- 相關(guān)推薦
愛(ài)在高中數(shù)學(xué)知識(shí)點(diǎn)
上學(xué)期間,大家都背過(guò)各種知識(shí)點(diǎn)吧?知識(shí)點(diǎn)也不一定都是文字,數(shù)學(xué)的知識(shí)點(diǎn)除了定義,同樣重要的公式也可以理解為知識(shí)點(diǎn)。你知道哪些知識(shí)點(diǎn)是真正對(duì)我們有幫助的嗎?以下是小編精心整理的愛(ài)在高中數(shù)學(xué)知識(shí)點(diǎn),僅供參考,歡迎大家閱讀。
導(dǎo)數(shù)的應(yīng)用
1.用導(dǎo)數(shù)研究函數(shù)的最值
確定函數(shù)在其確定的定義域內(nèi)可導(dǎo)(通常為開(kāi)區(qū)間),求出導(dǎo)函數(shù)在定義域內(nèi)的零點(diǎn),研究在零點(diǎn)左、右的函數(shù)的單調(diào)性,若左增,右減,則在該零點(diǎn)處,函數(shù)去極大值;若左邊減少,右邊增加,則該零點(diǎn)處函數(shù)取極小值。學(xué)習(xí)了如何用導(dǎo)數(shù)研究函數(shù)的最值之后,可以做一個(gè)有關(guān)導(dǎo)數(shù)和函數(shù)的綜合題來(lái)檢驗(yàn)下學(xué)習(xí)成果。
2.生活中常見(jiàn)的函數(shù)優(yōu)化問(wèn)題
1)費(fèi)用、成本最省問(wèn)題
2)利潤(rùn)、收益問(wèn)題
3)面積、體積最(大)問(wèn)題
分層抽樣
先將總體中的所有單位按照某種特征或標(biāo)志(性別、年齡等)劃分成若干類型或?qū)哟,然后再在各個(gè)類型或?qū)哟沃胁捎煤?jiǎn)單隨機(jī)抽樣或系用抽樣的辦法抽取一個(gè)子樣本,最后,將這些子樣本合起來(lái)構(gòu)成總體的樣本。
兩種方法
1.先以分層變量將總體劃分為若干層,再按照各層在總體中的比例從各層中抽取。
2.先以分層變量將總體劃分為若干層,再將各層中的元素按分層的順序整齊排列,最后用系統(tǒng)抽樣的方法抽取樣本。
3.分層抽樣是把異質(zhì)性較強(qiáng)的總體分成一個(gè)個(gè)同質(zhì)性較強(qiáng)的子總體,再抽取不同的子總體中的樣本分別代表該子總體,所有的樣本進(jìn)而代表總體。
分層標(biāo)準(zhǔn)
(1)以調(diào)查所要分析和研究的主要變量或相關(guān)的變量作為分層的標(biāo)準(zhǔn)。
(2)以保證各層內(nèi)部同質(zhì)性強(qiáng)、各層之間異質(zhì)性強(qiáng)、突出總體內(nèi)在結(jié)構(gòu)的變量作為分層變量。
(3)以那些有明顯分層區(qū)分的變量作為分層變量。
函數(shù)的奇偶性
1、函數(shù)的奇偶性的定義:對(duì)于函數(shù)f(x),如果對(duì)于函數(shù)定義域內(nèi)的任意一個(gè)x,都有f(-x)=-f(x)(或f(-x)=f(x)),那么函數(shù)f(x)就叫做奇函數(shù)(或偶函數(shù)).
正確理解奇函數(shù)和偶函數(shù)的定義,要注意兩點(diǎn):(1)定義域在數(shù)軸上關(guān)于原點(diǎn)對(duì)稱是函數(shù)f(x)為奇函數(shù)或偶函數(shù)的必要不充分條件;(2)f(x)=-f(x)或f(-x)=f(x)是定義域上的恒等式.(奇偶性是函數(shù)定義域上的整體性質(zhì)).
2、奇偶函數(shù)的定義是判斷函數(shù)奇偶性的主要依據(jù)。為了便于判斷函數(shù)的奇偶性,有時(shí)需要將函數(shù)化簡(jiǎn)或應(yīng)用定義的等價(jià)形式:
注意如下結(jié)論的運(yùn)用:
(1)不論f(x)是奇函數(shù)還是偶函數(shù),f(|x|)總是偶函數(shù);
(2)f(x)、g(x)分別是定義域D1、D2上的奇函數(shù),那么在D1∩D2上,f(x)+g(x)是奇函數(shù),f(x)·g(x)是偶函數(shù),類似地有“奇±奇=奇”“奇×奇=偶”,“偶±偶=偶”“偶×偶=偶”“奇×偶=奇”;
(3)奇偶函數(shù)的復(fù)合函數(shù)的奇偶性通常是偶函數(shù);
(4)奇函數(shù)的導(dǎo)函數(shù)是偶函數(shù),偶函數(shù)的導(dǎo)函數(shù)是奇函數(shù)。
3、有關(guān)奇偶性的幾個(gè)性質(zhì)及結(jié)論
(1)一個(gè)函數(shù)為奇函數(shù)的充要條件是它的圖象關(guān)于原點(diǎn)對(duì)稱;一個(gè)函數(shù)為偶函數(shù)的充要條件是它的圖象關(guān)于y軸對(duì)稱.
(2)如要函數(shù)的定義域關(guān)于原點(diǎn)對(duì)稱且函數(shù)值恒為零,那么它既是奇函數(shù)又是偶函數(shù).
(3)若奇函數(shù)f(x)在x=0處有意義,則f(0)=0成立.
(4)若f(x)是具有奇偶性的區(qū)間單調(diào)函數(shù),則奇(偶)函數(shù)在正負(fù)對(duì)稱區(qū)間上的單調(diào)性是相同(反)的。
(5)若f(x)的定義域關(guān)于原點(diǎn)對(duì)稱,則F(x)=f(x)+f(-x)是偶函數(shù),G(x)=f(x)-f(-x)是奇函數(shù).
(6)奇偶性的推廣
函數(shù)y=f(x)對(duì)定義域內(nèi)的任一x都有f(a+x)=f(a-x),則y=f(x)的圖象關(guān)于直線x=a對(duì)稱,即y=f(a+x)為偶函數(shù).函數(shù)y=f(x)對(duì)定義域內(nèi)的任-x都有f(a+x)=-f(a-x),則y=f(x)的圖象關(guān)于點(diǎn)(a,0)成中心對(duì)稱圖形,即y=f(a+x)為奇函數(shù).
二項(xiàng)式定理
、(a+b)n=Cn0ax+Cn1an-1b1+Cn2an-2b2+Cn3an-3b3+…+Cnran-rbr+-…+Cnn-1abn-1+Cnnbn
特別地:(1+x)n=1+Cn1x+Cn2x2+…+Cnrxr+…+Cnnxn
、谥饕再|(zhì)和主要結(jié)論:對(duì)稱性Cnm=Cnn-m
二項(xiàng)式系數(shù)在中間。(要注意n為奇數(shù)還是偶數(shù),答案是中間一項(xiàng)還是中間兩項(xiàng))
所有二項(xiàng)式系數(shù)的和:Cn0+Cn1+Cn2+Cn3+Cn4+…+Cnr+…+Cnn=2n
奇數(shù)項(xiàng)二項(xiàng)式系數(shù)的和=偶數(shù)項(xiàng)而是系數(shù)的和
Cn0+Cn2+Cn4+Cn6+Cn8+…=Cn1+Cn3+Cn5+Cn7+Cn9+…=2n-1
、弁(xiàng)為第r+1項(xiàng):Tr+1=Cnran-rbr作用:處理與指定項(xiàng)、特定項(xiàng)、常數(shù)項(xiàng)、有理項(xiàng)等有關(guān)問(wèn)題。
【愛(ài)在高中數(shù)學(xué)知識(shí)點(diǎn)】相關(guān)文章:
高中數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn)03-19
高中數(shù)學(xué)數(shù)列知識(shí)點(diǎn)03-17
高中數(shù)學(xué)必修知識(shí)點(diǎn)11-08
高中數(shù)學(xué)知識(shí)點(diǎn)07-25
高中數(shù)學(xué)知識(shí)點(diǎn)11-03
高中數(shù)學(xué)橢圓知識(shí)點(diǎn)06-15
高中數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn)03-20