當前位置:育文網(wǎng)>教學文檔>說課稿> 《不等式的基本性質(zhì)》說課稿

《不等式的基本性質(zhì)》說課稿

時間:2024-07-02 10:59:22 說課稿 我要投稿

《不等式的基本性質(zhì)》說課稿

  作為一位優(yōu)秀的人民教師,就不得不需要編寫說課稿,說課稿有助于順利而有效地開展教學活動。優(yōu)秀的說課稿都具備一些什么特點呢?以下是小編精心整理的《不等式的基本性質(zhì)》說課稿,歡迎閱讀與收藏。

《不等式的基本性質(zhì)》說課稿

《不等式的基本性質(zhì)》說課稿1

  我今天說課的題目是《不等式的基本性質(zhì)》,主要分四塊內(nèi)容進行說課:教材分析;教學方法的選擇;學法指導;教學流程。

  一、教材分析:

  1.教材的地位和作用

  本節(jié)課的內(nèi)容是選自人教版義務(wù)課程標準實驗教科書七年級下第九章第一節(jié)第二課時《不等式的基本性質(zhì)》,這是繼方程后的又一種代數(shù)形式,繼承了方程的有關(guān)思想,并實現(xiàn)了數(shù)形結(jié)合的思想。是初中數(shù)學教學的重點和難點,對進一步學習一次函數(shù)的性質(zhì)及應(yīng)用有著及其重大的作用。

  2.教學目標的確定

  教學目標分為三個層次的目標:

 、胖R目標:主要是理解并掌握不等式的三個基本性質(zhì)。

 、颇芰δ繕耍号囵B(yǎng)學生利用類比的思想來探索新知的能力,擴充和完善不等式的性質(zhì)的能力。

 、乔楦心繕耍鹤寣W生感受到數(shù)學學習的猜想與歸納的思維方式,體會類比思想和獲得成功的喜悅。

  3.教學重點和難點

  不等式的三個基本性質(zhì)是本節(jié)課的中心,是學生必須掌握的內(nèi)容,所以我確定本節(jié)的教學重點是不等式三個基本性質(zhì)的學習以及用不等式的性質(zhì)解不等式。本節(jié)課的難點是用不等式的性質(zhì)化簡。

  二、教學方法、教學手段的選擇:

  本節(jié)課在性質(zhì)講解中我采取探索式教學方法,即采取觀察猜測---直觀驗證---托盤實驗---得出性質(zhì)。使學生主動參與提出問題和探索問題的過程,從而激發(fā)學生的學習興趣,活躍學生的思維。為了突破學生對不等式性質(zhì)應(yīng)用的困難,采取了類比操作化抽象為具體的方法來設(shè)置教學。整節(jié)課采取精講多練、講練結(jié)合的方法來落實知識點。

  三、學法指導:

  鑒于七年級的學生理解能力和邏輯推理能力還比較薄弱,應(yīng)以激勵的原則進行有效的教學。鼓勵學生一種類型的題多練,并及時引導學生用小結(jié)方法,克服思維定勢。

  例題講解采取數(shù)形結(jié)合的方法,使學生樹立“轉(zhuǎn)化”的數(shù)學思想。充分復習舊知識,使獲取新知識的過程成為水到渠成,增強學生學習的成就感及自信心,從而培養(yǎng)濃厚的學習興趣。

  四、(主要環(huán)節(jié))教學流程:

  1.創(chuàng)設(shè)情境,復習引入

  等式的基本性質(zhì)是什么?

  學生活動:獨立思考,指名回答.

  教師活動:注意強調(diào)等式兩邊都乘以或除以(除數(shù)不為0)同一個數(shù),所得結(jié)果仍是等式.

  請同學們繼續(xù)觀察習題:

  觀察:用“”或“”填空,并找一找其中的規(guī)律.

  (1)55+2____3+2,5-2____3-2

  (2)–1,-1+2____3+2,-1-3____3-3

  (3)6>2,6×5____2×5,6×(-5)____2×(-5)

  (4)–2(-2)×6____3×6,(-2)×(-6)____3×(-6)

  學生活動:觀察思考,兩個(或幾個)學生回答問題,由其他學生判斷正誤.

  五、教法說明

  設(shè)置上述習題是為了溫故而知新,為學習本節(jié)內(nèi)容提供必要的知識準備.

  不等式有哪些基本性質(zhì)呢?研究時要與等式的性質(zhì)進行對比,大家知道,等式兩邊都加上(或減去)同一個數(shù)或同一個整式,所得結(jié)果仍是等式(實質(zhì)是移項法則),請同學們觀察①②題,并猜想出不等式的性質(zhì).

  學生活動:觀察思考,猜想出不等式的性質(zhì).

  教師活動:及時糾正學生敘述中出現(xiàn)的問題,特別強調(diào)指出:“仍是不等式”包括兩種情況,說法不確切,一定要改為“不等號的方向不變或者不等號的方向改變.”

  師生活動:師生共同敘述不等式的性質(zhì),同時教師板書.

  不等式基本性質(zhì)1不等式兩邊都加上(或減去)同一個數(shù)或同一個整式,不等號的方向不變.

  對比等式兩邊都乘(或除以)同一個數(shù)的性質(zhì)(強調(diào)所乘的數(shù)可正、可負、也可為0)請大家思考,不等式類似的性質(zhì)會怎樣?

  學生活動:觀察③④題,并將題中的5換成2,-5換成一2,按題的要求再做一遍,并猜想討論出結(jié)論.

  六、教法說明

  觀察時,引導學生注意不等號的方向,用彩色粉筆標出來,并設(shè)疑“原因何在?”兩邊都乘(或除以)同一個負數(shù)呢?為什么?

  師生活動:由學生概括總結(jié)不等式的其他性質(zhì),同時教師板書.

  不等式基本性質(zhì)2不等式兩邊都乘(或除以)同一個正數(shù),不等號的'方向不變.

  不等式基本性質(zhì)3不等式兩邊都乘(或除以)同一個負數(shù),不等號的方向改變.

  師生活動:將不等式-2<3兩邊都加上7,-9,兩邊都乘3,-3試一試,進一步驗證上面得出的三條結(jié)論.

  學生活動:看課本第124頁有關(guān)不等式性質(zhì)的敘述,理解字句并默記.

  強調(diào):要特別注意不等式基本性質(zhì)3.

  實質(zhì):不等式的三條基本性質(zhì)實質(zhì)上是對不等式兩邊進行“+”、“-”、“×”、“÷”四則運算,當進行“+”、“-”法時,不等號方向不變;當乘(或除以)同一個正數(shù)時,不等號方向不變;只有當乘(或除以)同一個負數(shù)時,不等號的方向才改變.

  學生活動:思考、同桌討論.

  歸納:只有乘(或除以)負數(shù)時不同,此外都類似.

  (1)如果x-54,那么兩邊都可得到x9

  (2)如果在-78的兩邊都加上9可得到

  (3)如果在5-2的兩邊都加上a+2可得到

  (4)如果在-3-4的兩邊都乘以7可得到

  (5)如果在80的兩邊都乘以8可得到

  師生活動:學生思考出答案,教師訂正,并強調(diào)不等式性質(zhì)的應(yīng)用.

  2.嘗試反饋,鞏固知識

  請學生先根據(jù)自己的理解,解答下面習題.

  例1 利用不等式的性質(zhì)解下列不等式并用數(shù)軸表示解集.

  (1)x-7>26(2)-4x≥3

  學生活動:學生獨立思考完成,然后一個(或幾個)學生回答結(jié)果.

  教師板書(1)(2)題解題過程.(3)(4)題由學生在練習本上完成,指定兩個學生板演,然后師生共同判斷板演是否正確.

  七、教法說明

  解題時要引導學生與解一元一次方程的思路進行對比,并將原題與或?qū)φ眨从媚臈l性質(zhì)能達到題目要求,要強調(diào)每步的理論依據(jù),尤其要注意不等式基本性質(zhì)3與基本性質(zhì)2的區(qū)別,解題時書寫要規(guī)范.【教法說明】要讓學生明白推理要有依據(jù),以后作類似的練習時,都寫出根據(jù),逐步培養(yǎng)學生的邏輯思維能力.

 。ㄋ模┛偨Y(jié)、擴展

  本節(jié)重點:

 。1)掌握不等式的三條基本性質(zhì),尤其是性質(zhì)3.

  (2)能正確應(yīng)用性質(zhì)對不等式進行變形.

 。ㄎ澹┱n外思考

  對比不等式性質(zhì)與等式性質(zhì)的異同點.

  八、布置作業(yè)

《不等式的基本性質(zhì)》說課稿2

  我說課的內(nèi)容是魯教版義務(wù)教育課程標準實驗教科書,七年級數(shù)學(下)第十一章第二節(jié)《不等式的基本性質(zhì)》。下面,我從以下幾個方面對本節(jié)課的教學設(shè)計進行說明。

  一、教材分析

  第十一章《一元一次不等式和一元一次不等式組》是在學習了數(shù)軸、等式性質(zhì)、解一元一次方程、一次函數(shù)的基礎(chǔ)上,從研究不等關(guān)系入手,展開對不等式的基本性質(zhì)、不等式的解集、解一元一次不等式(組)、一元一次不等式與一次函數(shù)的研究學習。本課題為第十一章第二節(jié)《不等式的基本性質(zhì)》。它在教材中起著承上啟下的作用。關(guān)于它的學習以等式的基本性質(zhì)為基礎(chǔ),它是學生以后順利學習一元一次不等式和一元一次不等式組的解法的重要理論依據(jù),是學生后繼學習的重要基礎(chǔ)和必備技能。

  二、教學目標

  知識目標:

1、經(jīng)歷不等式基本性質(zhì)的探索過程,初步體會不等式與等式的異同。

  2、掌握不等式的基本性質(zhì),運用不等式的基本性質(zhì)將不等式變形。

  能力目標:

1、培養(yǎng)學生類比、歸納、猜想、驗證的數(shù)學研究方法。

  2、發(fā)展學生的符號表達能力、代數(shù)變形能力。

  3、培養(yǎng)學生自主探索與合作交流的能力。

  情感目標:讓學生感受生活中數(shù)學的存在,并且在自主探索、合作交流中感受學習的樂趣。

  三、教學重點和難點

  重點:掌握不等式的基本性質(zhì)并能正確運用將不等式變形

  難點:不等式基本性質(zhì)3的運用

  四、教法分析

  活動是影響人發(fā)展的決定性因素,學生的學習只有通過自主活動并從中體驗、感悟、建構(gòu)自己的知識經(jīng)驗,培養(yǎng)積極的學習情感,才能得到自身的發(fā)展。但學生主動參與學習活動的方向,活動過程的積極化離不開教師的“導”。本節(jié)課我采用從生活中創(chuàng)設(shè)問題情景的方法激發(fā)學生學習興趣,采用類比等式性質(zhì)創(chuàng)設(shè)問題情景的方法,引導學生的自主探究活動。在整個探究學習的過程充滿師生之間,生生之間的交流和互動,體現(xiàn)教師是教學活動的組織者、引導者、合作者,學生才是學習的主體。

  五、學法分析

  “教為不教,學為會學”,“授之以魚”更要“授之以漁”。在教的過程中,關(guān)鍵是教學生的學法,本節(jié)課教給學生類比,猜想,驗證的問題研究方法,培養(yǎng)學生善于動手、善于觀察、善于思考的學習習慣。利用學生的好奇心設(shè)疑、解疑,組織活潑互動、有效的教學活動,鼓勵學生積極參與,大膽猜想,使學生在自主探索和合作交流中理解和掌握本節(jié)課的內(nèi)容。

  六、教學過程分析

 。ㄒ唬┍竟(jié)教學將按以下五個流程展開:

  回顧思考,引入課題

  創(chuàng)設(shè)問題情景,探索規(guī)律

  嘗試練習,應(yīng)用新知

  總結(jié)反思,獲得升華

  布置作業(yè),深化鞏固

 。ǘ┙虒W過程

  1、回顧思考,引入課題

  觀察下面兩個推理,說出等式的基本性質(zhì)

 。1)∵a=b

  ∴a±3=b±3

  a±(x2+2y)=b±(x2+2y)

 。2)∵a=b

  ∴3a=3b

  -a/4=-b/4

  提出問題:那么不等式有沒有類似的性質(zhì)呢?引入課題。

  [設(shè)計意圖:“有效的教學一定要從學生已經(jīng)知道了什么開始”。不等關(guān)系與相等關(guān)系有著辨證的關(guān)系。學生已經(jīng)在六年級上冊學習了等式的基本性質(zhì),因此,要類比等式的基本性質(zhì)進行不等式基本性質(zhì)的教學。課堂開始通過回顧舊知識,抓住新知識的切入點,使學生進入一種“心求通而未得,口欲言而未能”的境界,使他們有興趣的進入數(shù)學課堂,為學習新知識做好準備。]

  2、創(chuàng)設(shè)問題情景,探索規(guī)律

  問題1:在天平兩側(cè)的托盤中放有不同質(zhì)量的砝碼。

  右低左高說明右邊的質(zhì)量大于左邊的質(zhì)量。往兩盤中加入相同質(zhì)量的砝碼,天平哪邊高,哪邊低?減去相同質(zhì)量的砝碼呢?(拿一個天平讓學生親手操作,獲得直觀感受)

  [設(shè)計意圖:數(shù)學源于生活,問題1的設(shè)計是為了從學生的生活經(jīng)驗出發(fā),讓學生感受生活中數(shù)學的存在,不僅激發(fā)學生學習興趣,而且可以讓學生直觀地體會到在不等關(guān)系中存在的一些性質(zhì)]

  問題2:在不等式的兩邊加上或減去相同的數(shù),不等號的方向改變嗎?

  如不等式7>4,-1<3不等式的兩邊都加5,都減5。不等號的方向改變嗎?你能得出什么結(jié)論?再舉幾例試試,驗證你所得的結(jié)論正確嗎?(讓學生先獨立思考,后合作交流)

  一般學生會得到:不等式的兩邊都加上(或減去)同一個數(shù),不等號的方向不變。

  這時可提出問題:把“數(shù)”的范圍擴大到整式可以嗎?

  學生討論可能得出結(jié)論:可以,因為整式的值就是實數(shù)。

  讓學生歸納總結(jié):不等式的兩邊都加上(或減去)同一個整式,不等號的方向不變。(教師板書:不等式的基本性質(zhì)1)

  引導學生說出符號語言:

  如果a

  如果a>b,那么a+c>b+c,a-c>b-c(教師板書)

  [設(shè)計意圖:類比等式的基本性質(zhì),研究不等式的性質(zhì),讓學生體會數(shù)學思想

  方法中類比思想的應(yīng)用,并訓練學生從類比到猜想到驗證的研究問題的方法,

  讓學生在合作交流中完成任務(wù),體會合作學習的樂趣。]

  問題3:若不等式兩邊同乘以或除以同一個數(shù),不等號的方向改變嗎?

  如不等式2<3,兩邊同乘以5,同除以5(即乘以1/5),同乘以0,同乘以-5,同除以-5。你能得出什么結(jié)論?再舉幾例試試,驗證你所得的結(jié)論正確嗎?

 。ńY(jié)合不等式基本性質(zhì)1的探索方法,學生可能很快就探索出不等式的基本性質(zhì)2、3)

  讓學生歸納總結(jié):不等式的兩邊都乘以(或除以)同一個正數(shù),不等號的方向不變;

  不等式的`兩邊都乘以(或除以)同一個負數(shù),不等號的方向改變。

 。ń處煱鍟翰坏仁降幕拘再|(zhì)2,不等式的基本性質(zhì)3)

  引導學生說出符號語言:

  如果a>b,c>0,那么ac>bc

  如果a0,那么ac

  如果a>b,c<0,那么ac

  如果abc (教師板書)

《不等式的基本性質(zhì)》說課稿3

尊敬的各位評委、老師:

  大家好!

  很高興能把《不等式的基本性質(zhì)》一課的教學設(shè)計向大家作一展示。下面我將從教材分析、教學目標、教學方法、教學流程、教學評價和教學反思幾個方面來闡述我對本節(jié)課的安排。

  一、教材分析

  1. 教材的地位和作用

  不等式是初中代數(shù)的重要內(nèi)容之一,是已知量與未知量的矛盾統(tǒng)一體。數(shù)學關(guān)系中的相等與不等是事物運動和平衡的反映,學習研究數(shù)量的不等關(guān)系,可以更好地認識和掌握事物運動變化的規(guī)律。“不等式的性質(zhì)”是學生學習整個不等式知識的理論基礎(chǔ),為以后學習解不等式(組)起到奠基的作用。本課位于湖南教育出版社義務(wù)教育課程標準實驗教科書七年級上冊第五章第一節(jié)的內(nèi)容,主要內(nèi)容是讓學生在充分感性認識的基礎(chǔ)上體會不等式的性質(zhì),它是空間與圖形領(lǐng)域的基礎(chǔ)知識,是《不等式》的重點,學習它會為后面的學習不等式解法、不等式的計算等知識打下堅實的“基石”。同時,本節(jié)學習將為加深“不等式”的認識,建立空間觀念,發(fā)展思維,并能讓學生在活動的過程中交流分享探索的成果,體驗成功的樂趣,把代數(shù)轉(zhuǎn)化為數(shù)軸,提高運用數(shù)學的能力。

  2.教學重難點

  重點:不等式的概念和不等式的基本性質(zhì)1。

  難點:利用不等式的基本性質(zhì)1進行簡單的變形。

  二、教學目標

  知識目標:

  在了解不等式的意義基礎(chǔ)上,掌握不等式的基本性質(zhì)1。

  能力目標:

 、偻ㄟ^觀察、思考探索等活動歸納出不等式的性質(zhì),培養(yǎng)學生轉(zhuǎn)化的數(shù)學思想,培養(yǎng)學生動手、分析、解決實際問題的能力。

 、谕ㄟ^活動及實際問題的研究引導學生從數(shù)學角度發(fā)現(xiàn)和提出問題,并用數(shù)學方法探索、研究和解決問題,培養(yǎng)學生的數(shù)感,滲透數(shù)形結(jié)合思想。

  情感目標:

 、俑惺軘(shù)學與生活的緊密聯(lián)系,體會數(shù)學的價值,激發(fā)學生學習數(shù)學的興趣,培養(yǎng)敢想、敢說、敢解決實際問題的學習習慣。

  ②通過“轉(zhuǎn)化”數(shù)學思想方法的運用,讓學生認識事物之間是普遍聯(lián)系,相互轉(zhuǎn)化的辯證唯物主義思想。

  通過學生體驗、猜想并證明,讓學生體會數(shù)學充滿著探索和創(chuàng)造,培養(yǎng)學生團結(jié)協(xié)作,勇于創(chuàng)新的精神。

  三、教學方法

  1、采用激趣——探究法進行教學,師生互動,共同探究不等式的性質(zhì)。通過知識類比,合理引導等突出學生主體地位,讓教師成為學生學習的組織者、引導者、合作者,讓學生親自動手、動腦、動口參與數(shù)學活動,經(jīng)歷問題的發(fā)生、發(fā)展和解決過程,在解決問題的.過程中完成教學目標。

  2、根據(jù)學生實際情況,整堂課圍繞“情景問題——學生體驗——合作交流”模式,鼓勵學生積極合作,充分交流,既滿足了學生對新知識的強烈探索欲望,又排除學生學習數(shù)軸陌生和學無所用的思想顧慮。對學習有困難的學生及時給予幫助,讓他們在學習的過程中獲得愉快和進步。

  3、充分利用多媒體課件輔助教學,突出重點、突破難點,擴大學生知識面,使每個學生穩(wěn)步提高。

  四、教學流程

  我的教學流程設(shè)計是:從創(chuàng)設(shè)情境、激發(fā)興趣開始,經(jīng)歷探究新知、總結(jié)規(guī)律;針對練習、學習例題;鞏固提高、拓展延伸;暢談收獲、分層作業(yè)等過程來完成教學。

  (一)創(chuàng)設(shè)情境,激發(fā)興趣:

  師生欣賞拔河比賽圖片,讓學生觀察、思考從人數(shù)上看有什么不同點。并預測比賽的結(jié)果。從而自然的引入本節(jié)課的學習。

  設(shè)計意圖:通過圖片展示,貼近學生生活,激發(fā)學生的學習興趣。讓學生知道數(shù)學知識無處不在,應(yīng)用數(shù)學無時不有。符合“數(shù)學教學應(yīng)從生活經(jīng)驗出發(fā)”的新課程標準要求。

  學習目標:

  1、 理解不等式的基本性質(zhì)1。

  2、 會解簡單的不等式。

  此時我出示本節(jié)課的學習目標和歸納出不等式的概念:

  歸納:用不等號“﹥”(或“﹤”、“≥”、“”)連接的式子叫做不等式。符號“≥”讀作“大于或等于”,也可讀作“不小于”;符號“”讀作“小于或等于”,也可讀作“不大于”讀如a≥0表示a>0或a=0,形如3≠4,a≠b的式子,也叫不等式。

  (二)探究新知、總結(jié)規(guī)律

  在這個環(huán)節(jié),我主要設(shè)計了以下二個活動來完成教學任務(wù):

  活動1:1、你能用“﹤”或“﹥”填空嗎?

 。1)5﹥3 (2)6﹥4

  5+2﹥3+2 6+a﹥4+a

  5-2﹥3-2 6-a﹥4-a

  2、(1)自己寫一個不等式,在它的兩邊同時加上、減去同一個數(shù)或代數(shù)式,看看有什么結(jié)果?

 。2)小組合作討論交流,大膽說出自己的“發(fā)現(xiàn)”。

  本次活動以2組精心設(shè)計的填空題,讓學生通過觀察有限個不等式的變化,發(fā)現(xiàn)并歸納不等式的性質(zhì),進一步培養(yǎng)學生的抽象概括能力及合情推理能力。

  活動2:你能用自己的語言概括不等式的性質(zhì)嗎?

  本活動中,我出示直觀深刻的天平圖片,組織學生分組討論,給每個學生提供發(fā)言機會,讓每一個學生都嘗試用自己的語言概括結(jié)論,鍛煉學生語言表達能力及抽象概括能力,然后歸納指出不等式的基本性質(zhì)1:

  不等式的兩邊同時都加上(或都減去)同一個數(shù)或同一個代數(shù)式,不等式的方向不變。

  當學生概括出結(jié)論后,為了使學生對不等式的基本性質(zhì)1有更全面深入的了解,我還可以提出以下問題,讓學生思考:

  性質(zhì)中的“不等號方向不變”的含義是什么?

  使學生經(jīng)一步明確:“不等號方向不變”是指如果原來是“﹤”,那么變化后仍是“﹤”。

  在活動中,我深入小組,引導學生通過類比等式性質(zhì)的表示方法,表示出不等式的性質(zhì),并注意規(guī)范學生的數(shù)學語言。

  通過用符號語言表示不等式的性質(zhì),有助于讓學生體會到用字母表示數(shù)的優(yōu)越性,發(fā)展學生文字語言與符號語言相互轉(zhuǎn)化能力和符號感。

  設(shè)計意圖:猜想、交流、歸納,符合知識的形成過程,培養(yǎng)學生轉(zhuǎn)化的數(shù)學思想,學會將陌生的轉(zhuǎn)化為熟悉的,將未知的轉(zhuǎn)化為已知的。并用練習及時鞏固,落實新知與方法,增強學生運用數(shù)學的能力。加強學生運用新知的意識,培養(yǎng)學生解決實際問題的能力和學習數(shù)學的興趣,讓學生鞏固所學內(nèi)容,并進行自我評價,既面向全體學生,又照顧個別學有余力的學生,體現(xiàn)因材施教的原則。

  (三)針對練習、學習例題

  1、在這個環(huán)節(jié)我先是設(shè)計了一個練習題,通過練習,進一步鞏固了學生的新知,又加深了他們的理解,為學習例題奠定了基礎(chǔ)。

  如果x-5>4,那么兩邊都 ,可得到x>9

  2、學習例題環(huán)節(jié)我采用了學生單獨完成的方法來進行,因為有了前面的基礎(chǔ),學生很容易的就可以完成例題的解題過程,教師只需強調(diào)注意的事項即可。

  例1.用“>”或“<”填空

 。1)已知a>b,a+3 b+3; (2)已知a>b,a-5 b-5。

  解:

  【小結(jié)】解此題的理論依據(jù)就是根據(jù)不等式的基本性質(zhì)1進行變形。

  例2.把下列不等式化為x>a或x

 。1)x+6>5 (2)3x>2x+2

  解:

  【歸納】把不等式的某一項變號后移到另一邊,稱為移項,這與解一元一次方程中的移項相類似。例題完成后,要求學生講解解題思路,以進一步加深理解。

  (四)鞏固提高、拓展延伸

  在這個環(huán)節(jié)我呈梯度形式設(shè)計了不同層次的練習題,針對不同層次階段的學生,都要求他們完成符合自身實際的題目,以便獲得成功的體驗,進一步提高學習興趣。

  1、課本P133練習第1、2題;

  2、判斷是非:

 、偃鬭>b,則a-3>b-3 ( )

 、谌鬽

 、廴鬭-8

 、苋魓>7,則x-4<3 ( )

  (五)暢談收獲、分層作業(yè)

  回顧本節(jié)課不等式性質(zhì)的探索過程和解不等式的方法,談?wù)勀愕男牡皿w會。

  1.不等式的概念和基本性質(zhì)1.

  2.簡單不等式的變形.

  通過學生歸納本節(jié)課的主要內(nèi)容、交流學習過程中的心得體會,使學生對本節(jié)課的知識進一步加深了理解,同時積累了學習經(jīng)驗,體會到了數(shù)學的思想方法。

  最后是作業(yè)設(shè)計:

  1、看書P132—P133(補全書上留白,劃出重點內(nèi)容,完成讀書筆記);

  2、習題5.1A組第1題(1)(2),第3題(1)(2);

  3、選作:習題5.1B組第1題。

  五、教學評價

  本節(jié)課的教學設(shè)計,依據(jù)《新課程標準》的要求,立足于學生的認知基礎(chǔ)來確定適當?shù)钠瘘c與目標,內(nèi)容安排從不等式的意義到不等式的性質(zhì)的發(fā)現(xiàn)、論證和運用,逐步展示知識的過程,使學生的思維層層展開,逐步深入。在教學設(shè)計時,利用多媒體輔助教學,展示圖片和動畫,使學生體會到數(shù)學無處不在,運用數(shù)學無時不有。以動代靜,使課堂氣氛活躍,面向全體學生,給基礎(chǔ)好的學生充分的空間,滿足他們的求知欲,同時注重利用學生的好奇心,培養(yǎng)學生的創(chuàng)新能力,引導學一從數(shù)學角度發(fā)現(xiàn)和提出問題,并用數(shù)學方法探索、研究和解決,體現(xiàn)《新課標》的教學理念。

  六、教學反思

  1.本節(jié)課通過學生自主探討、小組合作得出不等式的概念和性質(zhì)1.

  2.本課設(shè)計以問題為載體,探究為主線,培養(yǎng)學生的自主、動手、合作交流能力。

  謝謝大家!

《不等式的基本性質(zhì)》說課稿4

  一、教材分析

  1、教材所處的地位和作用:

  不等式基本性質(zhì)是八年級下冊第二章第二節(jié)內(nèi)容。不等式是現(xiàn)實世界中不等關(guān)系的一種數(shù)學表示形式,它不僅是現(xiàn)階段學生學習的重點內(nèi)容,而且也是學生后續(xù)學習的重要基礎(chǔ)。它是刻畫現(xiàn)實世界中量與量之間關(guān)系的有效數(shù)學模型,在現(xiàn)實生活中有著廣泛的應(yīng)用,所以對不等式的學習有著重要的實際意義。本節(jié)課是建立在學生已認識了不等關(guān)系基礎(chǔ)上來學習的,也是為進一步學習解不等式及應(yīng)用不等關(guān)系解決實際問題的重要依據(jù),因此本節(jié)課內(nèi)容在不等關(guān)系這一章占有重要位置。本節(jié)課的教學指導思想是從學生實際認知水平及知識結(jié)構(gòu)出發(fā),讓學生自主獲取知識。

  二、教學目標

 。1)知識與技能

  1、經(jīng)歷通過類比、猜測、驗證發(fā)現(xiàn)不等式基本性質(zhì)的探索過程,初步體會不等式與等式的異同。

  2、掌握不等式的基本性質(zhì),并能初步運用不等式的基本性質(zhì)把比較簡單的不等式轉(zhuǎn)化為“x>a”或“x<a”的形式。(2)過程與方法:

  1.經(jīng)歷探索不等式基本性質(zhì)的過程,體驗數(shù)學學習探究的方法

  2.通過觀察、類比、猜想、驗證、歸納總結(jié)等數(shù)學學習活動過程,發(fā)展合理的推理和初步論證能力(3)情感態(tài)度與價值觀:

  1.學生在探索過程中感受成功、建立自信,增進學習數(shù)學的興趣。

  2.體驗在研究過程中創(chuàng)造的快樂,并學會與人交流合作養(yǎng)成良好的人格品質(zhì)

  3、重點、難點及關(guān)鍵

  重點:不等式基本性質(zhì)的探索及應(yīng)用難點:不等式的基本性質(zhì)三的探索及其應(yīng)用

  三、教法學情分析:

  1、學生在學習一元一次方程、二元一次方程組和一次函數(shù)的基礎(chǔ)上,積累了一定的經(jīng)驗,本節(jié)課主要采用類比等式的方法進行不等式的探究教學,這樣不僅有利于學生掌握不等式的基本性質(zhì),而且可以使學生體會知識之間的內(nèi)在聯(lián)系,整體上把握知識,發(fā)展學生的辯證思維。

  2、始終堅持學生為主體,教師為主導的教學方法,通過教師的啟發(fā),設(shè)問,引導學生自主探索、合作交流,師生充分互動,這樣才能將學生推到學習的`前沿,才能充分發(fā)揮學生的學習主體性和主觀能動性。

  3、在探索不等式的性質(zhì)時為了避免簡單的“模型化”,主要采用引導學生觀察、類比、猜想、驗證、總結(jié)概括的方法,發(fā)展學生分析問題和解決問題及初步論證問題的能力,關(guān)注學生知識的形成和學習能力的提高。

  學法指導

  1、觀察猜想

  2、類比驗證

  3、探究合作

  4、抽象概括

  5、總結(jié)歸納

  6、數(shù)學表示

  四、說教學過程

  最后我來具體談?wù)勥@一堂課的教學過程:

  (一)、回顧交流,指導觀察

  教師提問:同學們還記得等式的性質(zhì)嗎?學生舉手回答,交流聯(lián)想。投影顯示:等式的性質(zhì)

  設(shè)計意圖:通過回顧等式的性質(zhì),類比等式的性質(zhì),為探索不等式的性質(zhì)做好鋪墊,并且從學生已有的數(shù)學經(jīng)驗出發(fā),建立新舊知識之間的聯(lián)系,培養(yǎng)學生梳理知識體系的習慣。

 。ǘ⒅R探究

  1、用“﹥”或“﹤”填空,并總結(jié)其中的規(guī)律:

 。1)5>3, 5+2 3+2 , 5-2 3-2 ;

  (2)–1、>(2)

  不等式的性質(zhì)1不等式的兩邊加(或減)同一個數(shù)(或式子),不等號的方向不變.字母表示為:如果a>b,那么a±c > b±c設(shè)計意圖:通過一組精心設(shè)計的填空題,讓學生觀察有限個不等式的變化,發(fā)現(xiàn)并歸納不等式的性質(zhì)1,進一步培養(yǎng)學生得抽象概括能力及合情推理能力。讓學生用語言概括出結(jié)論,培養(yǎng)學生的數(shù)學語言表達能力及抽象概括能力。

  2、繼續(xù)探究,接著又出示(3)、(4)題:

  (3) 6>2, 6×5 2×5 , 6×(-5)2×(-5); (4) -2

  當不等式的兩邊同乘以一個正數(shù)時,不等號的方向不變;當不等式的兩邊同乘以一個負數(shù)時,不等號的方向改變。

  (1)3a 3b;(2)a-8 b-8(3)-2a -2b(4)2a-5 2b-5(5)-3.5a+1 -3.5b+1設(shè)計意圖:由淺入深的練習,進一步幫助學生理解不等式的性質(zhì),為下面利用不等式性質(zhì)解不等式作準備。 (五)、例題講解及運用鞏固(多媒體展示)例題:將下列不等式化成x>a或x<a的形式(1)x-5>-1(2)-2x>3類比等式基本性質(zhì)的應(yīng)用,師生共同板演完成(注意有意強化在(2)題的結(jié)果中不等號的方向為什么會改變?)

  2、嘗試練習一(學生板演)(要求同例題)(1)x-1>2(2)-x<3

 。3)x≤3

  3、鞏固練習二(要求同例題)小組內(nèi)交流并訂正

 。1)x+3<-1

 。2)3x>27(3)- 6x>5(4)5x<4x-6(通過練習,進一步鞏固性質(zhì),突出重點)通過(3)(4)的求解過程,類似于解方程兩邊都除以未知數(shù)的系數(shù)(未知數(shù)系數(shù)化為1),解不等式時要注意未知數(shù)系數(shù)的正負,以決定是否改變不等號的方向。設(shè)計意圖:讓學生經(jīng)歷運用知識解決問題的過程,給學生獲得成功體驗的空間,激發(fā)學生得積極性,建立學好數(shù)學的自信心。

  4、搶答提升,強化性質(zhì)

  已知x>y,下列不等式一定成立嗎?

《不等式的基本性質(zhì)》說課稿5

  《不等式的基本性質(zhì)》它是北師大版八年級下冊第二章第二節(jié)的內(nèi)容。今天我將從教材分析,教學目標,教學重難點,教法學法,教學過程這五個方面談?wù)勎覍@節(jié)課處理的一些不成熟的看法:

  本節(jié)內(nèi)容不等式的基本性質(zhì),它是刻畫現(xiàn)實世界中量與量之間關(guān)系的有效數(shù)學模型,在現(xiàn)實生活中有著廣泛的應(yīng)用,所以對不等式的學習有著重要的實際意義。同時,不等式的基本性質(zhì)也為學生以后順利學習解一元一次不等式和解一元一次不等式組的有關(guān)內(nèi)容的理論基礎(chǔ),起到重要的奠基作用。

  根據(jù)《新課程標準》的要求,教材的內(nèi)容兼顧我班學生的特點,我制定了如下教學目標:

   知識與技能:

  1. 感受生活中存在的不等關(guān)系,了解不等式的意義。

  2. 掌握不等式的基本性質(zhì)。

   過程與方法:經(jīng)歷不等式的基本性質(zhì)的探索過程,初步體會不等式與等式的異同。

   情感態(tài)度與價值觀:經(jīng)歷由具體實例建立不等式模型的過程,進一步符號感與數(shù)學化的能力。

   教學重難點:

  重點:不等式概念及其基本性質(zhì)

  難點:不等式基本性質(zhì)3

   教法與學法:

  1. 教學理念: “ 人人學有用的數(shù)學”

  2. 教學方法:觀察法、引導發(fā)現(xiàn)法、討論法.

  3. 教學手段:多媒體應(yīng)用教學

  4. 學法指導:嘗試,猜想,歸納,總結(jié)

  根據(jù)《數(shù)學課程標準》的要求,教材和學生的特點,我制定了以下四個教學環(huán)節(jié)。下面我將具體的教學過程闡述一下:

  一、復習導入新課

  上課開始,我首先帶領(lǐng)學生學習本節(jié)課的教學目標,讓學生明白本節(jié)課學習的目標。

  1.探索并掌握不等式的基本性質(zhì),并運用它對不等式進行變形.

  2.理解不等式性質(zhì)與等式性質(zhì)的聯(lián)系與區(qū)別.

  3.提高觀察、比較、歸納的'能力,滲透類比的思想方法.

  二、探求新知,講授新課

  第一部分:學前練習

  1. -7 ≤ -5, 3+4>1+4

  5+3≠12-5, x ≥ 8

  a+2>a+1, x+3 <6

  (1)上述式子有哪些表示數(shù)量關(guān)系的符號?這些符號表示什么關(guān)系?

  (2)這些符號兩側(cè)的代數(shù)式可隨意交換位置嗎?

  (3)什么叫不等式?

  目的:設(shè)計該部分是為了讓學生上新課之前先回顧一下上節(jié)課學習的內(nèi)容。

  第二部分:探究新知:

  1.商場A種服裝的價格為60元,B種服裝的價格為80元

  (1)兩種服裝都漲價10元,哪種服裝價格高?漲價15元呢?

 。2)兩種服裝都降價5元,哪種服裝價格高?降價15元呢?

  (3)兩種服裝都打8折出售,哪種服裝價格高?

  2.已知 4 > 3,填空:

  4×(-1)——3 ×(-1)

  4×(-5)——3 ×(-5)

  目的:設(shè)計該部分的目的是為了引出不等式的基本性質(zhì)做鋪墊。

  第三部分:不等式的基本性質(zhì)的探究

  1:填空: 60 < 80

  60+10 80+10

  60-5 80-5

  60+a 80+a

  性質(zhì)1,不等式的兩邊都加上(或減去)同一個整式,不等號的方向不變.

  2:填空(1):60 < 80

  60 ×0.8 80 ×0.8

  填空(2): 4 > 3

  4×5 3×5

  4÷2 3÷2

  性質(zhì)2,不等式的兩邊都乘以(或除以)同一個正數(shù),不等號的方向不變。

  3:填空: 4 > 3

  4×(-1) 3×(-1)

  4×(-5) 3×(-5)

  4÷(-2) 3÷(-2)

  性質(zhì)3,不等式的兩邊都乘以(或除以)同一個負數(shù),不等號的方向改變。

  三、小結(jié)不等式的三條基本性質(zhì)

  1. 不等式兩邊都加上(或減去)同一個數(shù)或同一個整式,不等號的方向不變;

  2. 不等式兩邊都乘(或除以)同一個正數(shù),不等號的方向不變;

  3.*不等式兩邊都乘(或除以)同一個負數(shù),不等號的方向改變 ;

  與等式的基本性質(zhì)有什么聯(lián)系與區(qū)別?

  四、典型例題

  例1.根據(jù)不等式的基本性質(zhì),把下列不等式化成x<a或x>a的形式:

  (1) x-2< 3 (2) 6x< 5x-1

  (3) 1/2 x>5 (4) -4x>3

  解:(1)根據(jù)不等式基本性質(zhì)1,兩邊都加上2,

  得: x-2+2<3+2

  x<5

  (2)根據(jù)不等式基本性質(zhì)1,兩邊都減去5x,

  得: 6x-5x<5x-1-5x

  x<-1

  例2.設(shè)a>b,用“<”或“>”填空:

  (1)a-3 b-3 (2) -4a -4b

  解:(1) ∵a>b

  ∴兩邊都減去3,由不等式基本性質(zhì)1

  得 a-3>b-3

  (2) ∵a>b,并且-4<0

  ∴兩邊都乘以-4,由不等式基本性質(zhì)3

  得 -4a<-4b

  五、變式訓練:

  1、已知x<y,用“<”或“>”填空。

  (1)x+2 y+2 (不等式的基本性質(zhì) )

  (2) 3x 3y (不等式的基本性質(zhì) )

 。3)-x -y (不等式的基本性質(zhì) )

  (4)x-m y-m (不等式的基本性質(zhì) )

  2、若a-b<0,則下列各式中一定成立的是( )

  A.a>b B.ab>0

  C. D.-a>-b

  3、若x是任意實數(shù),則下列不等式中,恒成立的是( )

  A.3x>2x B.3x2>2x2

  C.3+x>2 D.3+x2>2

  六 、小結(jié)

  七、作業(yè)的布置

  八、 以上是我對這節(jié)課的教學的看法,希望各位專家指正。謝謝!

《不等式的基本性質(zhì)》說課稿6

  一、教材

  不等式基本性質(zhì)是八年級下冊第一章第二節(jié)內(nèi)容,本節(jié)課是建立在學生已認識了不等關(guān)系基礎(chǔ)上來學習的,也是為進一步學習解不等式及應(yīng)用不等關(guān)系解決實際問題的重要依據(jù),因此本節(jié)課內(nèi)容在不等關(guān)系這一章占有重要位置。由此本節(jié)重點內(nèi)容是不等式三條基本性質(zhì),難點是不等式第三條基本性質(zhì),在不等式兩端同時乘以(或除以)同一個負數(shù)不等號方向改變學生在這一點應(yīng)用上很難掌握。

  另外,本節(jié)課在教材安排上意在通過等式基本性質(zhì)引入新課教學,在新課教學中用不等式實例進行操作,進而推出不等式基本性質(zhì),學生通過觀察、質(zhì)疑、發(fā)問易于接受新知,根據(jù)新課程標準確定學習目標如下:

  (一)知識與技能目標

  掌握不等式基本性質(zhì),能熟練運用不等式性質(zhì)解決簡單的不等式問題問題

  (二)過程與方法目標

  1. 經(jīng)歷探索不等式基本性質(zhì)的過程,體驗數(shù)學學習探究的方法

  2.通過觀察、實驗、猜想、推理等數(shù)學學習活動過程,發(fā)展合理的推理和初步論證能力

  (三)情感態(tài)度與價值觀目標

  1.學生在探索過程中感受成功、建立自信

  2.體驗在研究過程中創(chuàng)造的快樂,并學會與人交流合作形成良好的人格品質(zhì)

  二、重點、難點

  重點:掌握不等式基本性質(zhì)及熟練應(yīng)用性質(zhì)解決實際問題

  難點:第三條性質(zhì)的應(yīng)用

  三、教法

  以引導發(fā)現(xiàn)、活動參與、交流討論為主,學生自己舉出實際不等式例子,教師根據(jù)認識規(guī)律引導學生由等式性質(zhì)向不等式知識的遷移,安排學生用一組數(shù)在不等式兩端參與四則運算,學生通過與其他學生的交流討論,總結(jié)規(guī)律得出不等式基本性質(zhì)

  在這一環(huán)節(jié)教師一方面不斷引導學生積極參與教學過程,為適應(yīng)學生思維發(fā)展水平有序引導學生觀察分析,由認識到實踐再到認識完成認識上的飛躍,圓滿完成教學任務(wù),另一方面,教師根據(jù)練習情況設(shè)疑引導,重在理解不等式性質(zhì)應(yīng)用,展開學生思維。

  四、學情

  一般說來,這個年齡段的學生開始有比較強烈的自我和自我發(fā)展的意識,對于與自己直觀相沖突的現(xiàn)象和“挑戰(zhàn)性“的任務(wù)很感興趣,要在教學過程中給學生探究問題這樣的做數(shù)學機會,學生能夠在這些活動中 表現(xiàn)自我發(fā)展自我從而感到數(shù)學學習的重要性及其中的樂趣。

  學生在學習本節(jié)內(nèi)容時,可能會在應(yīng)用第三條性質(zhì)時遇到困難,盡可能引導學生多練習多總結(jié)最終完成學習過程,達到教學目標。

  五、教學過程

  本節(jié)課我安排了四個教學過程:

  (一)回憶舊知,引出新知

  經(jīng)過以前的學習我們知道在等式的兩端同時加上(或減去)同一個整式依然成立,這是等式的性質(zhì)那么對于上節(jié)課我們所學的不等式又有哪些性質(zhì)呢?這就是今天我們要共同探討的問題——不等式基本性質(zhì)。

  在這一環(huán)節(jié)通過對等式性質(zhì)的回憶進而導出不等式的基本性質(zhì),

  不僅對舊知的'鞏固也激發(fā)了學生對新知的興趣。

  (二)自主參與探索,交流討論總結(jié)性質(zhì)規(guī)律

  教師安排學生自己舉出一個具體不等式,根據(jù)認識規(guī)律有序引導學生在不等式兩端同時加上(或減去)同一個數(shù),學生會發(fā)現(xiàn)不等號兩端經(jīng)運算比較大小后不等號方向沒有發(fā)生改變,由此推出不等式第一條性質(zhì)。

  在引出第二條性質(zhì)時,教師有意引導學生用正數(shù)參與兩端的乘法(或除法)的運算,同學會發(fā)現(xiàn)不等號方向仍然沒改變,這時可能會有學生發(fā)問:用負數(shù)呢?這就引起了學生的好奇心和探究熱情,經(jīng)學生自己動手實驗與其他同學討論得出用負數(shù)不等號方向發(fā)生了改變,至此就得到不等式的第二三條性質(zhì)。

  在這一環(huán)節(jié)教師運用了“自主參與”和“交流討論”的教學方式,通過引導和質(zhì)疑,突出重點,化解難點,從而完成教學任務(wù),收到良好教學效果。

  (三)應(yīng)用新知,解決問題

  我將上節(jié)課沒圓滿完成的問題再次提出:通過一棵樹的樹圍可計算其生長年齡,某樹栽種時樹圍是5cm ,以后每年樹圍增長3cm ,問這棵樹至少生長多少年才能超過2.4m ?

  上節(jié)課我們已經(jīng)列出不等關(guān)系

  設(shè) 至少生長x 年才能超過2.4m 則有不等關(guān)系

  0.03x 0.05 > 2.4

  現(xiàn)我們根據(jù)這節(jié)課所學將這個問題徹底解決。(將不等式性質(zhì)應(yīng)用全過程在板書出來)

  再在黑板上列出兩個例題 5x 3 < 2 - 2x – 1 > 3

  要求學生仿照剛才不等式應(yīng)用過程將其表示“x < a (x > a) ”形式,并找兩名同學板書。在這一環(huán)節(jié)根據(jù)初中學生開始對“有用”數(shù)學感興趣選取第一道例題,學生會感到數(shù)學就在身邊

  在練習過程中教師根據(jù)普遍存在的問題加以強調(diào)并幫助學生改正,針對個別(較慢)學生再具體教學

  (四)引導學生總結(jié)全課

  在這節(jié)課我們知道了不等式三條基本性質(zhì),并能熟練應(yīng)用解決簡單的不等式問題

《不等式的基本性質(zhì)》說課稿7

  本節(jié)課我采用從生活中創(chuàng)設(shè)問題情景的方法激發(fā)學生學習興趣,采用類比等式性質(zhì)創(chuàng)設(shè)問題情景的方法,引導學生的自主探究活動,教給學生類比,猜想,驗證的問題研究方法,培養(yǎng)學生善于動手、善于觀察、善于思考的學習習慣。利用學生的好奇心設(shè)疑、解疑,組織活潑互動、有效的教學活動,鼓勵學生積極參與,大膽猜想,使學生在自主探索和合作交流中理解和掌握本節(jié)課的內(nèi)容。力求在整個探究學習的過程充滿師生之間,生生之間的交流和互動,體現(xiàn)教師是教學活動的組織者、引導者、合作者,學生才是學習的主體。

  課堂開始通過回顧舊知識,抓住新知識的切入點,使學生進入一種“心求通而未得,口欲言而未能”的境界,使他們有興趣的進入數(shù)學課堂,為學習新知識做好準備。在這一環(huán)節(jié)上,留給學生思考的時間有點少。

  接下來出示的問題1從學生的生活經(jīng)驗出發(fā),讓學生感受生活中數(shù)學的存在,不僅激發(fā)學生學習興趣,而且可以讓學生直觀地體會到在不等關(guān)系中存在的一些性質(zhì)。這一環(huán)節(jié)上展現(xiàn)給學生一個實物,使學生獲得直觀感受。

  問題2、3的設(shè)計是為了類比等式的基本性質(zhì),研究不等式的'性質(zhì),讓學生體會數(shù)學思想方法中類比思想的應(yīng)用,并訓練學生從類比到猜想到驗證的研究問題的方法,讓學生在合作交流中完成任務(wù),體會合作學習的樂趣。在這個環(huán)節(jié)上,我講得有點多,在體現(xiàn)學生主體上把握得不是很好,在引導學生探究的過程中時間控制的不緊湊,有點浪費時間。還有就是給他們時間先記一下不等式的基本性質(zhì),便于后面的練習。

  通過問題四讓學生比較不等式基本性質(zhì)與等式基本性質(zhì)的異同,這樣不僅有利于學生認識不等式,而且可以使學生體會知識之間的內(nèi)在聯(lián)系,整體上把握知識、發(fā)展學生的辨證思維。

  在運用符號語言的過程中,學生會出現(xiàn)各種各樣的問題與錯誤,因此在課堂上,我特別重視對學生的表現(xiàn)及時做出評價,給予鼓勵。這樣既調(diào)動了學生的學習興趣,也培養(yǎng)了學生的符號語言表達能力。

  在練習的設(shè)計上兩道練習以別開生面的形式出現(xiàn),給學生一個充分展示自我的舞臺,在情感兩道練習以別開生面的形式出現(xiàn),給學生一個充分展示自我的舞臺,在情感態(tài)度和一般能力方面都得到充分發(fā)展,并從中了解數(shù)學的價值,增進了對數(shù)學的理解。在這一環(huán)節(jié),讓學生起來回答問題的時候有點耽誤時間。

  讓學生通過總結(jié)反思,一是進一步引導學生反思自己的學習方式,有利于培養(yǎng)歸納,總結(jié)的習慣,讓學生自主構(gòu)建知識體系;二也是為了激起學生感受成功的喜悅,力爭用成功蘊育成功,用自信蘊育自信,激勵學生以更大的熱情投入到以后的學習中去。

  本節(jié)課,我覺得基本上達到了教學目標,在重點的把握,難點的突破上也基本上把握得不錯。在教學過程中,學生參與的積極性較高,課堂氣氛比較活躍。其中還存在不少問題,我會在以后的教學中,努力提高教學技巧,逐步的完善自己的課堂。

《不等式的基本性質(zhì)》說課稿8

  《不等式的基本性質(zhì)》它是北師大版八年級下冊第一章第二節(jié)的內(nèi)容。今天我將從教材分析,教學目標,教學重難點,教法學法,教學過程這五個方面談?wù)勎覍@節(jié)課處理的一些不成熟的看法:

  本節(jié)內(nèi)容不等式,它是刻畫現(xiàn)實世界中量與量之間關(guān)系的有效數(shù)學模型,在現(xiàn)實生活中有著廣泛的應(yīng)用,所以對不等式的學習有著重要的實際意義。同時,不等式的基本性質(zhì)也為學生以后順利學習解一元一次不等式和解一元一次不等式組的有關(guān)內(nèi)容的理論基礎(chǔ),起到重要的奠基作用。

  根據(jù)《新課程標準》的要求,教材的內(nèi)容兼顧我校八年級學生的特點,我制定了如下教學目標:

  知識與技能:

  1. 感受生活中存在的不等關(guān)系,了解不等式的意義。

  2. 掌握不等式的基本性質(zhì)。

  過程與方法:經(jīng)歷不等式的基本性質(zhì)的探索過程,初步體會不等式與等式的異同。

  情感態(tài)度與價值觀:經(jīng)歷由具體實例建立不等式模型的過程,進一步符號感與數(shù)學化的能力。

  教學重難點:

  重點:不等式概念及其基本性質(zhì)

  難點:不等式基本性質(zhì)3

  教法與學法:

  1. 教學理念: “ 人人學有用的數(shù)學”

  2. 教學方法:觀察法、引導發(fā)現(xiàn)法、討論法.

  3. 教學手段:多媒體應(yīng)用教學

  4. 學法指導:嘗試,猜想,歸納,總結(jié)

  根據(jù)《數(shù)學課程標準》的要求,教材和學生的特點,我制定了以下四個教學環(huán)節(jié)。

  下面我將具體的教學過程闡述一下:

  一、創(chuàng)設(shè)情境,導入新課

  上課伊始,我將用一個公園買門票如何才劃算的例子導入課題。

  世紀公園的票價是:每人5元;一次購票滿30張,每張可少收1元。某班有27名團員去世紀公園進行活動。當領(lǐng)隊王小華準備好了零錢到售票處買27張票時,愛動腦筋的李敏同學喊住了王小華,提議買30張票。但有的同學不明白,明明我們只有27個人,買30張票,豈不是“浪費”嗎?

  (此處學生是很容易得出買30張門票需要4X30=120(元), 買27張門票需要5X27=135(元),由于120〈135,所以買30張門票比買27張還要劃算。由此建立了一個數(shù)與數(shù)之間的不等關(guān)系式)

  緊接著進一步提問:若人數(shù)是x時,又當如何買票劃算?

  二、探求新知,講授新課

  引例列出了數(shù)與數(shù)之間的不等關(guān)系和含有未知量120<5x的不等關(guān)系。那么在不等式概念提出之前,先讓學生回顧等式的概念,“類比”等式的概念,嘗試著去總結(jié)歸納出不等式的概念。使學生從一個低起點,通過獲得成功的體驗和克服困難的經(jīng)歷,增進應(yīng)用數(shù)學的自信心,為下面的學習調(diào)動了積極。

  接下來我用一組例題來鞏固一下對不等式概念的認知,把表示不等量關(guān)系的常用關(guān)鍵詞提出。

 。1)a是負數(shù);

 。2)a是非負數(shù);

  (3) a與b的和小于5;

  (4) x與2的差大于-1;

  (5) x的4倍不大于7;

  (6) 的一半不小于3

  關(guān)鍵詞:非負數(shù),非正數(shù),不大于,不小于,不超過,至少

  回到引入課題時的門票問題120<5x,我們希望知道X的取植范圍,則須學習不等式的性質(zhì),通過性質(zhì)的學習解決X的取植

  難點突破:通過上面三組算式,學生已經(jīng)嘗試著歸納出不等式的`三條基本性質(zhì)了。不等式性質(zhì)3是本節(jié)的難點。在不等式性質(zhì)3用數(shù)探討出以后,換一個角度讓學生想一想,是否能在數(shù)軸上任取兩個點,用相反數(shù)的相關(guān)知識挖掘一下,乘以或除以一個負數(shù)時,任意兩個數(shù)比較是否性質(zhì)3都成立。通過“數(shù)形結(jié)合”的思想,使數(shù)的取值從特殊化到一般化,從對具體數(shù)的感知完成到字母代替數(shù)的升華。讓學生用實例對一些數(shù)學猜想作出檢驗,從而增加猜想的可信程度。同時,讓學生嘗試從不同角度尋求解決問題的方法并能有效地解決問題。

  反饋練習:用一個小練習鞏固三條性質(zhì)。

  如果a>b,那么

  (1) a-3 b-3 (2) 2a 2b (3) -3a -3b

  提出疑問,我們討論性質(zhì)2,3是好象遺忘了一個數(shù)0。

  引出讓學生歸納,等式與不等式的區(qū)別與聯(lián)系

  三、拓展訓練

  根據(jù)不等式基本性質(zhì),將下列不等式化為“<”或“>”的形式

 。1)x-1<3 (2)6x<5x-2 (3)x/3<5 -4x="">3

  再次回到開頭的門票問題,讓學生解出相應(yīng)的x的取值范圍

  四、小結(jié)

  1.新知識

  一個數(shù)學概念;兩種數(shù)學思想;三條基本性質(zhì)

  2.與舊知識的聯(lián)系

  等式性質(zhì)與不等式性質(zhì)的異同

  五、作業(yè)的布置

  以上是我對這節(jié)課的教學的看法,希望各位專家指正。謝謝!

  “讓學生主動參與數(shù)學教學的全過程,真正成為學習的主人”

【《不等式的基本性質(zhì)》說課稿】相關(guān)文章:

《不等式的基本性質(zhì)》說課稿范文02-24

《不等式的性質(zhì)》說課稿11-20

《比的基本性質(zhì)》的說課稿05-24

比的基本性質(zhì)說課稿11-11

《比的基本性質(zhì)》說課稿11-07

《比的基本性質(zhì)》說課稿06-24

基本不等式說課稿01-05

基本不等式說課稿06-20

不等式的性質(zhì)與解集說課稿06-24

比例的基本性質(zhì)說課稿01-14