式運算:加減運算時,如果遇到括號先去括號,再合并同類項。
冪的運算:AM。AN=A(M+N) (AM)N=AMN (AB)N=AN。BN 除法一樣。
A0=1,A-P=1/AP
整式的乘法:①單項式與單項式相乘,把他們的系數,相同字母的冪分別相乘,其余字母連同他的指數不變,作為積的因式。②單項式與多項式相乘,就是根據分配律用單項式去乘多項式的每一項,再把所得的積相加。③多項式與多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加。
公式兩條:平方差公式/完全平方公式
整式的除法:①單項式相除,把系數,同底數冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則連同他的指數一起作為商的一個因式。②多項式除以單項式,先把這個多項式的每一項分別除以單項式,再把所得的商相加。
分解因式:把一個多項式化成幾個整式的積的形式,這種變化叫做把這個多項式分解因式
方法:提公因式法/運用公式法/分組分解法/十字相乘法
分式:①整式A除以整式B,如果除式B中含有分母,那么這個就是分式,對于任何一個分式,分母不為0。②分式的分子與分母同乘以或除以同一個不等于0的整式,分式的值不變。
分式的運算:乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。
除法:除以一個分式等于乘以這個分式的倒數。
加減法:①同分母的分式相加減,分母不變,把分子相加減。②異分母的分式先通分,化為同分母的分式,再加減。
分式方程:①分母中含有未知數的方程叫分式方程。②使方程的分母為0的解稱為原方程的增根。
B:方程與不等式
1:方程與方程組
一元一次方程:①在一個方程中,只含有一個未知數,并且未知數的指數是1,這樣的方程叫一元一次方程。②等式兩邊同時加上或減去或乘以或除以(不為0)一個代數式,所得結果仍是等式。
解一元一次方程的步驟:去分母,移項,合并同類項,未知數系數化為1。
二元一次方程:含有兩個未知數,并且所含未知數的項的次數都是1的方程叫做二元一次方程。
二元一次方程組:兩個二元一次方程組成的方程組叫做二元一次方程組。
適合一個二元一次方程的一組未知數的值,叫做這個二元一次方程的一個解。
二元一次方程組中各個方程的公共解,叫做這個二元一次方程的解。
解二元一次方程組的方法:代入消元法/加減消元法。
2:不等式與不等式組
不等式:①用符號〉,=,〈號連接的式子叫不等式。②不等式的兩邊都加上或減去同一個整式,不等號的方向不變。③不等式的兩邊都乘以或者除以一個正數,不等號方向不變。④不等式的兩邊都乘以或除以同一個負數,不等號方向相反。
不等式的解集:①能使不等式成立的未知數的值,叫做不等式的解。②一個含有未知數的不等式的所有解,組成這個不等式的解集。③求不等式解集的過程叫做解不等式。
一元一次不等式:左右兩邊都是整式,只含有一個未知數,且未知數的最高次數是1的不等式叫一元一次不等式。
一元一次不等式組:①關于同一個未知數的幾個一元一次不等式合在一起,就組成了一元一次不等式組。
②一元一次不等式組中各個不等式的解集的公共部分,叫做這個一元一次不等式組的解集。③求不等式組解集的過程,叫做解不等式組。
3:函數
變量:因變量,自變量。
在用圖象表示變量之間的關系時,通常用水平方向的數軸上的點自變量,用豎直方向的數軸上的點表示因變量。
一次函數:①若兩個變量X,Y間的關系式可以表示成Y=KX+B(B為常數,K不等于0)的形式,則稱Y是X的一次函數。②當B=0時,稱Y是X的正比例函數。
一次函數的圖象:①把一個函數的自變量X與對應的因變量Y的值分別作為點的橫坐標與縱坐標,在直角坐標系內描出它的對應點,所有這些點組成的圖形叫做該函數的圖象。②正比例函數Y=KX的圖象是經過原點的一條直線。③在一次函數中,當K〈0,B〈O,則經234象限;當K〈0,B〉0時,則經124象限;當K〉0,B〈0時,則經134象限;當K〉0,B〉0時,則經123象限。④當K〉0時,Y的值隨X值的增大而增大,當X〈0時,Y的值隨X值的增大而減少。
二、空間與圖形
A:圖形的認識:
1:點,線,面
點,線,面:①圖形是由點,線,面構成的。②面與面相交得線,線與線相交得點。③點動成線,線動成面,面動成體。
展開與折疊:①在棱柱中,任何相鄰的兩個面的交線叫做棱,側棱是相鄰兩個側面的交線,棱柱的所有側棱長相等,棱柱的上下底面的形狀相同,側面的形狀都是長方體。②N棱柱就是底面圖形有N條邊的棱柱。
截一個幾何體:用一個平面去截一個圖形,截出的面叫做截面。
3視圖:主視圖,左視圖,俯視圖。
多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形。
弧,扇形:①由一條弧和經過這條弧的端點的兩條半徑所組成的圖形叫扇形。②圓可以分割成若干個扇形。
2:角
線:①線段有兩個端點。②將線段向一個方向無限延長就形成了射線。射線只有一個端點。③將線段的兩端無限延長就形成了直線。直線沒有端點。④經過兩點有且只有一條直線。
比較長短:①兩點之間的所有連線中,線段最短。②兩點之間線段的長度,叫做這兩點之間的距離。
角的度量與表示:①角由兩條具有公共端點的射線組成,兩條射線的公共端點是這個角的頂點。②一度的1/60是一分,一分的1/60是一秒。
角的比較:①角也可以看成是由一條射線繞著他的端點旋轉而成的。②一條射線繞著他的端點旋轉,當終邊和始邊成一條直線時,所成的角叫做平角。始邊繼續(xù)旋轉,當他又和始邊重合時.
初中數學知識點9
課題
3.5正比例函數、反比例函數、一次函數和二次函數
教學目標
1、掌握正(反)比例函數、一次函數和二次函數的概念及其圖形和性質2、會用待定系數法確定函數的解析式
教學重點
掌握正(反)比例函數、一次函數和二次函數的概念及其圖形和性質
教學難點
掌握正(反)比例函數、一次函數和二次函數的.概念及其圖形和性質
教學方法
講練結合法
教學過程
(I)知識要點(見下表:)
第三章第29頁函數名稱解析式圖像正比例函數ykx(k0)0x反比例函數一次函數ykxb(k0)0x二次函數yax2bxc(a0)y0xy0xky(k0)xyxy0xyy0xy0xyk0k0k0k0k0k0a0a0圖像過點(0,0)及(1,k)的直線雙曲線,x軸、y軸是它的漸近線與直線ykx平行且過點(0,b)的直線拋物線定義域RxxR且xoyyR且yoRR4acb2a0時,y,4aR值域R4acb2a0時,y,4aba0時,在-,上為增2a函數,在,-單調性k0時,在,0,k0時為增函數0,上為減函數k0時,為增函數b上為減函數2ak0時為減函數k0時,在,0,k0時,為減函數0,上為增函數ba0時,在-,上為減2a函數,在,-b上為增函數2a奇偶性奇函數奇函數b=0時奇函數b=0時偶函數a0且x-ymin最值無無無b時,2a24acb4ab時,2a24acb4aa0且x-ymax
第三章第30頁b24acb2注:二次函數yaxbxca(x(a0))a(xm)(xn)2a4abb4acb2對稱軸x,頂點(,)
2a2a4a2拋物線與x軸交點坐標(m,0),(n,0)(II)例題講解
例1、求滿足下列條件的二次函數的解析式:(1)拋物線過點A(1,1),B(2,2),C(4,2)(2)拋物線的頂點為P(1,5)且過點Q(3,3)
(3)拋物線對稱軸是x2,它在x軸上截出的線段AB長為2且拋物線過點(1,7)。2,
解:(1)設yax2bxc(a0),將A、B、C三點坐標分別代入,可得方程組為
abc1a1解得b4yx24x24a2bc216a4bc2c2(2)設二次函數為ya(x1)25,將Q點坐標代入,即a(31)253,得
a2,故y2(x1)252x24x3
(3)∵拋物線對稱軸為x2;
∴拋物線與x軸的兩個交點A、B應關于x2對稱;∴由題設條件可得兩個交點坐標分別為A(2∴可設函數解析式為:ya(x2代入方程可得a1
∴所求二次函數為yx24x2,
2,0)、B(222,0)
2)(x22)a(x2)22a,將(1,7)
5),例2:二次函數的圖像過點(0,8),(1,(4,0)
。1)求函數圖像的頂點坐標、對稱軸、最值及單調區(qū)間(2)當x取何值時,①y≥0,②y(2)由y0可得x22x80,解得x4或x2由y0可得x22x80,解得2x4
例3:求函數f(x)x2x1,x[1,1]的最值及相應的x值
113x1(x)2,知函數的圖像開口向上,對稱軸為x
224111]上是增函數。∴依題設條件可得f(x)在[1,]上是減函數,在[,22131]時,函數取得最小值,且ymin∴當x[1,24131又∵11
初中數學知識點10
一.圓的定義
1.平面上到定點的距離等于定長的所有點組成的圖形叫做圓。
2.平面上一條線段,繞它的一端旋轉360°,留下的軌跡叫圓。
二.圓心
1.定義1中的定點為圓心。
2.定義2中繞的那一端的端點為圓心。
3.圓任意兩條對稱軸的交點為圓心。
4.垂直于圓內任意一條弦且兩個端點在圓上的線段的二分點為圓心。
注:圓心一般用字母O表示
5.直徑:通過圓心,并且兩端都在圓上的線段叫做圓的直徑。直徑一般用字母d表示。
6.半徑:連接圓心和圓上任意一點的線段,叫做圓的半徑。半徑一般用字母r表示。
7.圓的直徑和半徑都有無數條。圓是軸對稱圖形,每條直徑所在的直線是圓的對稱軸。在同圓或等圓中:直徑是半徑的2倍,半徑是直徑的二分之一.d=2r或r=二分之d。
8.圓的半徑或直徑決定圓的大小,圓心決定圓的位置。
三.圓的基本性質
1.圓的對稱性
(1)圓是軸對稱圖形,它的對稱軸是直徑所在的直線。
(2)圓是中心對稱圖形,它的對稱中心是圓心。
(3)圓是旋轉對稱圖形。
2.垂徑定理
(1)垂直于弦的直徑平分這條弦,且平分這條弦所對的兩條弧。
(2)推論:
平分弦(非直徑)的直徑,垂直于弦且平分弦所對的兩條弧。
平分弧的直徑,垂直平分弧所對的弦。
3.圓心角的度數等于它所對弧的`度數。圓周角的度數等于它所對弧度數的一半。
(1)同弧所對的圓周角相等。
(2)直徑所對的圓周角是直角;圓周角為直角,它所對的弦是直徑。
4.在同圓或等圓中,兩條弦、兩條弧、兩個圓周角、兩個圓心角、兩條弦心距五對量中只要有一對量相等,其余四對量也分別相等。
5.夾在平行線間的兩條弧相等。
(1)過兩點的圓的圓心一定在兩點間連線段的中垂線上。
(2)不在同一直線上的三點確定一個圓,圓心是三邊中垂線的交點,它到三個點的距離相等。
(直角三角形的外心就是斜邊的中點。)
6.直線與圓的位置關系。d表示圓心到直線的距離,r表示圓的半徑。
直線與圓有兩個交點,直線與圓相交;直線與圓只有一個交點,直線與圓相切;直線與圓沒有交點,直線與圓相離。
四.圓和圓
1.兩個圓沒有公共點且每個圓的點都在另一個圓的外部時,叫做這兩個圓的外離。
2.兩個圓有唯一的公共點且除了這個公共點外,每個圓上的點都在另一個圓的外部,叫做兩個圓的外切。
3.兩個圓有兩個交點,叫做兩個圓的相交。
4.兩個圓有唯一的公共點且除了這個公共點外,每個圓上的點都在另一個圓的內部,叫做兩個圓的內切。
5.兩個圓沒有公共點且每個圓的點都在另一個圓的內部時,叫做這兩個圓的內含。
五.正多邊形和圓
1.正多邊形的概念:各邊相等,各角也相等的多邊形叫做正多邊形。
2.正多邊形與圓的關系:
(1)將一個圓n(n≥3)等分(可以借助量角器),依次連結各等分點所得的多邊形是這個圓的內接正多邊形。
(2)這個圓是這個正多邊形的外接圓。
初中數學知識點11
自然數的分類包括了奇數和偶數,質數與合數、1和0。
自然數的分類
、侔茨芊癖2整除分
可分為奇數和偶數。
1、奇 數:不能被2整除的數叫奇數。
2、偶 數:能被2整除的數叫偶數。
注:0是偶數。(20xx年國際數學協(xié)會規(guī)定,零為偶數.我國20xx年也規(guī)定零為偶數。偶數可以被2整除,0照樣可以,只不過得數依然是0而已)。
、诎匆驍祩數分
可分為質數、合數、1和0。
1、質 數:只有1和它本身這兩個因數的自然數叫做質數。也稱作素數。
2、合 數:除了1和它本身還有其它的.因數的自然數叫做合數。
3、1:只有1個因數。它既不是質數也不是合數。
4、當然0不能計算因數,和1一樣,也不是質數也不是合數。
備注:這里是因數不是約數。
同學們對于“0”,它是否包括在自然數之內存在爭議,其實學術界目前關于這個問題尚無一致意見。
初中數學知識點12
第一章圖形的變換
考點一、平移(3~5分)
1、定義
把一個圖形整體沿某一方向移動,會得到一個新的圖形,新圖形與原圖形的形狀和大小完全相同,圖形的這種移動叫做平移變換,簡稱平移。
2、性質
(1)平移不改變圖形的大小和形狀,但圖形上的每個點都沿同一方向進行了移動
(2)連接各組對應點的線段平行(或在同一直線上)且相等。
考點二、軸對稱(3~5分)
1、定義
把一個圖形沿著某條直線折疊,如果它能夠與另一個圖形重合,那么就說這兩個圖形關于這條直線成軸對稱,該直線叫做對稱軸。
2、性質
(1)關于某條直線對稱的兩個圖形是全等形。
(2)如果兩個圖形關于某直線對稱,那么對稱軸是對應點連線的垂直平分線。
(3)兩個圖形關于某直線對稱,如果它們的對應線段或延長線相交,那么交點在對稱軸上。
3、判定
如果兩個圖形的對應點連線被同一條直線垂直平分,那么這兩個圖形關于這條直線對稱。
4、軸對稱圖形
把一個圖形沿著某條直線折疊,如果直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形,這條直線就是它的對稱軸。
考點三、旋轉(3~8分)
1、定義
把一個圖形繞某一點o轉動一個角度的圖形變換叫做旋轉,其中o叫做旋轉中心,轉動的角叫做旋轉角。
2、性質
(1)對應點到旋轉中心的距離相等。
(2)對應點與旋轉中心所連線段的夾角等于旋轉角。
考點四、中心對稱(3分)
1、定義
把一個圖形繞著某一個點旋轉180°,如果旋轉后的圖形能夠和原來的圖形互相重合,那么這個圖形叫做中心對稱圖形,這個點就是它的對稱中心。
2、性質
(1)關于中心對稱的兩個圖形是全等形。
(2)關于中心對稱的兩個圖形,對稱點連線都經過對稱中心,并且被對稱中心平分。
(3)關于中心對稱的兩個圖形,對應線段平行(或在同一直線上)且相等。
3、判定
如果兩個圖形的對應點連線都經過某一點,并且被這一點平分,那么這兩個圖形關于這一點對稱。
4、中心對稱圖形
把一個圖形繞某一個點旋轉180°,如果旋轉后的圖形能夠和原來的圖形互相重合,那么這個圖形叫做中心對稱圖形,這個店就是它的對稱中心。
考點五、坐標系中對稱點的特征(3分)
1、關于原點對稱的點的特征
兩個點關于原點對稱時,它們的坐標的'符號相反,即點p(x,y)關于原點的對稱點為p’(-x,-y)
2、關于x軸對稱的點的特征
兩個點關于x軸對稱時,它們的坐標中,x相等,y的符號相反,即點p(x,y)關于x軸的對稱點為p’(x,-y)
3、關于y軸對稱的點的特征
兩個點關于y軸對稱時,它們的坐標中,y相等,x的符號相反,即點p(x,y)關于y軸的對稱點為p’(-x,y)
第二章圖形的相似
考點一、比例線段(3分)
1、比例線段的相關概念
如果選用同一長度單位量得兩條線段a,b的長度分別為m,n,那么就說這兩條線段的比是,或寫成a:b=m:n
在兩條線段的比a:b中,a叫做比的前項,b叫做比的后項。
在四條線段中,如果其中兩條線段的比等于另外兩條線段的比,那么這四條線段叫做成比例線段,簡稱比例線段
若四條a,b,c,d滿足或a:b=c:d,那么a,b,c,d叫做組成比例的項,線段a,d叫做比例外項,線段b,c叫做比例內項,線段的d叫做a,b,c的第四比例項。
如果作為比例內項的是兩條相同的線段,即或a:b=b:c,那么線段b叫做線段a,c的比例中項。
2、比例的性質
(1)基本性質
①a:b=c:dad=bc
、赼:b=b:c
(2)更比性質(交換比例的內項或外項)
(交換內項)
(交換外項)
(同時交換內項和外項)
(3)反比性質(交換比的前項、后項):
(4)合比性質:
(5)等比性質:
3、黃金分割
把線段ab分成兩條線段ac,bc(ac>bc),并且使ac是ab和bc的比例中項,叫做把線段ab黃金分割,點c叫做線段ab的黃金分割點,其中ac=ab0.618ab
考點二、平行線分線段成比例定理(3~5分)
三條平行線截兩條直線,所得的對應線段成比例。
推論:
(1)平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例。
逆定理:如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那么這條直線平行于三角形的第三邊。
(2)平行于三角形一邊且和其他兩邊相交的直線截得的三角形的三邊與原三角形的三邊對應成比例。
考點三、相似三角形(3~8分)
1、相似三角形的概念
對應角相等,對應邊成比例的三角形叫做相似三角形。相似用符號“∽”來表示,讀作“相似于”。相似三角形對應邊的比叫做相似比(或相似系數)。
2、相似三角形的基本定理
平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似。
用數學語言表述如下:
∵de∥bc,∴△ade∽△abc
相似三角形的等價關系:
(1)反身性:對于任一△abc,都有△abc∽△abc;
(2)對稱性:若△abc∽△a’b’c’,則△a’b’c’∽△abc
(3)傳遞性:若△abc∽△a’b’c’,并且△a’b’c’∽△a’’b’’c’’,則△abc∽△a’’b’’c’’。
3、三角形相似的判定
(1)三角形相似的判定方法
、俣x法:對應角相等,對應邊成比例的兩個三角形相似
、谄叫蟹ǎ浩叫杏谌切我贿叺闹本和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似
、叟卸ǘɡ1:如果一個三角形的兩個角與另一個三角形的兩個角對應相等,那么這兩個三角形相似,可簡述為兩角對應相等,兩三角形相似。
、芘卸ǘɡ2:如果一個三角形的兩條邊和另一個三角形的兩條邊對應相等,并且夾角相等,那么這兩個三角形相似,可簡述為兩邊對應成比例且夾角相等,兩三角形相似。
、菖卸ǘɡ3:如果一個三角形的三條邊與另一個三角形的三條邊對應成比例,那么這兩個三角形相似,可簡述為三邊對應成比例,兩三角形相似
(2)直角三角形相似的判定方法
、僖陨细鞣N判定方法均適用
、诙ɡ恚喝绻粋直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那么這兩個直角三角形相似
③垂直法:直角三角形被斜邊上的高分成的兩個直角三角形與原三角形相似。
4、相似三角形的性質
(1)相似三角形的對應角相等,對應邊成比例
(2)相似三角形對應高的比、對應中線的比與對應角平分線的比都等于相似比
(3)相似三角形周長的比等于相似比
(4)相似三角形面積的比等于相似比的平方。
5、相似多邊形
(1)如果兩個邊數相同的多邊形的對應角相等,對應邊成比例,那么這兩個多邊形叫做相似多邊形。相似多邊形對應邊的比叫做相似比(或相似系數)
(2)相似多邊形的性質
、傧嗨贫噙呅蔚膶窍嗟,對應邊成比例
、谙嗨贫噙呅沃荛L的比、對應對角線的比都等于相似比
、巯嗨贫噙呅沃械膶切蜗嗨,相似比等于相似多邊形的相似比
、芟嗨贫噙呅蚊娣e的比等于相似比的平方
6、位似圖形
如果兩個圖形不僅是相似圖形,而且每組對應點所在直線都經過同一個點,那么這樣的兩個圖形叫做位似圖形,這個點叫做位似中心,此時的相似比叫做位似比。
性質:每一組對應點和位似中心在同一直線上,它們到位似中心的距離之比都等于位似比。
由一個圖形得到它的位似圖形的變換叫做位似變換。利用位似變換可以把一個圖形放大或縮小。
初中數學知識點13
1、有理數的加法運算:
同號相加一邊倒;異號相加“大”減“小”,符號跟著大的跑;絕對值相等“零”正好、
2、合并同類項:
合并同類項,法則不能忘,只求系數和,字母、指數不變樣、
3、去、添括號法則:
去括號、添括號,關鍵看符號,括號前面是正號,去、添括號不變號,括號前面是負號,去、添括號都變號、
4、一元一次方程:
已知未知要分離,分離方法就是移,加減移項要變號,乘除移了要顛倒、
5、平方差公式:
平方差公式有兩項,符號相反切記牢,首加尾乘首減尾,莫與完全公式相混淆、
1、完全平方公式:
完全平方有三項,首尾符號是同鄉(xiāng),首平方、尾平方,首尾二倍放中央;
首±尾括號帶平方,尾項符號隨中央、
2、因式分解:
一提(公因式)二套(公式)三分組,細看幾項不離譜,兩項只用平方差,三項十字相乘法,陣法熟練不馬虎,四項仔細看清楚,若有三個平方數(項),就用一三來分組,否則二二去分組,五項、六項更多項,二三、三三試分組,以上若都行不通,拆項、添項看清楚、
3、單項式運算:
加、減、乘、除、乘(開)方,三級運算分得清,系數進行同級(運)算,指數運算降級(進)行、
4、一元一次不等式解題的一般步驟:
去分母、去括號,移項時候要變號,同類項合并好,再把系數來除掉,兩邊除(以)負數時,不等號改向別忘了、
5、一元一次不等式組的`解集:
大大取較大,小小取較小,小大、大小取中間,大小、小大無處找、
一元二次不等式、一元一次絕對值不等式的解集:
大(魚)于(吃)取兩邊,。~)于(吃)取中間。
初中數學知識點14
1 線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
2 定理1 關于某條直線對稱的兩個圖形是全等形
3 定理 2 如果兩個圖形關于某直線對稱,那么對稱軸是對應點連線的垂直平分線
4定理3 兩個圖形關于某直線對稱,如果它們的.對應線段或延長線相交,那么交點在對稱軸上
5逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那么這兩個圖形關于這條直線對稱
6勾股定理 直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a^2+b^2=c^2
7勾股定理的逆定理 如果三角形的三邊長a、b、c有關系a^2+b^2=c^2 ,那么這個三角形是直角三角形
8定理 四邊形的內角和等于360
9四邊形的外角和等于360
10多邊形內角和定理 n邊形的內角的和等于(n-2)180
11推論 任意多邊的外角和等于360
12平行四邊形性質定理1 平行四邊形的對角相等
13平行四邊形性質定理2 平行四邊形的對邊相等
14推論 夾在兩條平行線間的平行線段相等
15平行四邊形性質定理3 平行四邊形的對角線互相平分
16平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形
17平行四邊形判定定理2 兩組對邊分別相等的四邊形是平行四邊形
18平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形
19平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形
20矩形性質定理1 矩形的四個角都是直角
初中數學知識點15
初中數學的學科地位很高,一直以來是三大學科之一,影響著物理化學的學習。
圓心角
在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦心距也相等。
推理過程
根據旋轉的性質,將∠aob繞圓心o旋轉到∠a'ob'的位置時,顯然∠aob=∠a'ob',射線oa與oa'重合,ob與ob'重合,而同圓的'半徑相等,oa=oa',ob=ob',從而點a與a'重合,b與b'重合。
因此,弧ab與弧a'b'重合,ab與a'b'重合。即
弧ab=弧a'b',ab=a'b'。
則得到上面定理。
同樣還可以得到:
在同圓或等圓中,如果兩條弧相等,那么他們所對的圓心角相等,所對的弦相等,所對的弦心距也相等。
在同圓或等圓中,如果兩條弦相等,那么他們所對的圓心角相等,所對的弧相等,所對的弦心距也相等。
所以,在同圓或等圓中,兩個圓心角、兩條弧、兩條弦中有一組量相等,它們所對應的其余各組量也相等。
圓的圓心角知識要領很容易掌握,經常會出現(xiàn)在關于圓的證明題中。
【初中數學知識點】相關文章:
初中數學垂直知識點12-07
初中數學代數知識點01-13
初中數學角的知識點05-31
初中數學倒數的知識點08-01
初中數學知識點04-30
初中數學概率知識點06-14
初中數學圓的知識點總結12-05
初中數學知識點歸納.07-30
數學初中知識點總結06-10
浙江初中數學知識點06-11