- 相關(guān)推薦
絕對值公開課教案(精選13篇)
作為一名優(yōu)秀的教育工作者,常常要根據(jù)教學(xué)需要編寫教案,借助教案可以更好地組織教學(xué)活動。那么應(yīng)當(dāng)如何寫教案呢?下面是小編收集整理的絕對值公開課教案,僅供參考,希望能夠幫助到大家。
絕對值公開課教案 1
一、教學(xué)目標(biāo)
1、知識與技能
(1)、借助數(shù)軸,初步理解絕對值的概念,能求一個數(shù)的絕對值,會利用絕對值比較兩個負(fù)數(shù)的大小。
(2)、通過應(yīng)用絕對值解決實(shí)際問題,體會絕對值的意義和作用。
2、過程與方法目標(biāo):
(1)、通過運(yùn)用“| |”來表示一個數(shù)的絕對值,培養(yǎng)學(xué)生的數(shù)感和符號感,達(dá)到發(fā)展學(xué)生抽象思維的目的
(2)、通過探索求一個數(shù)絕對值的方法和兩個負(fù)數(shù)比較大小方法的過程,讓學(xué)生學(xué)會通過觀察,發(fā)現(xiàn)規(guī)律、總結(jié)方法,發(fā)展學(xué)生的實(shí)踐能力,培養(yǎng)創(chuàng)新意識;
(3)、通過對“做一做”“議一議” “試一試”的交流和討論,培養(yǎng)學(xué)生有條理地用語言表達(dá)解決問題的方法;通過用絕對值或數(shù)軸對兩個負(fù)數(shù)大小的比較,讓學(xué)生學(xué)會嘗試評價兩種不同方法之間的差異。
3、情感態(tài)度與價值觀:
借助數(shù)軸解決數(shù)學(xué)問題,有意識地形成“腦中有圖,心中有數(shù)”的數(shù)形結(jié)合思想。通過“做一做“議一議”“試一試”問題的思考及回答,培養(yǎng)學(xué)生積極參與數(shù)學(xué)活動,并在數(shù)學(xué)活動中體驗(yàn)成功,鍛煉學(xué)生克服困難的意志,建立自信心,發(fā)展學(xué)生清晰地闡述自己觀點(diǎn)的能力以及培養(yǎng)學(xué)生合作探索、合作交流、合作學(xué)習(xí)的新型學(xué)習(xí)方式。
二、教學(xué)重點(diǎn)和難點(diǎn)
理解絕對值的概念;求一個數(shù)的絕對值;比較兩個負(fù)數(shù)的大小。
三、教學(xué)過程:
1、教師檢查組長學(xué)案學(xué)習(xí)情況,組長檢查組員學(xué)案學(xué)習(xí)情況。(約5分鐘)
2、在組長的組織下進(jìn)行討論、交流。(約5分鐘)
3、小組分任務(wù)展示。(約25分鐘)
4、達(dá)標(biāo)檢測。(約5分鐘)
5、總結(jié)(約5分鐘)
四、小組對學(xué)案進(jìn)行分任務(wù)展示
(一)、溫故知新:
前面我們已經(jīng)學(xué)習(xí)了數(shù)軸和數(shù)軸的三要素,請同學(xué)們回想一下什么叫數(shù)軸?數(shù)軸的三要素什么?
(二)小組合作交流,探究新知
1、觀察下圖,回答問題: (五組完成)
大象距原點(diǎn)多遠(yuǎn)?兩只小狗分別距原點(diǎn)多遠(yuǎn)?
歸納:在數(shù)軸上,一個數(shù)所對應(yīng)的點(diǎn)與原點(diǎn)的.距離叫做這個數(shù)的。一個數(shù)a的絕對值記作:.
4的絕對值記作,它表示在上與的距離,所以| 4|= 。
2、做一做:
(1)、求下列各數(shù)的絕對值:(四組完成) -1.5,0,-7,2 (2)、求下列各組數(shù)的絕對值:(一組完成)
(1)4,-4; (2) 0.8,-0.8;
從上面的結(jié)果你發(fā)現(xiàn)了什么?
3、議一議:(八組完成)
(1)|+2|=,1=,|+8.2|= ; 5(2)|-3|=,|-0.2|=,|-8|= . (3)|0|= ;
你能從中發(fā)現(xiàn)什么規(guī)律?
小結(jié):正數(shù)的絕對值是它,負(fù)數(shù)的絕對值是它的,0的絕對值是。
4、試一試:(二組完成)
若字母a表示一個有理數(shù),你知道a的絕對值等于什么嗎?
(通過上題例子,學(xué)生歸納總結(jié)出一個數(shù)的絕對值與這個數(shù)的關(guān)系。)
五、達(dá)標(biāo)檢測:
填空:
絕對值是10的數(shù)有( )
|+15|=( ) |–4|=( )
| 0 |=( ) | 4 |=( ) 2:判斷(1)、絕對值最小的數(shù)是0。( ) (2)、一個數(shù)的絕對值一定是正數(shù)。( ) (3)、一個數(shù)的絕對值不可能是負(fù)數(shù)。( )
(4)、互為相反數(shù)的兩個數(shù),它們的絕對值一定相等。( ) (5)、一個數(shù)的絕對值越大,表示它的點(diǎn)在數(shù)軸上離原點(diǎn)越近。( )
六、總結(jié):
1、絕對值:在數(shù)軸上,一個數(shù)所對應(yīng)的點(diǎn)與原點(diǎn)的距離叫做該數(shù)的絕對值.
2、絕對值的性質(zhì):正數(shù)的絕對值是它本身;
負(fù)數(shù)的絕對值是它的相反數(shù); 0的絕對值是0.
因?yàn)檎龜?shù)可用a>0表示,負(fù)數(shù)可用a<0表示,所以上述三條可表述成:a="">0,那么|a|=a (2)如果a<0,那么|a|=-a (3)如果a=0,那么|a|=0
3、會利用絕對值比較兩個負(fù)數(shù)的大小:兩個負(fù)數(shù)比較大小,絕對值大的反而小.
七、布置作業(yè)
P50頁,知識技能第1,2題.
絕對值公開課教案 2
教學(xué)目標(biāo)
知識與能力:借助于數(shù)軸,初步理解絕對值的概念,能求一個數(shù)的絕對值,初步學(xué)會求絕對值等于某一個正數(shù)的有理數(shù)。
過程與方法:通過從數(shù)形兩個側(cè)面理解絕對值的意義,初步了解數(shù)形結(jié)合的思想方法。通過應(yīng)用絕對值解決實(shí)際問題,體會絕對值的意義。
情感態(tài)度與價值觀:通過應(yīng)用絕對值解決實(shí)際問題,培養(yǎng)學(xué)生濃厚的學(xué)習(xí)興趣,使學(xué)生能積極參與數(shù)學(xué)學(xué)習(xí)活動,對數(shù)學(xué)有好奇心與求知欲。
教學(xué)重點(diǎn)與難點(diǎn)
教學(xué)重點(diǎn):絕對值的概念和求一個數(shù)的絕對值
教學(xué)難點(diǎn):絕對值的幾何意義及求絕對值等于某一個正數(shù)的有理數(shù)。
教學(xué)準(zhǔn)備
多媒體課件
教學(xué)過程
一、創(chuàng)設(shè)問題情境
用多媒體動畫顯示:兩只小狗從同一點(diǎn)O出發(fā),在一條筆直的街上跑,一只向右跑10米到達(dá)A點(diǎn),另一只向左跑10米到達(dá)B點(diǎn)。若規(guī)定向右為正,則A處記做__________,B處記做__________。
以O為原點(diǎn),取適當(dāng)?shù)膯挝婚L度畫數(shù)軸,并標(biāo)出A、B的位置。
。ㄓ蒙鷦佑腥さ膱D畫吸引學(xué)生,即復(fù)習(xí)了數(shù)軸和相反數(shù),又為下文作準(zhǔn)備)。
。、這兩只小狗在跑的'過程中,有沒有共同的地方?在數(shù)軸上的A、B兩又有什么特征?(從形和數(shù)兩個角度去感受絕對值)。
。、在數(shù)軸上找到-5和5的點(diǎn),它們到原點(diǎn)的距離分別是多少?表示-和的點(diǎn)呢?
小結(jié):在實(shí)際生活中,有時存在這樣的情況,無需考慮數(shù)的正負(fù)性質(zhì),比如:在計(jì)算小狗所跑的路程中,與小狗跑的方向無關(guān),這時所走的路程只需用正數(shù),這樣就必須引進(jìn)一個新的概念———絕對值。
二、建立數(shù)學(xué)模型
絕對值的概念
(借助于數(shù)軸這一工具,師生共同討論,引出絕對值的概念)
絕對值的幾何定義:一個數(shù)在數(shù)軸上對應(yīng)的點(diǎn)到原點(diǎn)的距離叫做這個數(shù)的絕對值。比如:-5到原點(diǎn)的距離是5,所以-5的絕對值是5,記|-5|=5;5的絕對值是5,記做|5|=5。
注意:①與原點(diǎn)的關(guān)系②是個距離的概念
練習(xí)1:請學(xué)生舉一個生活中的實(shí)際例子,說明解決有的問題只需考慮的數(shù)絕對值。
(通過應(yīng)用絕對值解決實(shí)際問題,體會絕對值的意義與作用,感受數(shù)學(xué)在生活中的價值。)
三、應(yīng)用深化知識
1、例題求解
例1、求下列各數(shù)的絕對值
-1.6, , 0, -10, +10
解:|-1.6|=1.6 ||= |0|=0
|-10|=10 |+10|=10
2、練習(xí)2:填表
相反數(shù) 絕對值 2.05 1000 0 - -1000 -2.05
。ㄒ员砀竦男问綄⒔^對值和相反數(shù)進(jìn)行比較,為歸納絕對值的特征作準(zhǔn)備)
3、根據(jù)上述題目,讓學(xué)生歸納總結(jié)絕對值的特點(diǎn)。(教師進(jìn)行補(bǔ)充小結(jié))
特點(diǎn):1、一個正數(shù)的絕對值是它本身
2、一個負(fù)數(shù)的絕對值是它的相反數(shù)
3、零的絕對值是零
4、互為相反數(shù)的兩個數(shù)的絕對值相等
4、練習(xí)3:回答下列問題
①一個數(shù)的絕對值是它本身,這個數(shù)是什么數(shù)?
、谝粋數(shù)的絕對值是它的相反數(shù),這個數(shù)是什么數(shù)?
、垡粋數(shù)的絕對值一定是正數(shù)嗎?
、芤粋數(shù)的絕對值不可能是負(fù)數(shù),對嗎?
、萁^對值是同一個正數(shù)的數(shù)有兩個,它們互為相反數(shù),這句話對嗎?
。ㄓ蓪W(xué)生口答完成,進(jìn)一步鞏固絕對值的概念)
5、例2、求絕對值等于4的數(shù)。
。ㄗ寣W(xué)生考慮這樣的數(shù)有幾個,是怎樣得出這個結(jié)果的呢?對后一個問題由學(xué)生去討論,啟發(fā)學(xué)生從數(shù)與形兩個方面考慮,培養(yǎng)學(xué)生的發(fā)散思維能力。)
分析:
、購臄(shù)字上分析
∵|+4|=4,|-4|=4 ∴絕對值等于4的數(shù)是+4和-4畫一個數(shù)軸(如下圖)
、趶膸缀我饬x上分析,畫一個數(shù)軸(如下圖)
∵數(shù)軸上到原點(diǎn)的距離等于4個單位長度的點(diǎn)有兩個,即表示+4的點(diǎn)P和表示-4的點(diǎn)M
∴絕對值等于4的數(shù)是+4和-4
注意:說明符號“∵”讀作“因?yàn)椤,“∴”讀作“所以”
6、練習(xí)本:做書上16頁課內(nèi)練習(xí)3、4兩題。
四、歸納小結(jié)
本節(jié)課我們學(xué)習(xí)了什么知識?
你覺得本節(jié)課有什么收獲?
由學(xué)生自行總結(jié)在自主探究,合作學(xué)習(xí)中的體會。
五、課后作業(yè)
讓學(xué)生去尋找一些生活中只考慮絕對值的實(shí)際例子。
課本16頁的作業(yè)題。
本人在近幾屆樂清市中、小、幼教師教學(xué)論文聯(lián)評中均有獲獎,特別是論文《談數(shù)學(xué)學(xué)困生的惰性心態(tài)及教學(xué)策略》在全國數(shù)學(xué)教研第十一屆年會論文(初中組)比賽中獲三等獎;而且在近幾年的說課比賽和優(yōu)質(zhì)課評比中表現(xiàn)出色;是校青年骨干教師,名教師培養(yǎng)對象。
樂清市虹橋鎮(zhèn)第一中學(xué) 陳楊明
-4 -3 -2 -1 0 1 2 3 4
4個單位長度 4個單位長度
M
絕對值公開課教案 3
一、教學(xué)目標(biāo):
1、掌握絕對值的概念,有理數(shù)大小比較法則。
2、學(xué)會絕對值的計(jì)算,會比較兩個或多個有理數(shù)的大小。
3、體驗(yàn)數(shù)學(xué)的概念、法則來自于實(shí)際生活,滲透數(shù)形結(jié)合和分類思想。
二、教學(xué)難點(diǎn):
兩個負(fù)數(shù)大小的比較。
三、知識重點(diǎn):
絕對值的概念。
四、教學(xué)過程:
。ㄒ唬┰O(shè)置情境。
1、引入課題。
星期天黃老師從學(xué)校出發(fā),開車去游玩,她先向東行20千米,到朱家尖,下午她又向西行30千米,回到家中(學(xué)校、朱家尖、家在同一直線上),如果規(guī)定向東為正:
(1)用有理數(shù)表示黃老師兩次所行的路程。
(2)如果汽車每公里耗油0.15升,計(jì)算這天汽車共耗油多少升?
2、學(xué)生思考后,教師作如下說明:
實(shí)際生活中有些問題只關(guān)注量的具體值,而與相反意義無關(guān),即正負(fù)性無關(guān),如汽車的耗油量我們只關(guān)心汽車行駛的距離和汽油的價格,而與行駛的方向無關(guān)。
3、觀察并思考:
畫一條數(shù)軸,原點(diǎn)表示學(xué)校,在數(shù)軸上畫出表示朱家尖和黃老師家的點(diǎn),觀察圖形,說出朱家尖黃老師家與學(xué)校的距離。
4、學(xué)生回答后,教師說明如下:
數(shù)軸上表示數(shù)的點(diǎn)到原點(diǎn)的距離只與這個點(diǎn)離開原點(diǎn)的長度有關(guān),而與它所表示的數(shù)的正負(fù)性無關(guān);一般地,數(shù)軸上表示數(shù)a的點(diǎn)與原點(diǎn)的距離叫做數(shù)a的絕對值,記做|a|。
例如,上面的問題中|20|=20,|-10|=10顯然,|0|=0這個例子中,第一問是相反意義的量,用正負(fù)數(shù)表示,后一問的解答則與符號沒有關(guān)系,說明實(shí)際生活中有些問題,人們只需知道它們的具體數(shù)值,而并不關(guān)注它們所表示的意義。為引入絕對值概念做準(zhǔn)備。使學(xué)生體驗(yàn)數(shù)學(xué)知識與生活實(shí)際的聯(lián)系。因?yàn)榻^對值概念的幾何意義是數(shù)形轉(zhuǎn)化的典型模型,學(xué)生初次接觸較難接受,所以配置此觀察與思考,為建立絕對值概念作準(zhǔn)備。
。ǘ┖献鹘涣。
1、探究規(guī)律例1求下列各數(shù)的絕對值,并歸納求有理數(shù)a的絕對有什么規(guī)律?
-3,5,0,+58,0.6。
2、要求小組討論,合作學(xué)習(xí)。
3、教師引導(dǎo)學(xué)生利用絕對值的意義先求出答案,然后觀察原數(shù)與它的絕對值這兩個數(shù)據(jù)的特征,并結(jié)合相反數(shù)的意義,最后總結(jié)得出求絕對值法則(見教科書第15頁)。
(三)鞏固練習(xí):教科書第15頁練習(xí)。
1、其中第1題按法則直接寫出答案,是求絕對值的基本訓(xùn)練;第2題是對相反數(shù)和絕對值概念進(jìn)行辨別,對學(xué)生的分析、判斷能力有較高要求,要注意思考的周密性,要讓學(xué)生體會出不同說法之間的區(qū)別。求一個數(shù)的絕時值的法則,可看做是絕對值概念的一個應(yīng)用,所以安排此例。 學(xué)生能做的盡量讓學(xué)生完成,教師在教學(xué)過程中只是組織者。本著這個理念,設(shè)計(jì)這個討論。
2、結(jié)合實(shí)際發(fā)現(xiàn)新知引導(dǎo)學(xué)生看教科書第16頁的.圖,并回答相關(guān)問題:
(1)把14個氣溫從低到高排列。
。2)把這14個數(shù)用數(shù)軸上的點(diǎn)表示出來。
3、觀察并思考:
(1)觀察這些點(diǎn)在數(shù)軸上的位置,并思考它們與溫度的高低之間的關(guān)系,由此你覺得兩個有理數(shù)可以比較大小嗎?應(yīng)怎樣比較兩個數(shù)的大小呢?
。2)學(xué)生交流后,教師總結(jié):
14個數(shù)從左到右的順序就是溫度從低到高的順序:在數(shù)軸上表示有理數(shù),它們從左到右的順序就是從小到大的順序,即左邊的數(shù)小于右邊的數(shù)。在上面14個數(shù)中,選兩個數(shù)比較,再選兩個數(shù)試試,通過比較,歸納得出有理數(shù)大小比較法則。
4、想象練習(xí):
想象頭腦中有一條數(shù)軸,其上有兩個點(diǎn),分別表示數(shù)-100和-90,體會這兩個點(diǎn)到原點(diǎn)的距離(即它們的絕對值)以及這兩個數(shù)的大小之間的關(guān)系。要求學(xué)生在頭腦中有清晰的圖形。讓學(xué)生體會到數(shù)學(xué)的規(guī)定都來源于生活,每一種規(guī)定都有它的合理性。
數(shù)在大小比較法則第2點(diǎn)學(xué)生較難掌握,要從絕對值的意義和數(shù)軸上的數(shù)左小右大這方面結(jié)合起來來了解,所以配置想象練習(xí) ,加強(qiáng)數(shù)與形的想象。
5、課堂練習(xí)例2,比較下列各數(shù)的大小。(教科書第17頁例)
比較大小的過程要緊扣法則進(jìn)行,注意書寫格式。
6、練習(xí):第18頁練習(xí)。
(三)小結(jié)與作業(yè)。
課堂小結(jié)怎樣求一個數(shù)的絕對值,怎樣比較有理數(shù)的大?
。ㄋ模┍菊n作業(yè)。
1、必做題:教產(chǎn)書第19頁習(xí)題1,2,第4,5,6,10
2、選做題:教師自行安排。
五、本課教育評注(課堂設(shè)計(jì)理念,實(shí)際教學(xué)效果及改進(jìn)設(shè)想)。
1、情景的創(chuàng)設(shè)出于如下考慮:
。1)體現(xiàn)數(shù)學(xué)知識與生活實(shí)際的緊密聯(lián)系,讓學(xué)生在這些熟悉的日常生活情境中獲得數(shù)學(xué)體驗(yàn),不僅加深對絕對值的理解,更感受到學(xué)習(xí)絕對值概念的必要性和激發(fā)學(xué)習(xí)的興趣。
。2)教材中數(shù)的絕對值概念是根據(jù)幾何意義來定義的(其本質(zhì)是將數(shù)轉(zhuǎn)化為形來解釋,是難點(diǎn)),然后通過練習(xí)歸納出求有理數(shù)的絕對值的規(guī)律,如果直接給出絕對值的概念,灌輸知識的味道很濃,且太抽象,學(xué)生不易接受。
2、一個數(shù)絕對值的法則,實(shí)際上是絕對值概念的直接應(yīng)用,也體現(xiàn)著分類的數(shù)學(xué)思想,所以直接通過例1歸納得出,顯得非常緊湊,是教學(xué)重點(diǎn);從知識的發(fā)展和學(xué)生的能力培養(yǎng)角度來看,教師應(yīng)更重視學(xué)生的自主學(xué)習(xí)和探究的過程,關(guān)注學(xué)生的思維,做好教學(xué)的組織和引導(dǎo),留給學(xué)生足夠的空間。
3、有理數(shù)大小的比較法則是大小規(guī)定的直接歸納,其中第(2)條學(xué)生較難理解,教學(xué)中要結(jié)合絕對值的意義和規(guī)定:在數(shù)軸上表示有理數(shù),它們從左到右的順序就是從小到大的順序,幫助學(xué)生建立數(shù)軸上越左邊的點(diǎn)到原點(diǎn)的距離越大,所以表示的數(shù)越小這個數(shù)形結(jié)合的模型。為此設(shè)置了想象練習(xí)。
4、本節(jié)課的內(nèi)容包括絕對值的概念和數(shù)的絕對值的求法、有理數(shù)大小比較的法則,教學(xué)內(nèi)容很多,學(xué)生接受起來可能會有困難,建議把有理數(shù)的大小比較移到下節(jié)課教學(xué)。
絕對值公開課教案 4
一、教學(xué)目標(biāo):
1.知識目標(biāo):
、倌軠(zhǔn)確理解絕對值的幾何意義和代數(shù)意義。
、谀軠(zhǔn)確熟練地求一個有理數(shù)的絕對值。
、凼箤W(xué)生知道絕對值是一個非負(fù)數(shù),能更深刻地理解相反數(shù)的概念。
2.能力目標(biāo):
、俪醪脚囵B(yǎng)學(xué)生觀察、分析、歸納和概括的思維能力。
②初步培養(yǎng)學(xué)生由抽象到具體再到抽象的思維能力。
3.情感目標(biāo):
、偻ㄟ^向?qū)W生滲透數(shù)形結(jié)合思想和分類討論的思想,讓學(xué)生領(lǐng)略到數(shù)學(xué)的奧妙,從而激起他們的好奇心和求知欲望。
、谕ㄟ^課堂上生動、活潑和愉快、輕松地學(xué)習(xí),使學(xué)生感受到學(xué)習(xí)數(shù)學(xué)的快樂,從而增強(qiáng)他們的自信心。
二、教學(xué)重點(diǎn)和難點(diǎn)
教學(xué)重點(diǎn):絕對值的幾何意義和代數(shù)意義,以及求一個數(shù)的'絕對值。
教學(xué)難點(diǎn):絕對值定義的得出、意義的理解及求一個負(fù)數(shù)的絕對值。
三、教學(xué)方法
啟發(fā)引導(dǎo)式、討論式和談話法
四、教學(xué)過程
(一)復(fù)習(xí)提問
問題:相反數(shù)6與-6在數(shù)軸上與原點(diǎn)的距離各是多少?兩個相反數(shù)在數(shù)軸上的點(diǎn)有什么特征?
(二)新授
1.引入
結(jié)合教材P63圖2-11和復(fù)習(xí)問題,講解6與-6的絕對值的意義。
2.數(shù)a的絕對值的意義
①幾何意義
一個數(shù)a的絕對值就是數(shù)軸上表示數(shù)a的點(diǎn)到原點(diǎn)的距離。數(shù)a的絕對值記作|a|。
舉例說明數(shù)a的絕對值的幾何意義。(按教材P63的倒數(shù)第二段進(jìn)行講解。)
強(qiáng)調(diào):表示0的點(diǎn)與原點(diǎn)的距離是0,所以|0|=0。
指出:表示“距離”的數(shù)是非負(fù)數(shù),所以絕對值是一個非負(fù)數(shù)。
、诖鷶(shù)意義
把有理數(shù)分成正數(shù)、零、負(fù)數(shù),根據(jù)絕對值的幾何意義可以得出絕對值的代數(shù)意義:一個正數(shù)的絕對值是它本身,一個負(fù)數(shù)的絕對值是它的相反數(shù),0的絕對值是0。
絕對值公開課教案 5
教學(xué)目標(biāo)
1.知識與技能
、倌芨鶕(jù)一個數(shù)的絕對值表示距離,初步理解絕對值的概念,能求一個數(shù)的絕對值.
、谕ㄟ^應(yīng)用絕對值解決實(shí)際問題,體會絕對值的意義和作用.
2.過程與方法
經(jīng)歷絕對值的代數(shù)定義轉(zhuǎn)化成數(shù)學(xué)式子的過程中,培養(yǎng)學(xué)生運(yùn)用數(shù)學(xué)轉(zhuǎn)化思想指導(dǎo)思維活動的能力.
3.情感、態(tài)度與價值觀
、偻ㄟ^解釋絕對值的幾何意義,滲透數(shù)形結(jié)合的思想.
、隗w驗(yàn)運(yùn)用直觀知識解決數(shù)學(xué)問題的成功.
教學(xué)重點(diǎn)難點(diǎn)
重點(diǎn):給出一個數(shù),會求它的絕對值.
難點(diǎn):絕對值的幾何意義、代數(shù)定義的導(dǎo)出.
教與學(xué)互動設(shè)計(jì)
(一)創(chuàng)設(shè)情境,導(dǎo)入新課
活動 請兩同學(xué)到講臺前,分別向左、向右行3米.
交流 ①他們所走的路線相同嗎?
、谌粝蛴覟檎,分別可怎樣表示他們的位置? ③他們所走的路程的.遠(yuǎn)近是多少?
(二)合作交流,解讀探究
觀察 出示一組數(shù)6與-6,3.5與-3.5,1和-1,它們是一對互為________,它們的__________不同,__________相同.
總結(jié): 例如6和-6兩個數(shù)在數(shù)軸上的兩點(diǎn)雖然分布在原點(diǎn)的兩邊,但它們到原點(diǎn)的距離相等,如果我們不考慮兩點(diǎn)在原點(diǎn)的哪一邊,只考慮它們離開原點(diǎn)的距離,這個距離都是6,我們就把這個距離叫做6和-6的絕對值.
絕對值:在數(shù)軸上表示數(shù)a的點(diǎn)與原點(diǎn)的距離叫做a的絕對值,記作│a│.
想一想 -3的絕對值是什么?
絕對值公開課教案 6
教學(xué)目標(biāo)
1.了解絕對值的概念,會求有理數(shù)的絕對值;
2.會利用絕對值比較兩個負(fù)數(shù)的大;
3.在絕對值概念形成過程中,滲透數(shù)形結(jié)合等思想方法,并注意培養(yǎng)學(xué)生的思維能力.教學(xué)建議
一、重點(diǎn)、難點(diǎn)分析
絕對值概念既是本節(jié)的教學(xué)重點(diǎn)又是教學(xué)難點(diǎn)。關(guān)于絕對值的概念,需要明確的是無論是絕對值的幾何定義,還是絕對值的代數(shù)定義,都揭示了絕對值的一個重要性質(zhì)——非負(fù)性,也就是說,任何一個有理數(shù)的絕對值都是非負(fù)數(shù),即無論a取任意有理數(shù),都有 。
教材上絕對值的定義是從幾何角度給出的,也就是從數(shù)軸上表示數(shù)的點(diǎn)在數(shù)軸上的位置出發(fā),得到的定義。這樣,數(shù)軸的`概念、畫法、利用數(shù)軸比較有理數(shù)的大小、相反數(shù),以及絕對值,通過數(shù)軸,這些知識都聯(lián)系在一起了。此外,0的絕對值是0,從幾何定義出發(fā),就十分容易理解了。
二、知識結(jié)構(gòu)
絕對值的定義 絕對值的表示方法 用絕對值比較有理數(shù)的大小
三、教法建議
用語言敘述絕對值的定義,用解析式的形式給出絕對值的定義,或利用數(shù)軸定義絕對值,從理論上講都是可以的.初學(xué)絕對值用語言敘述的定義,好像更便于學(xué)生記憶和運(yùn)用,以后逐步改用解析式表示絕對值的定義,即
在教學(xué)中,只能突出一種定義,否則容易引起混亂.可以把利用數(shù)軸給出的定義作為絕對值的一種直觀解釋.
此外,要反復(fù)提醒學(xué)生:一個有理數(shù)的絕對值不能是負(fù)數(shù),但不能說一定是正數(shù).“非負(fù)數(shù)”的概念視學(xué)生的情況,逐步滲透,逐步提出.
四、有關(guān)絕對值的一些內(nèi)容
1.絕對值的代數(shù)定義
一個正數(shù)的絕對值是它本身;一個負(fù)數(shù)的絕對值是它的相反數(shù);零的絕對值是零.
2.絕對值的幾何定義
在數(shù)軸上表示一個數(shù)的點(diǎn)離開原點(diǎn)的距離,叫做這個數(shù)的絕對值.
3.絕對值的主要性質(zhì)
(2)一個實(shí)數(shù)的絕對值是一個非負(fù)數(shù),即|a|≥0,因此,在實(shí)數(shù)范圍內(nèi),絕對值最小的數(shù)是零.
(4)兩個相反數(shù)的絕對值相等.
五、運(yùn)用絕對值比較有理數(shù)的大小
1.兩個負(fù)數(shù)大小的比較,因?yàn)閮蓚負(fù)數(shù)在數(shù)軸上的位置關(guān)系是:絕對值較大的負(fù)數(shù)一定在絕對值較小的負(fù)數(shù)左邊,所以,兩個負(fù)數(shù),絕對值大的反而小.
比較兩個負(fù)數(shù)的方法步驟是:
。1)先分別求出兩個負(fù)數(shù)的絕對值;
。2)比較這兩個絕對值的大;
。3)根據(jù)“兩個負(fù)數(shù),絕對值大的反而小”作出正確的判斷.
絕對值公開課教案 7
一、學(xué)習(xí)與導(dǎo)學(xué)目標(biāo):
知識與技能:會求出一個數(shù)的絕對值,能利用數(shù)軸及絕對值的知識,比較兩個有理數(shù)的大小;
過程與方法:經(jīng)歷絕對值概念的形成,初步體會數(shù)形結(jié)合的思想方法,豐富解決問題的策略;
情感態(tài)度:通過創(chuàng)設(shè)情境,初步感悟?qū)W習(xí)絕對值的必要性,促進(jìn)責(zé)任心的形成。
二、學(xué)程與導(dǎo)程活動:
A、創(chuàng)設(shè)情境(幻燈片或掛圖)
1、兩輛汽車,其一向東行駛10km,另一向西行駛8km。為了區(qū)別,可規(guī)定向東行駛為正,則分別記作+10km和-8km。但在計(jì)算出租車收費(fèi),汽車行駛所耗的汽油,起主要作用的是汽車行駛的路程,而不是行駛的方向。此時,行駛路程則分別記作10km和8km。
再如測量誤差問題、排球重量誰更接近標(biāo)準(zhǔn)問題
2、在討論數(shù)軸上的點(diǎn)與原點(diǎn)的距離時,只需要觀察它與原點(diǎn)相隔多少個單位長度,與位于原點(diǎn)何方無關(guān)。
B、學(xué)習(xí)概念:
1、我們把在數(shù)軸上表示數(shù)a的點(diǎn)與原點(diǎn)的距離叫做數(shù)a的絕對值(absolute value),記作︱a︱(幻燈片)。因此,上述+10,-8的絕對值分別是10,8。
如在數(shù)軸上表示數(shù)-6的點(diǎn)和表示數(shù)6的點(diǎn)與原點(diǎn)的距離都是6,所以,-6和6的絕對值都是6,記作︱-6︱=6,︱6︱=6。(互為相反數(shù)的兩個數(shù)的.絕對值相同)
2、嘗試回答(1)︱+2︱= ,︱1/5︱= ,︱+8.2︱= ;
(2)︱-3︱= ,︱-0.2︱= ,︱-8.2︱= ;
(3)︱0︱= 。(幻燈片)
思考:你能從中發(fā)現(xiàn)什么規(guī)律?引導(dǎo)學(xué)生得出:(幻燈片)
性質(zhì):一個正數(shù)的絕對值是它本身;
一個負(fù)數(shù)的絕對值是它的相反數(shù);
零的絕對值是零。
如果用字母a表示有理數(shù),上述性質(zhì)可表述為:
當(dāng)a是正數(shù)時,︱a︱=a;
當(dāng)a是負(fù)數(shù)時,︱a︱=-a;
當(dāng)a=0時,︱a︱=0。
解答課本P19/7及P15練習(xí),由P19/7體會絕對值在實(shí)際中的應(yīng)用,由練習(xí)1體會上面的三個等式,由練習(xí)2中提到的絕對值大小、數(shù)軸,引出問題:
在引入負(fù)數(shù)以后,如何比較兩個數(shù)的大小,尤其是兩個負(fù)數(shù)的大小?
3、讓我們?nèi)匀换氐綄?shí)際中去看看有怎樣的啟發(fā),引導(dǎo)閱讀P16(幻燈片)。
顯然,結(jié)合問題的實(shí)際意義不難得到:-4-202。
因此,在數(shù)軸上你有何發(fā)現(xiàn)?生討論后發(fā)現(xiàn):從左往右表示的數(shù)越來越大。
再找?guī)讉量試試是否如此?這些數(shù)的絕對值的大小如何?(可利用P19/6,8為素材)
通過以上探究活動得到:正數(shù)大于0,0大于負(fù)數(shù),正數(shù)大于負(fù)數(shù);
兩個負(fù)數(shù),絕對值大的反而小。
4、師生活動比較下列各對數(shù)的大。篜17例,P18練習(xí)。
5、師生小結(jié)歸納(幻燈片)
三、筆記與板書提綱:
1、 幻燈片
2、 師生板演練習(xí)P15/1
四、練習(xí)與拓展選題:
P19/4,5,9,10
絕對值公開課教案 8
導(dǎo)學(xué)目標(biāo)
1、借助數(shù)軸,初步理解絕對值的概念,能求一個數(shù)的絕 對值,會利用絕對值比較兩個負(fù)數(shù)的大小。
2、通過應(yīng)用絕對值解決實(shí)際問題絕對值的意義和作用。
導(dǎo)學(xué)重點(diǎn):
正確理解絕對值的概念?
導(dǎo)學(xué)難點(diǎn):
負(fù)數(shù)大小比較?
導(dǎo)學(xué)過程
溫故:
1、下列各數(shù)中:
+7,—2, ,—8?3,0,+0?01,— ,1 ,哪些是正數(shù)?哪些是負(fù)數(shù)?哪些是非負(fù)數(shù)?
2、什么叫做數(shù)軸?畫一條數(shù)軸,并在數(shù)軸上標(biāo)出下列各數(shù):
—3,4,0,3,—1?5,—4, ,2?
鏈接:
問題2中有哪些數(shù)互為相反數(shù)?從數(shù)軸上看,互為相反數(shù)的一對有理數(shù)有什么特點(diǎn)?
知新:
1、什么叫絕對值?
在數(shù)軸上,一個數(shù)所對應(yīng)的點(diǎn)與 的 叫做這個 數(shù)的絕對值.例如+5的絕對值等于5,記作+5=5 ;—3的絕對值等于3,記作 。
2、絕對值的特點(diǎn)有哪些?
。1)一個正數(shù)的絕對值是 ;例如,4= , +7。1 = 。
。2)一個負(fù)數(shù)的絕對值是 ;例如,-2= ,-5。2= 。
。3)0的絕對值是 .
容易看出,兩個互為相反數(shù)的數(shù)的絕對值 .如—5=+5=5.
練一練:1。已知| |=5,求 的值。
2、填空:
。1)+3的符號是_____,絕對值是_ _____;(2)—3的符號是_____,絕對值是______;
。3)— 的符號是____,絕對值是______;(4)10—5的符號是_____,絕對值是______?
3、填空:
。1)符號是+號,絕對值是7的數(shù)是________;(2)符號是—號,絕對值是7的數(shù)是________; (3)符號是—號,絕對值是0?35的 數(shù)是________;(4)符號是+號,絕對值是1 的數(shù) 是________;
4、(1)絕對值是 的數(shù)有幾個?各是什么?(2)絕對值是0的數(shù)有幾個?各是什么?
。3)有沒有絕對值是—2的數(shù)?
3。理解:
若用a表示一個數(shù),當(dāng)a 是正數(shù)時可以表示成a>0,當(dāng)a是負(fù)數(shù)時可以表示成a<0,這樣,上面的絕對值的'特點(diǎn)可用用符號語言可表示為:
。1) 如果a>0,那么a=a;
。2) 如果a<0,那么a=-a;
(3) 如果a=0,那么a =0。
4。 比較兩個負(fù)數(shù)的大小
由于絕對值是表示數(shù)的點(diǎn)到原點(diǎn)的距離,則離原點(diǎn)越遠(yuǎn)的點(diǎn)表示的數(shù)的絕對值越大.負(fù)數(shù)的絕對值越大,表示 這個數(shù)的點(diǎn)就越靠左邊,因此,兩個負(fù)數(shù)比較,絕對值大的反而。
練一練: 比較 和 的大小
絕對值公開課教案 9
一、教學(xué)目標(biāo)
【知識與技能】
借助于數(shù)軸理解相反數(shù)和絕對值的概念,會求一個數(shù)的絕對值,能借助絕對值比較兩個負(fù)數(shù)的'大小。
【過程與方法】
通過自主探索、小組討論、合作交流探索得到絕對值的過程,培養(yǎng)學(xué)生發(fā)現(xiàn)和解決問題的能力,鍛煉學(xué)生合作交流的意識。
【情感態(tài)度與價值觀】
體會到數(shù)學(xué)和生活之間的聯(lián)系,提升學(xué)生學(xué)習(xí)數(shù)學(xué)的自信心和樂趣。
二、教學(xué)重難點(diǎn)
【教學(xué)重點(diǎn)】
相反數(shù)、絕對值的概念。
【教學(xué)難點(diǎn)】
求一個數(shù)的絕對值和相反數(shù);借助絕對值比較負(fù)數(shù)間的大小。
三、教學(xué)過程
。ㄒ唬┮胄抡n
教師回顧舊知并提問:上節(jié)課學(xué)習(xí)了哪些知識?
預(yù)設(shè):學(xué)習(xí)了數(shù)軸,知道了有理數(shù)都可以用數(shù)軸上的點(diǎn)來表示。
多媒體出示,3與-3,5和-5等數(shù)字,再次提出問題:這些數(shù)有什么相同點(diǎn),你能找到這些數(shù)在數(shù)軸上的位置嗎?引出新課。
。ǘ┨剿餍轮
學(xué)生自主觀察,并寫出幾組類似的數(shù)字。
絕對值公開課教案 10
教學(xué)目標(biāo)
1、知識與技能
會利用絕對值比較兩個負(fù)數(shù)的大小
2、過程與方法
利用絕對值概念比較有理數(shù)的大小,培養(yǎng)學(xué)生的邏輯思維能力
3、情感、態(tài)度與價值觀
敢于面對數(shù)學(xué)活動中的困難,有學(xué)好數(shù)學(xué)的自信心
教學(xué)重點(diǎn)難點(diǎn)
重點(diǎn):利用絕對值比較兩個負(fù)數(shù)的大小
難點(diǎn):利用絕對值比較兩個異分母負(fù)分?jǐn)?shù)的大小
教與學(xué)互動設(shè)計(jì)
。ㄒ唬﹦(chuàng)設(shè)情境,導(dǎo)入新課
投影 你能比較下列各組數(shù)的大小嗎?
(1)│-3│與│-8│
(2)4與-5
(3)0與3
(4)-7和0
(5)0.9和1.2
。ǘ┖献鹘涣鳎庾x探究
討論交流 由以上各組數(shù)的大小比較可見:正數(shù)都大于0,0都大于負(fù)數(shù),正數(shù)都大于負(fù)數(shù)
思考 若任取兩個負(fù)數(shù),該如何比較它的大小呢?
點(diǎn)撥 若-7表示-7℃,-1表示-1℃,則兩個溫度誰高誰低?
【總結(jié)】 兩個負(fù)數(shù),絕對值大的反而小,或說,兩個負(fù)數(shù)絕對值小的反而大
注意
①比較兩個負(fù)數(shù)的大小又多了一種方法,即:兩個負(fù)數(shù),絕對值大的反而小
②異號的兩數(shù)比較大小,要考慮它們的正負(fù);同號兩數(shù)比較大小,要考慮先比較它們的絕對值
③在數(shù)軸上表示有理數(shù),它們從左到右的'順序也就是從小到大的順序,即:左邊的數(shù)總比右邊的數(shù)要小,即:利用數(shù)軸來比較有理數(shù)的大小。
絕對值公開課教案 11
一、教學(xué)目標(biāo)
1.初步理解絕對值的意義,掌握求有理數(shù)的絕對值的方法,并會求有理數(shù)的絕對值.
2.利用絕對值解決?些簡單的實(shí)際問題.
3.使學(xué)生初步了解數(shù)形結(jié)合的思想方法.
4.通過應(yīng)用絕對值解決實(shí)際問題,培養(yǎng)學(xué)生濃厚的學(xué)習(xí)興趣,體會絕對值的意義和作用,感受數(shù)學(xué)在生活中的價值.
二、教法設(shè)計(jì)
通過實(shí)體模型或問題實(shí)例創(chuàng)設(shè)學(xué)生參與情景,在自主看書尋找問題答案后探求絕對值的意義及應(yīng)用.
三、教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):初步理解絕對值的意義,會求一個有理數(shù)的絕對值.
難點(diǎn):對絕對值意義的初步理解.
四、課時安排
1課時
五、師生互動活動設(shè)計(jì)
自主、探究、合作、交流.
六、教學(xué)思路
(一)、導(dǎo)入
1.教師拿出準(zhǔn)備好的數(shù)軸模型,讓學(xué)生觀察后擺放在講臺前,叫兩個學(xué)生站在繩上標(biāo)有點(diǎn)12、點(diǎn)6的位置,讓其他學(xué)生觀察度量后回答:這兩個同學(xué)與原點(diǎn)的距離各是多少?
另外叫兩個學(xué)生分別站在繩上標(biāo)有點(diǎn)一6、點(diǎn)一12的位置,其他學(xué)生觀察度量后回答:這兩個同學(xué)與原點(diǎn)的距離各是多少?
。ńo學(xué)生充分的時間思考,相互討論、探討.)
或:創(chuàng)設(shè)問題情景
掛出畫有數(shù)軸的磁性黑板,兩只小狗分別站在數(shù)軸上原點(diǎn)的左、右兩側(cè)3個單位的點(diǎn)上,向它離開原點(diǎn)的距離各是多少?(激情引趣,導(dǎo)人新課)
2.概念的引述.
教師引導(dǎo)學(xué)生看書自學(xué)后,舉例說明:什么是一個數(shù)的絕對值?如何表示一個數(shù)的絕對值?
。ń袑W(xué)生板書)
(學(xué)生在自學(xué)的基礎(chǔ)上,可相互合作、探討,教師參與學(xué)生的討論,并進(jìn)行個別指導(dǎo).)
3.引導(dǎo)學(xué)生思考書中“想一想”:互為相反數(shù)的兩個數(shù)的絕對值有什么關(guān)系?
(在學(xué)生充分思考后,教師要引導(dǎo)學(xué)生相互說,并叫5個學(xué)生上黑板舉例說明這個關(guān)系.)
。ǘ、新知識運(yùn)用
例1:求下列各數(shù)的絕對位:(小黑板示)
、 、0、-7.8、
教師示范一題的解題格式,其余題目由學(xué)生獨(dú)立完成.(培養(yǎng)學(xué)生規(guī)范化解題的良好習(xí)慣)
四、知識拓展
師生互動,先要求學(xué)??思考、解決,再在組內(nèi)互相交流.
1.(1)在數(shù)軸上表示下列各數(shù):
一1.5、一3、一1、一5.
(2)求出以上各數(shù)的絕對值,并比較它們的大。
(3)你發(fā)現(xiàn)了什么?
。ㄅ囵B(yǎng)學(xué)生獨(dú)立思考解決問題的習(xí)慣,學(xué)會發(fā)現(xiàn)問題,總結(jié)規(guī)律.)
2.如果=3.5,那么
3.
4.字母a表示一個正數(shù),-a表示什么?- a 一定是負(fù)數(shù)嗎?
(字母表示數(shù)的意義,為下一章的代數(shù)式做準(zhǔn)備.)
視學(xué)生掌握知識的'實(shí)際增況開展自編題,編出的題目先在小組內(nèi)互相交流,再在小組內(nèi)選出一題在全班交流.
五、小結(jié)
1.知識點(diǎn):
。1)絕對值的定義二
(2)一個數(shù)的絕對值與這個數(shù)的關(guān)系.
2.?dāng)?shù)學(xué)思想方法:數(shù)形結(jié)合的思想.(培養(yǎng)學(xué)生總結(jié)能力)
自我評價
本課設(shè)計(jì)體現(xiàn)的幾個教學(xué)理念:
1.既注重學(xué)生的全面發(fā)展、又重視突出重點(diǎn).在教學(xué)過程中不僅考慮使雙基、能力和非智力教學(xué)目標(biāo)的切實(shí)實(shí)現(xiàn),而且突出了培養(yǎng)思維能力這個重點(diǎn),著重培養(yǎng)學(xué)生思維的準(zhǔn)確性、深刻性、批判性、創(chuàng)新性等優(yōu)秀品質(zhì).
2.突出了歸納思維方法和學(xué)生創(chuàng)新意識的培養(yǎng).這主要是通過求絕對值的法則的學(xué)習(xí)過程和“知識拓展”中提出的問題而實(shí)現(xiàn)的.
3.學(xué)生的自主探索和教師的有效而及時的組織、引導(dǎo)與合作相結(jié)合.本課設(shè)計(jì)者根據(jù)初一學(xué)生的認(rèn)和水平,既注重安排他們的自主探究活動,又及時地進(jìn)行引導(dǎo)、講解和幫助,這一教學(xué)理念貫穿本設(shè)計(jì)始終.
4.注重教學(xué)材料的呈現(xiàn)方式,采用磁性黑板的直觀作用和多變而有趣的練習(xí),激發(fā)學(xué)生的學(xué)習(xí)興趣和參與教學(xué)活動的積極性,增強(qiáng)了教學(xué)的情境性.
5.本課設(shè)計(jì)者電教手段的應(yīng)用沒有得到體現(xiàn),只適合硬件條件較差的學(xué);?qū)π录夹g(shù)手段不熟的教師使用.
絕對值公開課教案 12
一、知識與技能
(1)借助數(shù)軸初步理解絕對值的概念,能求一個數(shù)的絕對值。
(2)通過應(yīng)用絕對值解決實(shí)際問題,體會絕對值的意義和作用。
二、過程與方法
通過觀察實(shí)例及絕對值的幾何意義,探索一個數(shù)的絕對值與這個數(shù)之間的關(guān)系,培養(yǎng)學(xué)生語言描述能力。
三、情感態(tài)度與價值觀
培養(yǎng)學(xué)生積極參與探索活動,體會數(shù)形結(jié)合的方法。
教學(xué)重、難點(diǎn)與關(guān)鍵
1.重點(diǎn):正確理解絕對值的概念,能求一個數(shù)的絕對值。
2.難點(diǎn):正確理解絕對值的幾何意義和代數(shù)意義。
3.關(guān)鍵:借助數(shù)軸理解絕對值的幾何意義,根據(jù)絕對值定義和相反數(shù)的概念,理解絕對值的.代數(shù)意義。
四、教學(xué)過程
1.復(fù)習(xí)提問,新課引入
2.什么叫互為相反數(shù)?
3.在數(shù)軸上表示互為相反數(shù)的兩個點(diǎn)和原點(diǎn)的位置關(guān)系怎樣?
五、新授
在一些量的計(jì)算中,有時并不注意其方向,例如,為了計(jì)算汽車行駛所耗的油量,起作用的是汽車行駛的路程而不是行駛的方向。
1.觀察課本第11頁圖1.2-5,回答:
(1)兩輛汽車行駛的路線相同嗎?
(2)它們行駛路程的遠(yuǎn)近相同嗎?
這兩輛車行駛的路線不同(方向相反),但行駛的路程的遠(yuǎn)近相同,都是10km.
課本圖1.2-5中表示-10的點(diǎn)B和表示10的點(diǎn)A離開原點(diǎn)的距離都是10,我們就把這個距離10叫做數(shù)-10、10的絕對值。
一般地,數(shù)軸上表示數(shù)a的點(diǎn)與原點(diǎn)的距離叫做數(shù)a的絕對值,記作│a│。
這里的數(shù)a可以是正數(shù)、負(fù)數(shù)和0.
絕對值公開課教案 13
【學(xué)習(xí)目標(biāo)】
1、使學(xué)生能說出相反數(shù)的意義
2、使學(xué)生能求出已知數(shù)的相反數(shù)
3、使學(xué)生能根據(jù)相反數(shù)的意思進(jìn)行化簡
【學(xué)習(xí)過程】
【情景創(chuàng)設(shè)】
回憶上節(jié)課的情境,小明從學(xué)校出發(fā)沿東西大街走了0.5千米,在數(shù)軸上表示出他的位置。點(diǎn)a,點(diǎn)b即是小明到達(dá)的位置。
觀察a,b兩點(diǎn)位置及共到原點(diǎn)的距離,你有什么發(fā)現(xiàn)嗎?
觀察下列各對數(shù),你有什么發(fā)現(xiàn)?
‐5與5,‐6、1與6、1,‐34 與+34
相反數(shù)的描述性定義:符號不同,絕對值相等的兩個數(shù),叫做相反數(shù)(只有符號不同)
規(guī)定0的相反數(shù)是0
想一想:你能舉出互為相反數(shù)的例子嗎?
【例題精講】
例1
例2
試一試: 化簡―[―(+3、2)]
想一想:
請同學(xué)們仔細(xì)觀察這五個等式,它們的符號變化有什么規(guī)律?
把一個數(shù)的多重符號化成單一符號時,若該數(shù)前面有奇數(shù)個“―”號,則化簡的結(jié)果是負(fù);若該數(shù)前面有偶數(shù)個“―”號,則化簡的結(jié)果是正、
練一練:填空
。1)-2的相反數(shù)是 ,3、75與 互為相反數(shù),相反數(shù)是其本身的數(shù)是 ;
(2)-(+7)= ,-(-7)= ,-[+(-7)]= ,-[-(-7)]= ;
。3)判斷下列語句,正確的是 、
、 ―5 是相反數(shù);
、 ―5 與 +3 互為相反數(shù);
③ ―5 是 5 的相反數(shù);
④ ―5 和 5 互為相反數(shù);
、 0 的相反數(shù)還是 0 、
選擇:
。1)下列說法正確的.是 ( )
a、正數(shù)的絕對值是負(fù)數(shù);
b、符號不同的兩個數(shù)互為相反數(shù);
c、π的相反數(shù)是 ―3、14;
d、任何一個有理數(shù)都有相反數(shù)、
。2)一個數(shù)的相反數(shù)是非正數(shù),那么這
個數(shù)一定是 ( )
a、正數(shù) b、負(fù)數(shù) c、零或正數(shù) d、零
畫一畫:
在數(shù)軸上畫出表示下列各數(shù)以及它們的相反數(shù)的點(diǎn):
動腦筋:
如果數(shù)軸上兩點(diǎn) a、b 所表示的數(shù)互為相反數(shù),點(diǎn) a 在原點(diǎn)左側(cè),且 a、b 兩點(diǎn)距離為 8 ,你知道點(diǎn) b 代表什么數(shù)嗎?
【課后作業(yè)】
1、判斷題
(1) 0沒有相反數(shù)。 ( )
(2)任何一個有理數(shù)的相反數(shù)都與原來的符號相反。 ( )
。3)如果一個有理數(shù)的相反數(shù)是正數(shù),則這個數(shù)是負(fù)數(shù)、 ( )
。4)只有0的相反數(shù)是它本身 ( )
。5) 互為相反數(shù)的兩個數(shù)絕對值相等
2、填空題
(1) —(—2、8)= _________; —(+7)= _________;
。2) —3、4的相反數(shù)是 ________、
。3) —2、6是________的相反數(shù)、
(4)│—3、4│=________;│5、7│=________;
—│2、65│=_______;—│—12、56│=_______
(5)絕對值等于5的數(shù)是_________
。6)相反數(shù)等于本身的數(shù)是__________
3、化簡:
。1) —(—1966)=______ (2) +│—1978│=______(3)+(—1983)=______
。4) —(+1997)=_______ (5) +│+XX│=______
4、選擇題:
。1)在—3、+(—3)、—(—4)、—(+2)中,負(fù)數(shù)的個數(shù)有( )
a、1個 b、2個 c、3個
。2)在+(—2)與—2、—(+1)與+1、—(—4)與+(—4)、
—(+5)與+(—5)、—(—6)與+(+6)、+(+7)與+(—7)
這幾對數(shù)中,互為相反數(shù)的有( )
a、6對 b、5對 c、4對 d、3對
5、在數(shù)軸上標(biāo)出3、—2、5、2、0、 以及它們的相反數(shù)。
6、請?jiān)跀?shù)軸上畫出表示3、—2、—3、5及它們相反數(shù)的點(diǎn),并分別用a、b、c、d、e、f來表示
。1)把這6個數(shù)按從小到大的順序用<連接起來
(2)點(diǎn)c與原點(diǎn)之間的距離是多少?點(diǎn)a與點(diǎn)c之間的距離是多少?
【絕對值公開課教案】相關(guān)文章:
絕對值教案09-11
《絕對值》教案11-30
《絕對值》的教案12-01
絕對值教案優(yōu)秀09-09
絕對值說課稿12-18
絕對值教學(xué)反思03-14
公開課教案08-28
拳擊公開課教案03-23
公開課蛋教案03-24
中班公開課教案03-14