當前位置:育文網(wǎng)>教學(xué)文檔>教學(xué)反思> 《乘法分配律》教學(xué)反思

《乘法分配律》教學(xué)反思

時間:2024-09-02 17:00:10 教學(xué)反思 我要投稿

《乘法分配律》教學(xué)反思(15篇)

  身為一位優(yōu)秀的教師,我們的任務(wù)之一就是課堂教學(xué),在寫教學(xué)反思的時候可以反思自己的教學(xué)失誤,快來參考教學(xué)反思是怎么寫的吧!以下是小編幫大家整理的《乘法分配律》教學(xué)反思,歡迎大家分享。

《乘法分配律》教學(xué)反思(15篇)

《乘法分配律》教學(xué)反思1

  曾經(jīng)真的以為自己是一個很負責任的人:我愛我的學(xué)生,我愛我的數(shù)學(xué)教學(xué),甚至可以為了我的學(xué)生與數(shù)學(xué)教學(xué),放棄我個人的休息時間,為的只是我愛的學(xué)生能愛上我教的數(shù)學(xué),能把數(shù)學(xué)學(xué)得很出色。然而為什么總是事與愿違,成效“背叛”了設(shè)想,作業(yè)“背叛”了課堂?一切顯得那么捉襟見肘,“徒勞無功”成了我這學(xué)期最大的感受,到底問題出在哪里呢?當我回想起教學(xué)中一點一滴的瑣事,老師們交流時的.經(jīng)驗之談,再重新翻閱起一些理論書刊時,我似乎意識到自己其實早已經(jīng)“背叛”了數(shù)學(xué)教學(xué)。

  “哦,簡單,簡單!”黃玄昶又樂滋滋地高高舉起他的手,果然不出我所料,他的回答又正中我的下懷,這不正是我所期望的答案嗎?說實話,開公開課我就喜歡像他這樣的學(xué)生,積極舉手發(fā)言,而且一步一步被我“引進”來,突出所謂的教學(xué)重點,攻克預(yù)設(shè)的教學(xué)難點,最后解決相應(yīng)的問題,“看上去很美”,真的,經(jīng)過我的“引導(dǎo)”,他能“自主探索”,尋求規(guī)律,最后消除疑問,這不是一件看上去很“完美”的事嗎?

  可是……“怎么又錯了!”我真是納悶,上課如此“高效”的人,怎么作業(yè)就這么慘不忍睹?題目稍一拐彎,就轉(zhuǎn)不過來了,曾經(jīng)我把他定論為思維的靈活性不夠,然而上完這堂《利用乘法分配律進行簡便運算》后,經(jīng)過反思與請教,我終于發(fā)現(xiàn)我錯了。

《乘法分配律》教學(xué)反思2

  這是我對自己上的有關(guān)乘法分配律的一課的教學(xué)反思,我讓她們每次上完課都寫一寫反思,我想這樣她才能真正從實習中有所收獲。她的教學(xué)反思如下:

  乘法分配律不僅是本章的難點也是四年級學(xué)習的重點和難點。它是學(xué)生學(xué)生學(xué)習了加法交換律、加法結(jié)合律及乘法交換律、乘法結(jié)合律的基礎(chǔ)上教學(xué)的,是一節(jié)比較抽象的概念課,它的重點是讓學(xué)生感知乘法分配律,知道什么是乘法分配律,難點是理解乘法分配律的意義,并會用乘法分配律進行一些簡便運算。因此在教學(xué)過程中,怎樣引導(dǎo)學(xué)生成為重中之重。我的教學(xué)思路大體為以下幾點:

  第一:在開始的課上,與學(xué)生一起回憶了乘法交換律與乘法結(jié)合律,做到溫故而知新,不至于學(xué)生了解乘法分配律時與前兩個運算定律相混。

  第二:通過詢問學(xué)生關(guān)于校服的問題引入需要解決的問題,在此環(huán)節(jié)中,我詢問了學(xué)生們現(xiàn)在的校服是什么樣子的,接著呈現(xiàn)了,事先準備好的`班級同學(xué)穿校服的照片,這樣,學(xué)生們就會體會到,這堂課與他們息息相關(guān),然后我又問他們想擁有什么樣的校服,接著又呈現(xiàn)了搜索到的幾張關(guān)于校服的個性圖片,于是探討乘法分配律之旅,轟轟烈烈的開始了。

  第二:教材中此出問題的主題圖是關(guān)于植樹的問題,但考慮到學(xué)生的理解能力有限,我將題目改成校服上衣價錢,校服褲子價錢與總價錢的問題,這樣一來,更貼近學(xué)生生活。

  第三:讓學(xué)生列示計算的同時請兩名同學(xué)上黑板做題,這樣就節(jié)省了一些時間,但仍有不足。

  不足及改進:

  第一:學(xué)生在黑板上書寫很是不規(guī)范,占去了黑板的很大空間,導(dǎo)致我在詢問其他同學(xué)答題步驟及板書時無處可寫,黑板書寫有些許亂。

  第二:在兩名同學(xué)書寫完下去之后,我接著就詢問了其他同學(xué)的不同做法,于是學(xué)生只要有一點計算步驟不同的就舉手回答,導(dǎo)致回答不完,但各種方法又相似,黑板羅列太多,學(xué)生分不清主次。我想如果在來那名同學(xué)書寫完后,先不讓他們下去,而是留在講臺上解釋自己的先算什么后算什么,這樣下面的同學(xué)也就曉得自己的解題步驟到底屬于哪一種,從而也可以節(jié)省部分時間。

  第三:在解釋乘法分配律意義方面不清楚,幾種理解方法過于著急地解釋給學(xué)生,導(dǎo)致學(xué)生聽得的迷迷糊糊。在這方面,我應(yīng)該更加清晰地理清自己的思路,該怎樣循序漸進的向?qū)W生解釋這種運算方法的意義。如先理解在題意中先算什么后算什么,再脫離情境觀察數(shù)的特點,先算的誰和誰的積又算誰和誰的積,最后再怎樣,自然而然,學(xué)生會發(fā)現(xiàn)有共同的數(shù),進而引導(dǎo)理解30個45加上20個45等于50個45。

  總之乘法分配律確實并不是很好理解,再加上老師不太能抓住重點,雖然課前我一再給她講這地方那地方如何引導(dǎo)和如何講,但是她還是被學(xué)生給帶偏了,講解的不透徹,再加上不會維持學(xué)生聽課,所以學(xué)生掌握的不是很好。事后我又講了練習課加以鞏固,但是先入為主,并且也不像例題講的那么詳細,還是有幾個孩子比較糊涂。所以單元測試中乘法分配律出錯最多。

《乘法分配律》教學(xué)反思3

  《乘法分配律》一課是四年級上冊第四單元的教學(xué)內(nèi)容,它相對于加法交換律、結(jié)合律,乘法交換律和結(jié)合律來說會比較抽象,學(xué)生較難于理解。因此把本課的教學(xué)重點定位為“探索并發(fā)現(xiàn)乘法分配律,理解乘法分配律的意義”,讓學(xué)生經(jīng)歷“觀察算式——仿寫算式——解釋規(guī)律——應(yīng)用規(guī)律”的過程。

  一、比賽導(dǎo)入 激發(fā)探究欲望

  課前創(chuàng)設(shè)比賽情境:老師能很快說出下面幾道題的得數(shù),你信嗎?不信的同學(xué)敢跟我比一比嗎?(出示: 28×70+72×70 (125+10)×8 34×101)在我既對又快的說出結(jié)果時,孩子們都很驚訝,于是我因勢利導(dǎo):剛才的比賽老師算得快,是因為老師有一個取勝的秘訣,它可以使計算簡便,你們想知道嗎?學(xué)完這節(jié)課,你就能發(fā)現(xiàn)其中的秘密。學(xué)生個個躍躍欲試,瞬間充滿探究的欲望,很好地激發(fā)了學(xué)生學(xué)習的興趣。

  二、自主探索 發(fā)現(xiàn)規(guī)律

  在解決“一共貼了多少塊磁磚?”中,學(xué)生列出了四個算式:3×10+5×10、4×8+6×8、(3+5)×10、(4+6)×8后,在讓學(xué)生觀察四個算式之后,先引導(dǎo)學(xué)生將四個算式進行分類并說明分類的標準。通過這個環(huán)節(jié),學(xué)生對于相等的兩個算式的特征有了進一步的了解,知道將3×10+5×10和(3+5)×10分為一類,將4×8+6×8和(4+6)×8分為一類,是因為它們的數(shù)字都一樣,都是由3、5、10組成或是由4、6、8組成的,了解乘法分配律中有3個數(shù);如將3×10+5×10和將4×8+6×8分一類,將(3+5)×10和(4+6)×8分為一類的,則從中明白一邊都是兩個積相加,另一邊則是兩個數(shù)的和與一個數(shù)相乘。通過這個分類活動,讓學(xué)生自主發(fā)現(xiàn)規(guī)律,為理解乘法分配律做了很好的鋪墊。接著再讓學(xué)生仿寫算式,總結(jié)規(guī)律并解釋規(guī)律,最后再應(yīng)用規(guī)律揭示課前比賽中老師獲勝的奧秘。

  三、錯因分析 防患未然

  以往的教學(xué)經(jīng)驗告訴我,學(xué)生對于乘法分配律的運用經(jīng)常出錯,也很容易與結(jié)合律混在一起。為了防患于未然,在教學(xué)中創(chuàng)設(shè)了“小馬虎這樣做,你同意嗎?

  (1)(6+30)×7 = 7×6+7×30

  (2) 25×(4+60)= 25×4+60

  (3) 16×5×8 = 16×5+16×8

  (4) 15×3+15×7 = (15+15)×(3+7)”讓學(xué)生進行分析、判斷并修正。特別是第3題,讓學(xué)生對比乘法分配律和乘法結(jié)合律的數(shù)學(xué)模型,找出其中的區(qū)別,加以比較,從而發(fā)現(xiàn)模型左邊乘法結(jié)合律是兩個數(shù)的積,而乘法分配律是兩個數(shù)的和,而模型右邊乘法結(jié)合律是連乘的`形式,而乘法分配律是兩個積相加的形式。這樣對比,加深對乘法分配律模型的認識和對其意義的理解。分析錯因后,還不忘讓學(xué)生說說:“你想對小馬虎說什么?”來提醒告誡學(xué)生,除了要養(yǎng)成認真細心的習慣外,還要運用好乘法分配律,注意分配律與結(jié)合律的區(qū)別,將錯誤扼制在搖籃里。

  不足之處:雖然學(xué)生對于乘法分配律的理解比較到位,較好地達成了教學(xué)目標,但如能進行適時拓展,讓學(xué)生通過“兩個數(shù)的和與一個數(shù)相乘來聯(lián)想到兩個數(shù)的差與一個數(shù)相乘,兩個數(shù)的和除以一個數(shù)及兩個數(shù)的差除以一個數(shù)是否都可以應(yīng)用乘法分配律這個數(shù)學(xué)模型?”會使課堂更豐滿,更有深度。

《乘法分配律》教學(xué)反思4

  由于本學(xué)期的時間比較短,所以自己在講四年級數(shù)學(xué)課的時候,不免有些匆匆。為了保持好進度,習題處理稍顯落后。在近一段時間對孩子們的“運用乘法分配律進行簡算”的檢查來看,效果不是很好。我發(fā)現(xiàn)這是好多學(xué)生不容易掌握的,很容易和乘法的結(jié)合律弄混淆。所以,我就想搞清楚,到底孩子們是哪里沒有搞清楚?就在課下又提問了幾個老在分配率出錯的孩子運算公式,發(fā)現(xiàn)有的孩子能結(jié)結(jié)巴巴地把公式背出來,有的是比較順利地進行背誦。那么,會順利背誦公式的孩子們到底是哪里不會呢?

  帶著這個問題,我是旁敲側(cè)擊地進行“盤問”——我拿著生活中的.2.5元的冰淇淋打比方,問問買23個和28個需要多少錢?孩子們算的很快。他們知道把23分解成20加上3,還有部分學(xué)生28×25=(20+8)×25,我當時一項,哎呦不錯,還不是完全不會啊。看來,孩子們在真正的生活情境中還是有一大部分人會自覺的用乘法分配律的。可是,真正運用到教學(xué)中,孩子們確實很難達到自覺地運用分配律去計算,特別是一些變式就更加的困難了。

  在批改作業(yè)的時候,有三四個孩子的下面的結(jié)果卻是讓我大跌眼鏡——28×25=(20+8)×25=20×8×25,當時我就在想,壞了,孩子們把這兩個公示記混淆了。果不其然,我給他們出了一道題72×25=(8×9)×25=8×25+9×25,我在給學(xué)生們一一講解的時候,我就在反思,這一類問題出現(xiàn)是因為孩子們沒有自覺觀察算式特點的習慣。他們只是急匆匆的完成自己的作業(yè),對于此類的計算的目的單純得很就是只要得到答案,自己就忽略了計算的過程。

  后來我就想,我去時應(yīng)該多出一點類似于(80+8)×25,72×25,125×32×25的這些題對孩子們進行相應(yīng)的練習,這樣來提高孩子們對公式概念的認識。我可以讓孩子們先學(xué)會一道題的做法,在慢慢來進行相應(yīng)的引導(dǎo)。并且出一些題目要求孩子們使用分配律或者結(jié)合律等等,對孩子們進行鞏固。讓孩子們學(xué)會多種方法解決一到數(shù)學(xué)題,把握“湊整”這個解題關(guān)鍵,正確、合理地使用運算定律,就是正確的。做到真正的學(xué)以致用!

《乘法分配律》教學(xué)反思5

  乘法的分配律學(xué)生在本冊書中是接觸過的。譬如第42頁的應(yīng)用題第7題,其中就滲透了乘法的分配律。在數(shù)學(xué)一課一練上也有過這種類似的形式。以前在講的時候是從乘法的意義上來幫助學(xué)生理解。

  一、抓住重點。讓學(xué)生理解乘法分配律的意義。

  教材按照得出兩道算式,把兩道算式寫成等式,分析兩道算式之間的聯(lián)系,寫出類似的幾組算式。發(fā)現(xiàn)規(guī)律,用語言或其他方式交流規(guī)律,給出用字母式子表示的運算律。這樣的安排,便于學(xué)生經(jīng)歷觀察、分析、比較和根據(jù)的過程。能使學(xué)生在合作交流的過程中,對簡潔分配律的認識由感性逐步上升到理性。教學(xué)用書上寫道:教學(xué)的重點和關(guān)鍵應(yīng)是引導(dǎo)學(xué)生自主發(fā)現(xiàn)規(guī)律,用語言或其他方式與同伴交流規(guī)律。

  在教學(xué)時,我是按照如上的步驟進行教學(xué)的?墒窃谖乙龑(dǎo)學(xué)生把算式寫成等式的時候讓學(xué)生觀察左右兩邊算式之間的聯(lián)系與區(qū)別之后,學(xué)生就根本不知道從何下手。在他們的印象中,聯(lián)系就是根據(jù)乘法的意義來進行聯(lián)系。根本沒有從數(shù)字上面去進行分析?梢哉f,局限在原先的思維中,而沒有跳出來看。而讓學(xué)生寫出幾組算式后,觀察分析幾組等式左右兩邊的區(qū)別之后,學(xué)生也還是無法用語言來表達這一規(guī)律。場面一時之間很冷,后來我只好直接讓學(xué)生用字母來表示,變化為這樣的形式之后,有很多的學(xué)生都能夠?qū)懗鰜怼?/p>

  我不明白這是為什么,時間我給了,小組也交流了,在小組交流時我已經(jīng)發(fā)現(xiàn)我們班上的學(xué)生根本無法發(fā)現(xiàn)其中的規(guī)律,所以也根本無法用語言來進行表達。難道是坡度給得不夠嗎?還是平時的教學(xué)中出現(xiàn)了問題。這些都要一一地去分析。

  總之,這個關(guān)鍵今天并沒有完成好。

  二、考慮學(xué)生的學(xué)習情況,尊重他們的主觀感受。

  在引導(dǎo)學(xué)生把兩道算式拼成一道等式之后,我讓學(xué)生交流,結(jié)果學(xué)生給出了兩種(65+45)×5=65×5+45×5。和65×5+45×5=(65+45)×5。我把這兩種方式都板書上黑板上。教材上要求的是第一種,即把(65+45)×5寫在等式的左邊,是為了方便學(xué)生對乘法分配律的意義的理解。我認為,從乘法的意義這個角度上來說,意義的理解我們班級可以做到。既然是從意義出發(fā),那么兩種方式其實都是可以的。所以在用字母來表達時,我們班的同學(xué)也有了兩種的表達方式:即(A+B)×C=A×C+B×C和A×C+B=(A+B)×C。我都板書在黑板上,只是在規(guī)范的那一道上面畫了個星,告訴學(xué)生,乘法分配律的表示一般性采用的是這一條。

  三、練習中注意乘法分配律的變式。

  乘法分配律的意義是用,是為了計算的簡便。所以,在練習中我注意讓學(xué)生說清楚怎么使用的。尤其是想想做做第2題中的.74×(20+1)和74×20+74。一定要學(xué)生說清楚括號中的1是從哪兒來的。但是簡便的思想滲透得還很不夠。學(xué)生在完成想想做做第5題的時候,一大半的學(xué)生都沒有采用簡算的方法。哪怕他們在經(jīng)過了第四題的練習時也是一樣。

  今天教學(xué)了運算律——乘法分配律,對于例題的解決,學(xué)生能列出不同的算式,45x5+65x5和(45+65)x5,通過各自的計算得出計算結(jié)果相同,然后把這兩條算式寫成等式45x5+65x5=(45+65)x5,學(xué)生還能用自己的語言表述自己對等式的理解:45個5加65個5也就是(45+65)個5,然后又讓學(xué)生再仿寫了幾個算式后讓學(xué)生觀察等式總結(jié)自己的發(fā)現(xiàn),學(xué)生會用字母表示出這一規(guī)律,但用語言表述有困難了。想想做做第1題只有幾個學(xué)生把第3小題填錯,其實包括后面的練習中,把AxC+BxC改寫成(A+B)xC的正確率要比把(A+B)xC改寫成AxC+BxC的正確率高,可能還是學(xué)生受以前:45個5加65個5也就是(45+65)個5的理解方法的限制而沒學(xué)會用自己的語言表述乘法分配律,從而也沒能真正掌握乘法分配律含義的緣故吧。

  想想做做第2題的第3小題74x(21+1)和74x21+74部分學(xué)生沒有發(fā)現(xiàn)它們是相等的,我讓認為相等的學(xué)生表述理由,學(xué)生能把算式改寫成74x21+74x1再運用乘法分配律變形成74x(21+1),學(xué)生理解后我補充77x99+77=□(□○□)讓學(xué)生填空,完成情況好多了,在拓展練習時補充了AxB+B=□(□○□)和AxB+B=□(□○□)讓學(xué)生進一步真正理解乘法分配律的意義。但學(xué)生在完成想想做做第5題時,學(xué)生多習慣列式48x3+48x2來計算,卻不能靈活運用所學(xué)知識列成(3+2)x48來計算,雖然運用乘法分配律進行簡便計算是下一課的學(xué)習內(nèi)容,但我也由此反思出我教學(xué)的不足之處,在例題教學(xué)時只關(guān)注了得出等式,卻忽略了讓學(xué)生比較等式兩邊的算式哪邊比較簡便。于是在第4題的算算比比中才補上了這一點。

《乘法分配律》教學(xué)反思6

  乘法分配律是人教版數(shù)學(xué)第三單元的內(nèi)容,它是在學(xué)生已經(jīng)學(xué)習掌握了乘法交換律、結(jié)合律,并能初步應(yīng)用這些定律進行一些簡便計算的基礎(chǔ)上進行學(xué)習的。乘法分配律是本單元的教學(xué)重點,也是本節(jié)課內(nèi)容的難點,教材是按照分析題意、列式解答、講述思路、觀察比較、總結(jié)規(guī)律等層次進行的。然而乘法分配律又不是單一的乘法運算,還涉及到加法的運算,是學(xué)生學(xué)習的難點。因此本節(jié)課不僅使學(xué)生學(xué)會什么是乘法分配律,更要讓學(xué)生經(jīng)歷探索規(guī)律的過程,進而培養(yǎng)學(xué)生的`分析、推理、抽象、概括的思維能力。

  同時,學(xué)好乘法分配律是學(xué)生以后進行簡便計算的重要基礎(chǔ),對提高學(xué)生的計算能力有著舉足輕重的作用。但要做到讓學(xué)生進行“探究、推理、自己總結(jié)規(guī)律”很難,因為上的是直播棵,為了突破難點,在備課時,我做足了功課,首先我從例題入手,把乘法分配律放在具體的情境中,結(jié)合學(xué)生已有的生活經(jīng)驗,學(xué)生發(fā)現(xiàn)解決問題策略很多,此題可以用兩種方法解答:(1)(4+2)×25;(2)4×25+2×25,通過比較,學(xué)生知道了為什么:(4+2)×25=4×25+2×25,經(jīng)歷了知識探究的過程,講完例題后,又讓學(xué)生通過發(fā)語音、課堂連麥的形式讓舉了許多這樣的例子,提高了學(xué)生學(xué)習的積極性,每個例子不僅可放在具體情境中,也可借助乘法的意義讓學(xué)生進一步理解,從而得出什么是“乘法的分配律及它的應(yīng)用”,課堂取得了很好的效果。

《乘法分配律》教學(xué)反思7

  教材提供了這樣一個主體圖:春季里,同學(xué)們開展植樹活動,一共有25個小組,每組里4人負責挖坑、種樹,2人負責抬水、澆樹。需要解決的問題是:一共有多少人參加植樹活動?學(xué)生會用兩種不同的方法分別列出算式,接著通過計算發(fā)現(xiàn),兩個算式可以用=連接,即25(4+2)=254+252,從而通過比較等號兩邊兩個算式的不同與相同,概括出乘法分配律。當我在一個班按照此教學(xué)設(shè)計教學(xué)后,我發(fā)現(xiàn)效果并不理想,表現(xiàn)有兩點:

  ①有些學(xué)生只是機械的記憶了乘法分配律的公式,例如看到3544不能想到3540+354;

 、谟捎跊]有真正理解乘法分配律的內(nèi)涵,所以完全不能理解其逆應(yīng)用以及當兩個數(shù)的差乘一個數(shù)時應(yīng)用乘法分配律。如:他們認為6464+3664(64+36)64;265(105-5)=265105-2655。

  針對此情況,我重新設(shè)計了教案。增加了一個問題:負責挖坑、種樹的同學(xué)比負責抬水、澆水的同學(xué)多多少人?這樣學(xué)生又列出另外兩個算式,通過計算后用等號連接: 25(4-2)=254-252,接下來,我引導(dǎo)學(xué)生觀察、對比兩組算式,充分地去發(fā)現(xiàn)相同點與不同點。這樣一來,促使了學(xué)生去尋找事物之間的聯(lián)系,抓住本質(zhì),尋找共同點,促進交流,順利地實現(xiàn)了自我構(gòu)建和知識創(chuàng)造。學(xué)生的發(fā)現(xiàn)自然也就更豐富、更有深度了:無論是兩個數(shù)的和還是兩個數(shù)的差去乘一位數(shù),都可以先把他們與這個數(shù)分別相乘,再相加或者再相減。此外,我還引導(dǎo)學(xué)生從右到左的觀察等式,嘗試用乘法的意義去理解乘法分配律,即:4個25加2個25就等于(4+2)個25,4個25減2個25就等于(4-2)個25,這樣幫助學(xué)生突破乘法分配律逆應(yīng)用這個教學(xué)難點。

  我通過對兩個班不同的`教學(xué)設(shè)計,感受到:認真鉆研教材,多動心思,深入挖掘教材中的寶貴資源,會使教材的內(nèi)涵更有廣度和深度,也為培養(yǎng)和發(fā)展學(xué)生思維的靈活性,提供了更廣闊的空間。

《乘法分配律》教學(xué)反思8

  《乘法分配律》是四年級數(shù)學(xué)下冊第三單元中的一節(jié)教學(xué)內(nèi)容,一直以來的教學(xué)中,我認為這節(jié)課的教學(xué)都是一個教學(xué)難點,學(xué)生很難學(xué)好。

  我認為其中的不易可以從三個方面來說:其一,例題僅僅是分配律的一點知識,在課下的練習題中還存在不少乘法分配律類型的題(不過,這好像也是新課改后教材的表現(xiàn))。如果讓學(xué)生僅僅學(xué)會例題,可以說,你也只是學(xué)到了乘法分配律的皮毛;其二,乘法分配律只是一種簡單的計算方法的應(yīng)用,所有用乘法分配律計算的試題,用一般的方法完全都可以計算出來,也就是說,如果不用乘法分配律,學(xué)生完全可以計算出結(jié)果來,只不過不能符合簡便計算的要求罷了,問題是學(xué)生已學(xué)過一般的方法,學(xué)生在計算時想的最多的.還是一般的計算方法;其三,本節(jié)課的教學(xué)靈活性比較大,并沒有死板板的模式可以來死記硬背,就是學(xué)生記住了定律,在運用時,運用錯了,也是很大的麻煩,從題目的分析到應(yīng)用定律都需要學(xué)生的認真分析及靈活運用。

  針對以上自己分析可能出現(xiàn)的問題,,確定從以下兩個方面時行教學(xué):

  第一,以書本為依托,學(xué)好基礎(chǔ)知識。

  有一句話叫做“萬變不離其宗”。雖然課下還有多種類型題,但它們都與書上的例題有著親密的聯(lián)系,所以教學(xué)還是要以書本為依托。在教學(xué)中,我引導(dǎo)生通過觀察兩個不同的算式,得出乘法分配律的用字母表示數(shù):a×b+a×c=a×(b+c),在引導(dǎo)學(xué)生經(jīng)過練習之后,我還強調(diào)學(xué)生,要做到:a×(b+c)=a×b+a×c。用我自己的話說,就是:能走出去,還要走回來。再次經(jīng)過練習,在學(xué)生掌握差不多時,簡單變換一下樣式:(a+b)×c=a×c+b×c,走回來:a×c+b×c=(a+b)×c。如此以來,學(xué)生算是對乘法分配律有了個初步的認識,知道是怎么回事,具體的運用還差很遠,因為還有很多的類型學(xué)生并不知道。于是我就在第二節(jié)課進行了第二個方面的教學(xué)。

  第二,以練習為載體,系統(tǒng)鞏固知識。

  針對乘法分配律還有多種類型,例題中也沒講到的情況,我上網(wǎng)查資料,加上并時的一些認識,把乘法分配律分為五類,并對每類進行簡單的分析提示,附以相應(yīng)的練習題印發(fā)給學(xué)生,讓學(xué)生進行練習。

  類型一:(a+b)×c a×(b-c)

  例:A (40+8)×25 B 15×(40-8)

  類型二:a×b+a×c a×b-a×c

  例:A 36×34+36×66 B 325×113-325×13

  類型三:100+1或80+1

  例:A 78×102 B 125×81

  類型四:100-1或40-1

  例:A 45×98 B 25×39

  類型五:+1或-1

  例:A 83+83×99 B 91×31-91

《乘法分配律》教學(xué)反思9

  計算教學(xué)是小學(xué)數(shù)學(xué)教學(xué)中的重要組成部分,幾乎每一冊的教材中都有計算的教學(xué),而其中的“簡便計算”教學(xué)更是計算教學(xué)的一部“重頭戲”。學(xué)好簡便運算,不僅能降低計算的難度,而且能提高計算的正確率和速度,更重要的是,能使學(xué)生將學(xué)到的定理、定律、法則、性質(zhì)等運算規(guī)律融會貫通,達到學(xué)以致用的目的,從而能培養(yǎng)學(xué)生良好的計算習慣。

  乘法分配律的教學(xué)是在學(xué)生學(xué)習了加法交換律、加法結(jié)合律及乘法交換律、乘法結(jié)合律的基礎(chǔ)上教學(xué)的。乘法分配律也是學(xué)習這幾個定律中的難點。所以,對于乘法分配律的教學(xué),我沒有把重點放在規(guī)律的數(shù)學(xué)語言表達上,而是注重引導(dǎo)學(xué)生積極主動的參與感悟、體驗、發(fā)現(xiàn)數(shù)學(xué)規(guī)律的過程,并且學(xué)會用辯證的思維方式思考問題,培養(yǎng)良好的思維習慣,真正落實學(xué)生的主體地位。

  在教學(xué)中,我主要做到了以下幾點:

  1、關(guān)注學(xué)生已有的知識經(jīng)驗。

  興趣是形成良好學(xué)習習慣的催化劑。以學(xué)生身邊熟悉的情境為教學(xué)的切入點,激發(fā)學(xué)生主動學(xué)習的需要,為學(xué)生創(chuàng)設(shè)了與生活環(huán)境、知識背景密切相關(guān)的感興趣的學(xué)習情境,也就是根據(jù)例題圖,提出問題:買5件夾克衫和5條褲子,一共要付多少元?通過兩種算式的比較,喚醒了學(xué)生已有的知識經(jīng)驗,并有意識的蘊含新知識的教學(xué),激發(fā)了學(xué)生的學(xué)習興趣。

  2、引導(dǎo)學(xué)生積極主動探究。

  配養(yǎng)學(xué)生主動探究的學(xué)習習慣,是數(shù)學(xué)老師在數(shù)學(xué)課上的重要任務(wù)。先讓學(xué)生根據(jù)提供的問題,用不同的方法解決,從而發(fā)現(xiàn)(65+45)×5=65×5+45×5這個等式,讓學(xué)生觀察,初步感知“乘法分配律”。再展開類比:假如我們要選擇另外兩種服裝,買的數(shù)量都相同,一共要付多少元?你還能用兩種方法來求一共要付的錢嗎?讓學(xué)生在再次解決問題的`過程中進一步感受乘法分配律的存在。然后我引導(dǎo)學(xué)生觀察,初步發(fā)現(xiàn)規(guī)律,再引導(dǎo)學(xué)生舉例驗證自己的發(fā)現(xiàn),得到更多的等式,繼續(xù)引導(dǎo)學(xué)生觀察,直到發(fā)現(xiàn)規(guī)律,同時質(zhì)疑是否有反例,再一致確定規(guī)律的存在,并得出字母公式。

  對于乘法分配律的教學(xué),我把重點放在讓學(xué)生通過多種方法的計算去完整地感知,對所列算式進行觀察、比較和歸納,大膽提出自己的猜想并舉例進行驗證。讓學(xué)生在課堂上經(jīng)歷了數(shù)學(xué)研究的基本過程:即感知——猜想——驗證——總結(jié)——應(yīng)用的過程,學(xué)生不僅自主發(fā)現(xiàn)了乘法分配律,掌握了乘法分配律的相關(guān)知識,而且掌握了科學(xué)探究的方法,數(shù)學(xué)思維的能力也得到了發(fā)展。

  3、注重合作與交流,多向互動。

  學(xué)生在學(xué)習數(shù)學(xué)知識的過程中能學(xué)會與人合作交流,這也是一種良好的學(xué)習習慣,而倡導(dǎo)課堂教學(xué)的動態(tài)生成是新課程標準的重要理念。在數(shù)學(xué)學(xué)習中,每個學(xué)生的思維方式、智力、活動水平都是不一樣的。因此,為了讓不同的學(xué)生在數(shù)學(xué)學(xué)習中都得到發(fā)展,我在本課教學(xué)中立足通過生生、師生之間多向互動,特別是通過學(xué)生之間的互相啟發(fā)與補充來培養(yǎng)他們的合作意識,實現(xiàn)對“乘法分配律”的主動建構(gòu)。學(xué)生在這樣一個開放的環(huán)境中博采眾長,共同經(jīng)歷猜想、驗證、歸納知識的形成過程,共同體驗成功的快樂。既培養(yǎng)了學(xué)生的問題意識,又拓寬了學(xué)生思維,增強思維的條理性,學(xué)生也學(xué)得積極主動。

  4、練習設(shè)計關(guān)注學(xué)生思維能力的發(fā)展。

  在練習題型的設(shè)計上,我基本尊重課本上知識的體系,在第4個練習中,三組題目的對比練習主要是鞏固學(xué)生對乘法分配律的理解,讓學(xué)生通過對比體會計算的簡便。而在計算的過程中會選擇更合理的方法進行計算,這有助于幫助學(xué)生提高計算的正確性,有利于學(xué)生養(yǎng)成良好的計算習慣。我在設(shè)計教學(xué)時,先出示一組題,在學(xué)生發(fā)現(xiàn)它們之間的聯(lián)系后,有意讓女生做簡便的一題,讓學(xué)生初步感知女生做的題比較簡便,然后再出示第二組,還是有意讓女生做簡便的一題,所以還是女生優(yōu)先,至此我引導(dǎo)學(xué)生發(fā)現(xiàn):有時先加再乘比較簡便,有時先乘再加比較簡便,可以根據(jù)實際情況的不同,作出合理的選擇,甚至可以根據(jù)乘法分配律先做適當改寫,使計算更簡便。

  這樣設(shè)計,使學(xué)生經(jīng)歷了兩輪比賽,對運用乘法分配律可以使計算簡便有了初步的體驗,并且產(chǎn)生了濃厚的學(xué)習興趣,對下一課時運用乘法分配律進行簡便計算打下了良好的基礎(chǔ)。最后增加了一個變式題:“5件夾克衫比5條褲子貴多少元?”這是乘法分配律的變式,這在第三課時將會碰到這種題型,所以這里先埋下一個伏筆。由基本題到變式題,有機地聯(lián)系在一起。使學(xué)生逐步加深認識,在弄清算理的基礎(chǔ)上,學(xué)生能根據(jù)題目的特點,靈活地運用所學(xué)知識進行練習。從課堂反饋來看,學(xué)生熱情較高,能夠?qū)W以致用。學(xué)生通過自己的努力以及和同學(xué)的交流合作,思維能力得到了發(fā)展。

  教學(xué)過程是一個不斷探討的過程,不斷追尋的過程。作為一名數(shù)學(xué)老師,希望能在與學(xué)生有限的接觸時間內(nèi)幫助學(xué)生更快更好地養(yǎng)成良好的數(shù)學(xué)學(xué)習習慣,使我們的學(xué)生終身受益。這是一個值得我永遠追求并為之努力的目標。

《乘法分配律》教學(xué)反思10

  教學(xué)乘法分配律之后,發(fā)現(xiàn)學(xué)生的正確率很低,特別是對乘法結(jié)合律與乘法分配律極容易混淆。針對這種情況,在教學(xué)中應(yīng)該注意些什么呢?

  1、乘法分配律的教學(xué)既要注重它的外形結(jié)構(gòu)特點,也要同時注重其內(nèi)涵。

  教學(xué)中通過解決“一共貼了多少塊瓷磚?”這一問題,結(jié)合具體的生活情景,得到了(6+4)×9=6×9+4×9這一結(jié)果。這時老師往往注意了等式兩邊的“外形”結(jié)構(gòu)特點,即兩數(shù)的和乘一個數(shù)=兩個積的和。缺乏從乘法意義角度的理解。這時教師可提問“為什么兩個算式是相等的?”這里不僅要從解題思路的角度理解(6+4)×9=6×9+4×9是相等的,還要從乘法的意義的角度理解,即左邊表示10個9,右邊也表示10個9,所以(6+4)×9=6×9+4×9。

  2、注意區(qū)分乘法結(jié)合律與乘法分配律的特點,多進行對比練習。

  乘法結(jié)合律的特征是幾個數(shù)連乘,而乘法分配律特征是兩數(shù)的和乘一個數(shù)或兩個積的和。在練習中(40+4)×25與(40×4)×25這種題學(xué)生特別容易出現(xiàn)錯誤。為了學(xué)生更好地掌握可以多進行一些對比練習。如:進行題組對比15×(8×4)和15×(8+4);25×125×25×8和25×125+25×8;練習中可以提問:每組算是個有什么特征和區(qū)別?符合什么運算定律的特征?應(yīng)用運算定律可以使計算簡便嗎?為什么要這樣算?

  3、 讓學(xué)生進行一題多解的練習,經(jīng)歷解題策略多樣性的過程,優(yōu)化算法,加深學(xué)生對乘法結(jié)合律與乘法分配律的理解。

  如:計算125×88;101×89你能用幾種方法? 125×88 ①豎式計算; ②125×8×11;③125×(80+8);④125×(100-12);⑤(100+25)×88; ⑥(100+20+5)×88等等。101×89 ①豎式計算;②(100+1)×89;③101×(80+9);101×(100-11);101×(90-1)等。對不同的`解題方法,引導(dǎo)學(xué)生進行對比分析,什么時候用乘法結(jié)合律簡便,什么時候用乘法分配律簡便?明確利用乘法結(jié)合律與乘法分配律進行間算的條件是不一樣的。乘法分配律適用于連乘的算式,而乘法分配律一般針對有兩種運算的算式。力爭達到“用簡便算法進行計算”成為學(xué)生的一種自主行為,并能根據(jù)題目的特點,靈活選擇適當?shù)乃惴ǖ哪康摹?/p>

  4、多練。

  針對典型題目多次進行練習。練習時注意練習量和練習時間的安排。剛開始可以天天練,過段時間以后可以過1-2天練習一次,再到1周練習一次。典型題型可選擇(40+4)×25;(40×4)×25;63×25+63×75;65×103-65×3;56×99+56;125×88;48×102;48×99等。對于比較特殊的題目可間斷性練習,對優(yōu)生提出掌握的要求。如36×98+72;68×25+68+68×74,32×125×25等。

《乘法分配律》教學(xué)反思11

  《乘法分配律》是在學(xué)生學(xué)習了加法交換律、加法結(jié)合律及乘法交換律、乘法結(jié)合律的基礎(chǔ)上教學(xué)的。乘法分配律也是學(xué)習這幾個定律中的難點。故而,對于乘法分配律的教學(xué),我沒有把重點放在數(shù)學(xué)語言的表達上,而是把重點放在讓學(xué)生通過多種方法的計算去完整地感知,對所列算式進行觀察、比較和歸納,大膽提出自己的猜想并舉例進行驗證……

  1、關(guān)注學(xué)生已有的知識經(jīng)驗。以學(xué)生身邊熟悉的情境為教學(xué)的切入點,激發(fā)學(xué)生主動學(xué)習的需要,為學(xué)生創(chuàng)設(shè)了與生活環(huán)境、知識背景密切相關(guān)的感興趣的學(xué)習情境,喚醒了學(xué)生已有的知識經(jīng)驗,使學(xué)生初步感知乘法分配律。

  2、展示知識的發(fā)生過程,引導(dǎo)學(xué)生積極主動探究。讓學(xué)生根據(jù)提供的問題,用不同的方法解決,引導(dǎo)學(xué)生觀察,讓學(xué)生說明自己發(fā)現(xiàn)的規(guī)律。不僅讓學(xué)生獲得了數(shù)學(xué)基礎(chǔ)知識和基本技能,而且培養(yǎng)學(xué)生主動探究、發(fā)現(xiàn)知識的能力。

  3、出示乘法分配律的幾種不同的形式讓學(xué)生進行練習。

  通過這一系列的教學(xué)措施,一節(jié)課下來,總體感覺良好——覺得同學(xué)們掌握得還不錯。于是,我布置了讓學(xué)生們完成練習冊中《乘法分配律》這一課的習題。

  當我批改練習時我傻了眼,學(xué)生的作業(yè)大多是中,少部分得良和差(我的作業(yè)批改評定標準),為什么會是這樣的'結(jié)果,我進行反思,發(fā)現(xiàn)是講時,例題出示的不多,當時學(xué)生都會做了,但是對于熟練掌握這個既是重點又是難的課程的確不是那么簡單的,三種題型放在一起學(xué)生就很容易受到干擾,結(jié)果是張冠李戴,錯得讓我涕笑皆非。而為了讓學(xué)生把這個知識點掌握牢固,我整整又用了兩節(jié)課。

  通過這個知識點的教學(xué),我發(fā)現(xiàn)數(shù)學(xué)不多練是不行的。在學(xué)生理解之后,必須對其進行及時、有效的練習才可以使知識掌握的更加牢固。

《乘法分配律》教學(xué)反思12

  —乘法分配律教學(xué)設(shè)計與反思

  設(shè)計說明

  當我給學(xué)生講到練習四第七題的時候,覺得這道題目可以開發(fā)一下用來上乘法分配律,讓學(xué)生自己制作兩個長不一樣,寬一樣的長方形,通過動手操作來獲得求面積和的方法,自然的引出乘法分配律。然后看了下這節(jié)課的課后練習,里面有乘法分配律的逆向運用的題目,在其后56頁的簡便運算中也能用到逆向運用的知識,于是就把這個運用單獨列出來作為一個知識層次,聯(lián)想到我們以前還學(xué)習過兩數(shù)之和乘另一個數(shù)等于這兩個數(shù)分別去乘第三個數(shù)再想減的知識,于是就去習題中找有沒有類似的題目,在55頁第五題中求四年級比五年級多多少人時,如果用乘法分配律的延伸知識可以使計算簡便,又看到練習五的三、四兩題,就必須要知道這個知識才好解決,于是就把乘法分配律的延伸作為第三個層次的教學(xué)了,按照這個思路設(shè)計了這節(jié)課,實際上下來的效果不錯,既調(diào)動了學(xué)生的學(xué)習熱情和主動性,又培養(yǎng)了學(xué)生自主探索,發(fā)現(xiàn)并總結(jié)規(guī)律的能力。 教學(xué)設(shè)計

  教學(xué)內(nèi)容

  蘇教版《義務(wù)教育課程標準實驗教科書數(shù)學(xué)》四年級(下冊)第54~55頁。 教學(xué)目標

  1、學(xué)生在解決實際問題的過程中發(fā)現(xiàn)并理解乘法分配律,并能運用乘法分配律使一些運算簡便。

  2、學(xué)生在發(fā)現(xiàn)規(guī)律的過程中,發(fā)展比較、分析、抽象和概括能力,增強用符號表

  達數(shù)學(xué)規(guī)律的意識,進一步體會數(shù)學(xué)與生活的聯(lián)系。

  3、學(xué)生能聯(lián)系實際,主動參與探索、發(fā)現(xiàn)和概括規(guī)律的學(xué)習活動,感受數(shù)學(xué)規(guī)律的確定性和普遍適用性,獲得發(fā)現(xiàn)數(shù)學(xué)規(guī)律的.愉悅感和成功感,增強學(xué)習的興趣和自信。

  教學(xué)過程

  一:創(chuàng)設(shè)情境導(dǎo)入

  提問:長方形的面積怎樣求?

  指明回答

  這里有長分別是10厘米和6厘米,寬都是4厘米的兩個長方形紙片,請同學(xué)們自己動手把它們組成一個新的長方形。(課件出示題目)

  學(xué)生動手操作

 。ㄕn件出示兩個長方形組合的動畫)

  二:自主探索,交流合作

  1、交流算法,初步感知

  提問:請同學(xué)們自己求一下新長方形的面積。

  教師巡視,觀察學(xué)生不同的解法

  反饋:請學(xué)生說一說自己的解法,應(yīng)當有兩種解法,如果學(xué)生說不出來應(yīng)加以引導(dǎo)

 。ㄕn件出示兩種解法)

  談話:兩個算式解決的都是同一個問題,它們計算的結(jié)果也相同,能把它們寫成一個算式嗎?

  學(xué)生自己寫一寫,請學(xué)生說一說,教師相機板書。

  2、比較分析,深入體會

  提問:算式左右兩邊有什么相同和不同之處呢?小組內(nèi)交流。

  反饋交流,在學(xué)生發(fā)言的基礎(chǔ)上,教師根據(jù)情況相機引導(dǎo):等號左邊先算什么,再算什么,右邊先算什么,再算什么呢?使學(xué)生明確:等號左邊是10加6的和乘4,等號右邊是10乘4的積加6乘4的積。

  設(shè)疑:是不是類似這樣的算式都具有這樣的性質(zhì)呢?學(xué)生舉例驗證。

  組織交流反饋?蛇m當?shù)倪x取一些數(shù)字很大的和很小的例子以及有乘數(shù)是0的例子等特殊情況。

  3、規(guī)律符號化,揭示規(guī)律

  提問:像這樣的算式,寫的完嗎?

  我們可以嘗試用自己的方法去表達這個規(guī)律,同學(xué)們自己試著在小組內(nèi)寫一寫,說一說。

  反饋引導(dǎo)學(xué)生用不同的方式來表達規(guī)律。

  小結(jié)揭示:兩個數(shù)的和乘另一個數(shù)等于這兩個數(shù)分別乘另外的數(shù)再相加。用字母表示:(a+b)×c=a×c+b×c,(板書并課件出示)這就是我們今天要學(xué)的乘法分配律。(板書課題)

  三:實踐運用,初步理解。

  1、想想做做1

  學(xué)生自主完成,組織交流。

  第二小題教師板書,并啟發(fā)學(xué)生從算式所表示的意義角度說一說對這個算式的 理解。并在板書上用箭頭標明左邊12出現(xiàn)了2次,右邊在括號外面的數(shù)字就是

  12.并向?qū)W生介紹這可以稱作是乘法分配律的逆向運用(板書)

  2、想想做做2

  自主完成,組織交流。

  第三小題引導(dǎo)學(xué)生從乘法意義角度去理解。并使學(xué)生明白74×1可以看做1個

  74,也就是74.

  第四小題要和想想做做題1的第二小題做對比。

  四:拓展延伸,內(nèi)化新知

  再次出示兩個長方形紙片,提問:如何比較這兩個長方形的大小

  學(xué)生反饋,引導(dǎo)說出可以重疊比較。學(xué)生動手實踐

  再問:那么大長方形比小長方形大的面積是那一塊?

  讓學(xué)生自己動手摸一摸,課件出示重疊動畫,并把多余部分突出顯示。 提問:如何求多出來的面積呢?請同學(xué)們自己列式解答。

  學(xué)生若想不到可以用大長方形面積減去小長方形的面積,教師可以適當?shù)奶?示。

  學(xué)生反饋,交流。課件出示兩種解法。

  談話:這兩個算式結(jié)果相同,解決的也是同一個問題,可以把它們寫成一個算 式,課件出示并板書。

  再問:這個算式左右兩邊有什么聯(lián)系,引導(dǎo)學(xué)生說出:兩個數(shù)的差乘另一個數(shù) 等于這兩個數(shù)分別與第三個數(shù)乘,再相減。

  談話:這個規(guī)律用字母如何表示呢?自己試著寫寫看。

  學(xué)生反饋,教師板書并課件出示。說明這個可以看做是乘法分配律的延伸。 五:解決實際問題,內(nèi)化重點難點。

  想想做做題5

  課件出示,學(xué)生讀題。

  問題一,要求學(xué)生列出不同的算式解答,并通過討論引導(dǎo)學(xué)生適當?shù)慕忉寖蓚 算式之間的聯(lián)系。

  問題二,鼓勵學(xué)生列出不同的算式解答,并引導(dǎo)學(xué)生適當?shù)慕忉寖蓚算式之間 的聯(lián)系,加強學(xué)生對

  乘法分配律延伸的理解與內(nèi)化。

  反思:

  這節(jié)課我是分三個層次來教學(xué)。

  第一個層次是乘法分配律的教學(xué),學(xué)生通過運用不同的方法求新長方形的面積來體會規(guī)律,感知規(guī)律的合理性。這個環(huán)節(jié)強調(diào)學(xué)生的自主探索和動手觀察能力。 第二個層次是乘法分配律的逆向運用,通過想想做做題1的第二小題的教學(xué),引導(dǎo)學(xué)生明確可以從乘法的意義角度來理解算式,并體會乘法分配律的逆向運用。

  第三個層次是乘法分配律的延伸,通過讓學(xué)生動手操作,知道如何比較兩個長方形的大小,并通過動手指一指,知道多出的面積就是兩者相差的面積。在學(xué)生自己動手求解的過程中,初步的體會到諸如:(10-6)×4=10×4-6×4也有類似的規(guī)律,并嘗試寫出用字母如何表達。

  最后通過解決實際問題的形式,把發(fā)現(xiàn)的規(guī)律加以運用,從2個小題的解答中初步體會乘法分配律和乘法分配律延伸的應(yīng)用。

《乘法分配律》教學(xué)反思13

  乘法分配律的教學(xué)是在學(xué)生學(xué)習了加法交換律、加法結(jié)合律及乘法交換律、乘法結(jié)合律的基礎(chǔ)上教學(xué)的。乘法分配律也是學(xué)習這幾個定律中的難點。故而,對于乘法分配律的教學(xué),我沒有把重點放在數(shù)學(xué)語言的表達上,而是把重點放在讓學(xué)生通過多種方法的計算去完整地感知,對所列算式進行觀察、比較和歸納,大膽提出自己的猜想并舉例進行驗證……。

  現(xiàn)在的課程改革重點之一就是如何促進學(xué)生學(xué)習方式的變革,讓他們可以用自己的眼睛去觀察,用自己的腦子去思考,用自己的語言去表述,成為一個獨特的個體。并強調(diào)從學(xué)生已有的生活經(jīng)驗出發(fā),讓學(xué)生親身經(jīng)歷將實際問題抽象成數(shù)學(xué)模型并進行解釋和應(yīng)用的過程,進而使學(xué)生獲得對數(shù)學(xué)理解的同時,在思維能力方面得到進步和發(fā)展。本著對新課標的學(xué)習和認識,我對“乘法分配律”這一堂課在實踐理念方面作如下的探索。

  1.在對本節(jié)課的教學(xué)目標上,我定位在:(1)通過學(xué)生比賽列式計算解決情景問題后,觀察、比較、分析理解乘法分配律的含義,教師引導(dǎo)學(xué)生概括出乘法分配律的內(nèi)容。(2)初步感受乘法分配律能使一些計算簡便。(3)培養(yǎng)學(xué)生分析、推理、概括的思維能力。

  2.在本節(jié)課的教學(xué)過程的設(shè)計上,我盡量想體現(xiàn)新課標的一些理念。注重從學(xué)生的實際出發(fā),把數(shù)學(xué)知識和實際生活緊密聯(lián)系起來,讓學(xué)生在體驗中學(xué)到知識。在課的開始,我通過口頭講故事創(chuàng)設(shè)情境“森林超市”, “招聘廣告”,設(shè)置懸念,激發(fā)學(xué)生的學(xué)習欲望和學(xué)生學(xué)習數(shù)學(xué)的興趣:你們?nèi)ミ^森林超市嗎?想不想去看一看?小狗開了一家森林超市,想通過招聘廣告應(yīng)聘一名營業(yè)員呢!我們一起來看一看。小兔、小豬看到廣告后,前來應(yīng)聘,小熊決定進行考試過三關(guān),擇優(yōu)錄取。小狗還想邀請同學(xué)們一起參加這個活動,你們愿意嗎?學(xué)生已迫不及待地說想。

  接著我分別讓班上的一組、二組分別和三組、四組扮演小豬和小兔進行解題比賽,學(xué)生學(xué)生們積極性極高并爭先恐后地做題,同時讓學(xué)生說說你是怎么做的`?學(xué)生嘗試通過不同的方法先后得出:(1)50×8+125×8 =400+1000=1400(元),(50+125)×8=175×8=1400(元);(2):(55+45)×5 =100 ×5 =500(元), 55×5+45×5=275+225=500(元);(3)15×4+3×4 =60+12=72(元), (15+3)×4=18×4=72(元)。此時教師讓學(xué)生觀察通過不同的計算方法得到了相同的結(jié)果,這兩個算式用“=”連接。通過不同計算得到相同的結(jié)果,讓學(xué)生從中初步感受了乘法分配律的模型。為了讓學(xué)生切實體會生活中確實有乘法分配律的知識。在此我又設(shè)置了一個問題:上面兩題的結(jié)果,左邊和右邊的式子也有相同的形式,這里是否存在著規(guī)律?讓學(xué)生帶著一點疑惑,又急著想證明的愿望繼續(xù)探究。這時學(xué)生心中已具有了乘法分配律的模型。當學(xué)生有了上面的真實感受,讓學(xué)生列舉出類似的等式已水到渠成。讓學(xué)生觀察剛才得到的一系列等式,小組討論:從這些等式中你發(fā)現(xiàn)了什么規(guī)律?并要求同桌嘗試合作學(xué)習進行一人任意找三個數(shù)寫出等號左邊的式子讓另一個寫出等號右邊的式子,幾題過后再交換寫式子,讓他們親自感受乘法分配律,從而概括出乘法分配律。

  3、在本課的練習設(shè)計上,我力求有針對性,有坡度,同時也注意知識的延伸。針對平時學(xué)生練習中的錯誤,在判斷題中我安排了(25×7)×4=25×4+7×4,讓學(xué)生通過爭論明白當(25×7)×4時用乘法結(jié)合律簡算;當(25+7)×4時用乘法分配律簡算。在填空題目中,我設(shè)計了①(10+7)×6=()×6 +( )×6 ;②8×(125+9)=8×( )+8×( );③7×48+7×52= ( )×( + )通過練習讓學(xué)生更深入地理解乘法分配律的概念,也為后面利用乘法分配律進行簡算打下伏筆。

  總之,在本堂課中新的教學(xué)理念有所體現(xiàn),但在具體的操作中還缺乏成熟的思考,對學(xué)生的積極性沒有充分調(diào)動起來,而且在生活情境的創(chuàng)設(shè)中對情境的趣味性、興趣性、情境性不能很好的體現(xiàn),情景創(chuàng)設(shè)題目有點多,需減少一題,留給學(xué)生思考的時間還不夠。這一系列問題有待我在今后的教學(xué)過程中不斷的改進和提高。最后,衷心地感謝各位領(lǐng)導(dǎo)的指導(dǎo)并提出建議!

《乘法分配律》教學(xué)反思14

  在教學(xué)本課之前,我安排了這樣的預(yù)習作業(yè):將左右兩邊相等的算式用線連起來(共五組),我故意安排了兩組不相等的,居然大部分同學(xué)都上當了,說明他們對乘法分配律的認識僅僅停留在表面,沒有認識到其實質(zhì)。

  在教學(xué)例題時我特別加強了“分別乘”的指導(dǎo),不但結(jié)合實例讓學(xué)生明白為何要分別乘再相加,而且用一些形象的箭頭讓學(xué)生感受分別乘的過程;而在學(xué)生探究了例題和試一試后,讓他們通過比較,體會在利用乘法分配律進行簡便計算時要根據(jù)具體情況選擇:有時合起來乘容易,有時分別乘更容易,要靈活運用。

  但是,今天的'課堂作業(yè)讓我十分失望,我本以為“分別乘”的指導(dǎo)比較到位,但還是有一些同學(xué)出現(xiàn)15×(20+3)=15×20+3這樣的錯誤,并且有兩名學(xué)生在解決實際問題中列出了(18+22)×15的算式后,還將它用乘法分配律展開計算,結(jié)果計算錯誤百出,如何讓學(xué)生靈活地運用所學(xué)的知識,我還得進一步地學(xué)習研究。

  本節(jié)課主要應(yīng)用乘法分配律進行簡便計算,培養(yǎng)學(xué)生靈活合理地進行計算的意識和能力。課的一開始,我就復(fù)習乘法分配律,抓住其特點:合起來乘轉(zhuǎn)化成分別乘再加起來或者分別乘轉(zhuǎn)化成合起來乘。接著通過例題和試一試的教學(xué),中間結(jié)合類型分別練習相應(yīng)的題目,再通過比較讓學(xué)生明白這兩組題:有的時候是合起來乘簡便,有的時候是分別乘簡便,要根據(jù)具體的題目來選擇。對于后面的練習,我注意引導(dǎo)學(xué)生比較和辨析,使學(xué)生較深刻地理解適合用乘法分配律進行簡便計算的題目的結(jié)構(gòu)形式,培養(yǎng)學(xué)生的審題能力,從而使學(xué)生更好地運用乘法分配律進行簡便計算。

《乘法分配律》教學(xué)反思15

  “乘法分配律”的學(xué)習是在學(xué)習了乘法交換律和乘法結(jié)合律之后進行的,對于乘法分配律的理解和應(yīng)用上都比前兩個運算定律更有難度,學(xué)生在新課學(xué)習和知識的應(yīng)用的過程中思路還比較清晰,但是在作業(yè)的過程中出現(xiàn)的好多問題,讓人感覺孩子并沒有對定律有真正意義上的理解。如:(40+4)×25,有時,只用40×25,后面只加上4就行了,還有的把這道題目改成了連乘題,根據(jù)孩子出現(xiàn)的問題和練習中出現(xiàn)的困惑,我認真的設(shè)計的這節(jié)練習課。

  第一,理清思路,,建構(gòu)完整的知識體系。在本節(jié)課中,我和學(xué)生們一起回顧了乘法的幾種運算定律,比較每種運算定律的字母公式,來區(qū)分乘法交換律、乘法結(jié)合律和乘法分配律之間的外形結(jié)構(gòu)特點,引導(dǎo)學(xué)生發(fā)現(xiàn),乘法結(jié)合律是幾個數(shù)連乘,而乘法分配律是兩數(shù)的和乘一個數(shù)或者是兩個積的和.從運算符號上我們很快就可以找到它們的不同。乘法交換律和乘法結(jié)合律都只有乘號,而乘法分配律有不同級的兩種運算符號。

  第二,優(yōu)化練習題,實行精練。針對學(xué)生在乘法分配律學(xué)習后在理解上的困難,及乘法分配律在練習形式上的多變,我找出課本、課堂作業(yè)本以及一些課外輔導(dǎo)資料上的乘法分配律的'計算題,把他們進行概括總結(jié),把不同類型的乘法分配律的方法進行練習,講解。讓學(xué)生對不同的乘法分配律的解決方法都進行嘗試,幫助理解,加深記憶。

  第三,一題多法。例如25×44,學(xué)生在利用乘法分配律拆分其中一個數(shù)據(jù)的時候,有多種方法,有的學(xué)生把25拆成20+5,有的是拆了40+4,還有的把25×44轉(zhuǎn)化成25×4×11,這些方法都可以,讓學(xué)生分辨出每一種方法所運用的運算定律,從而加深學(xué)生對知識的認識和理解,在此基礎(chǔ)上,選出最佳方案。

  乘法分配律的練習實在是多種多樣,變幻無窮,要想更好的掌握,關(guān)鍵還是要理解,需多練.

【《乘法分配律》教學(xué)反思】相關(guān)文章:

《乘法分配律》教學(xué)反思02-07

乘法分配律教學(xué)反思02-12

乘法分配律教學(xué)反思07-03

《乘法分配律》教學(xué)反思10-26

乘法分配律的教學(xué)反思優(yōu)秀03-21

《乘法分配律》教學(xué)反思15篇02-15

乘法分配律教學(xué)反思15篇02-19

乘法分配律教學(xué)反思(15篇)03-13

乘法分配律教學(xué)反思(集錦15篇)03-18