當(dāng)前位置:育文網(wǎng)>教學(xué)文檔>教案> 平行四邊形教案

平行四邊形教案

時間:2023-05-15 18:02:36 教案 我要投稿

平行四邊形教案模板合集6篇

  作為一位不辭辛勞的人民教師,通常需要用到教案來輔助教學(xué),教案有助于學(xué)生理解并掌握系統(tǒng)的知識。我們應(yīng)該怎么寫教案呢?以下是小編為大家整理的平行四邊形教案6篇,僅供參考,希望能夠幫助到大家。

平行四邊形教案模板合集6篇

平行四邊形教案 篇1

  【學(xué)習(xí)目標(biāo)】

  1.能運用勾股定理解決生活中與直角三角形有關(guān)的問題;

  2.能從實際問題中建立數(shù)學(xué)模型,將實際問題轉(zhuǎn)化為數(shù)學(xué)問題,同時滲透方程、轉(zhuǎn)化等數(shù)學(xué)思想。

  3.進一步發(fā)展有條理思考和有條理表達的能力,體會數(shù)學(xué)的應(yīng)用價值

  【學(xué)習(xí)重、難點】

  重點:勾股定理的應(yīng)用

  難點:將實際問題轉(zhuǎn)化為數(shù)學(xué)問題

  【新知預(yù)習(xí)】

  1.如圖,單杠AC的高度為5m,若鋼索的底端B與單杠底端C的距離為12m,求鋼索AB的長.

  【導(dǎo)學(xué)過程】

  一、情境創(chuàng)設(shè)

  欣賞生活中含有直角三角形的圖片,如果知道斜拉橋上的索塔AB的高,如何計算各條拉索的長?

  二、探索活動

  活動一 如圖,起重機吊運物體,已知BC=6m,AC=10m,求AB的長.

  活動二 在我國古代數(shù)學(xué)著作《九章算術(shù)》中記載了一道有趣的問題,這個問題的意思是:有一個水池,水面是一個邊長為10尺的正方形.在水池正中央有一根新生的蘆葦,它高出水面1尺.如果把這根蘆葦垂直拉向岸邊,它的頂端恰好到達岸邊的水面.請問這個水池的深度和這根蘆葦?shù)拈L度各為多少?

  活動三 一輛裝滿貨物的卡車,其外形高2.5米,寬1.6米,要開進廠門形狀如圖所示的某工廠,問這輛卡車能否通過該工廠的廠門?

  三、例題講解:

  1.《中華人民共和國道路交通安全法》規(guī)定:小汽車在城市道路上行駛速度不得超過70km/h,如圖一輛小汽車在一條城市中的直道上行駛,某一時刻剛好行駛到路對面車速檢測儀的正前方30m處,過了2s后,測得小汽車與車速檢測儀間的距離為50m,這輛小汽車超速了嗎?

  2.一種盛飲料的圓柱形杯(如圖),測得內(nèi)部地面半徑為2.5cm,高為12cm,吸管斜置于杯中,并在杯口外面至少露出4.6cm,問吸管需要多長?

  【反饋練習(xí)】

  1.(1)在Rt△ABC中,∠C=90°,若BC=4,AC=2,則AB=______;若AB=4,BC=2,則AC=_____;

  (2)一個直角三角形的模具,量得其中兩邊的長分別為5cm,3cm,則第三邊的長是______;

  (3)甲乙兩人同時從同一地出發(fā),甲往東走4km,乙往南走6km,這時甲乙兩人相距____km.

  2.如圖,圓柱高為8cm,地面半徑為2cm ,一只螞蟻從點A爬到點B處吃食,要爬行的最短路程( 取3)是 ( )

  A.20cm B.10cm C.14cm D.無法確定

  3.如圖,筆直的公路上A、B兩點相距25km,C、D為兩村莊,DA⊥AB于點A,CB⊥AB于點B,已知DA=15km,CB=10km,現(xiàn)在要在公路的AB段上建一個土特產(chǎn)品收購站E,使得C、D兩村到收購站E的距離相等,則收購站E應(yīng)建在離A點多遠處?

  【課后作業(yè)】P67 習(xí)題2.7 1、4題

  八年級數(shù)學(xué)競賽輔導(dǎo)教案:由中點想到什么

  第十八講 由中點想到什么

  線段的中點是幾何圖形中一個特殊的點,它關(guān)聯(lián)著三角形中線、直角三角形斜邊中線、中心對稱圖形、三角形中位線、梯形中位線等豐富的知識,恰當(dāng)?shù)乩弥悬c,處理中點是解與中點有關(guān)問題的關(guān)鍵,由中點想到什么?常見的聯(lián)想路徑是:

  1.中線倍長;

  2.作直角三角形斜邊中線;

  3.構(gòu)造中位線;

  4.構(gòu)造中心對稱全等三角形等.

  熟悉以下基本圖形,基本結(jié)論:

  例題求解

  【例1】 如圖,在△ABC中,∠B=2∠C,AD⊥BC于D,M為BC的中點, AB=10cm,則MD的長為 .

  (“希望杯”邀請賽試題)

  思路點撥 取AB中點N,為直角三角形斜邊中線定理、三角形中位線定理的運用創(chuàng)造條件.

  注 證明線段倍分關(guān)系是幾何問題中一種常見題型,利用中點是一個有效途徑,基本方法有:

  (1)利用直角三角斜邊中線定理;

  (2)運用中位線定理;

  (3)倍長(或折半)法.

  【例2】 如圖,在四邊形ABCD中,一組對邊AB=CD,另一組對邊AD≠BC,分別取AD、BC的中點M、N,連結(jié)MN.則AB與MN的關(guān)系是( )

  A.AB=MN B.AB>MN C.AB

  (20xx年河北省初中數(shù)學(xué)創(chuàng)新與知識應(yīng)用競賽試題)

  思路點撥 中點M、N不能直接運用,需增設(shè)中點,常見的方法是作對角線的中點.

  【例3】如圖,在△ABC中,AB=AC,延長AB到D,使BD=AB,E為AB中點,連結(jié)CE、CD,求證:C D=2EC.

  (浙江省寧波市中考題)

  思路點撥 聯(lián)想到與中位線相關(guān)的豐富知識,將線段倍分關(guān)系的證明轉(zhuǎn)化為線段相等關(guān)系的證明,解題的關(guān)鍵是恰當(dāng)添輔助線.

  【例4】 已知:如圖l,BD、CE分別是△ABC的外角平分線,過點A作AF⊥BD,AG ⊥ CE,垂足分別為F、G,連結(jié)FG,延長AF、AG,與直線BC相交,易證FG= (AB+BC+AC).

  若(1)BD、CF分別是△ABC的內(nèi)角平分線(如圖2);

  (2)BD為△ABC的內(nèi)角平分線,CE為△ABC的外角平分線(如圖3),則在圖2、圖3兩種情況下,線段FG與△ABC三邊又有怎樣的數(shù)量關(guān)系?請寫出你的猜想,并對其中的一種情況給予證明.

  (20xx年黑龍江省中考題)

  思路點撥 圖1中FG與△ABC三邊的數(shù)量關(guān)系的求法(關(guān)鍵是作輔助線),對尋求后兩個圖形中線段FG與△ABC三邊的數(shù)量關(guān)系起著重要作用,而由平分線、垂線發(fā)現(xiàn)中點,這是解題的基礎(chǔ).

  注 三角形與梯形的中位線.在位置上涉及到平行,在數(shù)量上是上下底和的一半,它起著傳遞角的位置關(guān)系和線段長度的功能,在證明線段倍分關(guān)系、兩直線位置關(guān)系、線段長度的計算等方面有著廣泛的應(yīng)用.

  【例5】 如圖,任意五邊形ABCDE,M、N、P、Q分別為AB、CD、BC、DE的中點,K、L分別為MN、PQ的中點,求證:KL∥AE且KL= AE.

  (20xx年天津賽區(qū)試題)

  思路點撥 通過連線,將多邊形分割成三角形、四邊形,為多個中點的 利用創(chuàng)造條件,這是解本例的突破口.

  注 需要什么,構(gòu)造什么,構(gòu)造基本圖形、構(gòu)造線段的和差(倍分)關(guān)系、構(gòu)造角的關(guān)系等,這是作輔助線的有效思考方法之一.

  學(xué)歷訓(xùn)練

  1.BD、CE是△ABC的中線,G、H分別是BE、CD的中點,BC=8,則GH= .

  (20xx年廣西中考題)

  2.如圖,△ABC中、BC=a,若D1、E1;分別是AB、AC的中點,則 ;若 D2、E2分別是D1B、E1C的中點,則 :若 D3、E3分別是D2B、E2C的中點.則 ……若Dn、En分別是Dn-1B、En-1C的中點,則DnEn= (n≥1且 n為整數(shù)).

  (200l年山東省濟南市中考題)

  3.如圖,△ABC邊長分別為AD=14,BC=l6,AC=26,P為∠A的平分線AD上一點,且BP⊥AD,M為BC的中點,則PM的值是 .

  4.如圖, 梯形ABCD中,AD∥BC,對角線AC⊥BD,AC=5cm,BD=12cm,則該梯形的中位線的長等于 cm.

  (20xx年天津市中考題)

  5.如圖,在梯形ABCD中,AD∥EF∥GH∥BC,AE=EG=GB=AD=18,BC=32,則EF+GH=( )

  A.40 B.48 C 50 D.56

  6.如圖,在梯形ABCD中,AD∥BC,E、F分別是對角線BD、AC的中點,若AD=6cm,BC=18?,則EF的長為( )

  A.8cm D.7cm C. 6cm D.5cm

  7.如圖,矩形紙片ABCD沿DF折疊后,點C落在AB上的'E點,DE、DF三等分∠ADC,AB的長為6,則梯形ABCD的中位線長為( )

  A.不能確定 B.2 C. D. +1

  (20xx年浙江省寧波市中考題)

  8.已知四邊形ABCD和對角線AC、BD,順次連結(jié)各邊中點得四邊形MNPQ,給出以下6個命題:

 、偃羲盟倪呅蜯NPQ為矩形,則原四邊形ABCD為菱形;

  ②若所得四邊形MNPQ為菱形,則原四邊形ABCD為矩形;

  ③若所得四邊形MNPQ為矩形,則AC⊥BD;

 、苋羲盟倪呅蜯NPQ為菱形,則AC=BD;

 、萑羲盟倪呅蜯NPQ為矩形,則∠BAD=90°;

 、奕羲盟倪呅蜯NPQ為菱形,則AB=AD.

  以上命題中,正確的是( )

  A.①② B.③④ C.③④⑤⑥ D.①②③④

  (20xx年江蘇省蘇州市中考題)

  9.如圖,已知△ABC中,AD是 高,CE是中線,DC=BE,DG⊥CE,G為垂足.求證:(1)G 是CE的 中點;(2)∠B=2∠BCE.

  (20xx年上海市中考題)

  10.如圖,已知在正方形ABCD中,E為DC上一點,連結(jié)BE,作CF⊥BE于P,交AD于F點,若恰好使得AP=AB,求證:E是DC的中點.

  11.如圖,在梯形ABCD中,AB∥CD,以AC、AD為邊作平行四邊形ACED,DC的延長線交BE于F.

  (1)求證:EF=FB;

  (2)S△BCE能否為S梯形ABCD的 ?若不能,說明理由;若能,求出AB與CD的關(guān)系.

  12.如圖,已知AG⊥BD,AF⊥CE,BD、CF分別是∠ABC和∠ACB的角平分線,若BF=2,ED=3,GC=4,則△ABC的周長為 .

  (20xx年四川省競賽題)

  13.四邊形ADCD的對角線AC、BD相交于點F,M、N分別為AB、CD中點,MN分別交BD、AC于P、Q,且∠FPQ=∠FQP,若BD=10,則AC= .

  (重慶市競賽題)

  1 4.四邊形ABCD中,AD>BC,C、F分別是AB、CD的中點,AD、BC的延長線分別與EF的延長線交于H、G,則∠AHE ∠BGE(填“>”或“=”或“<”號)

  15.如圖,在△ABC中,DC=4,BC邊上的中線AD=2,AB+AC=3+ ,則S△ABC等于( )

  A. B. C. D.

  16.如圖,正方形ABCD中,AB=8,Q是CD的中點,設(shè)∠DAQ=α,在CD上取一點P,使∠BAP=2α,則CP的長是( )

  A.1 D.2 C.3 D.

  17.如圖,已知A為DE的中點,設(shè)△DBC、△ABC、△EBC的面積分別為S1,S2,S3,則S1、S2、S3之間的關(guān)系式是( )

  A. B. C. D.

  18.如圖,已知在△ABC中,D為AB的中點,分別延長CA、CB到E、F,使DE=DF,過E、F分別作CA、 CB的垂線,相交于點P.求證:∠PAE=∠PBF.

  (20xx年全國初中數(shù)學(xué)聯(lián)賽試題)

  19.如圖,梯形ABCD中,AD∥BC,AC⊥BD于O,試判斷AB+CD與AD+BC的大小,并證明你的結(jié)論.

  (山東省競賽題)

  20.已知:△ABD和△ACE都是直角三角形,且∠ABD=∠ACE=90°.如圖甲,連結(jié)DE,設(shè)M為D正的中點.

  (1)求證:MB=MC;

  (2)設(shè)∠BAD=∠CAE,固定△ABD, 讓Rt△ACE繞頂點A在平面內(nèi)旋轉(zhuǎn)到圖乙的位置,試問:MB;MC是否還能成立?并證明其結(jié)論.

  (江蘇省競賽題)

  21.如圖甲,平行四邊形ABCD外有一條直線MN,過A、B、C、D4個頂點分別作MN的垂線AA1、BB1、CCl、DDl,垂足分別為Al、B1、Cl、D1.

  (1)求證AA1+ CCl = BB1 +DDl;

  (2)如圖乙,直線MN向上移動,使點A與點B、C、D位于直線MN兩側(cè),這時過A、B、C、D向直線MN引垂線,垂足分別為Al、B1、Cl、D1,那么AA1、BB1、CCl、DDl 之間存在什么關(guān)系?

平行四邊形教案 篇2

  教學(xué)目標(biāo):

  1.知識與技能目標(biāo)

  (1)理解平行四邊形的定義及有關(guān)概念

  (2)能根據(jù)定義探索并掌握平行四邊形的對邊相等、對角相等的性質(zhì)

  (3)了解平行四邊形在實際生活中的應(yīng)用,能根據(jù)平行四邊形的性質(zhì)進行簡單的計算和證明

  2.過程與方法目標(biāo)

  (1)經(jīng)歷用平行四邊形描述、觀察世界的過程,發(fā)展學(xué)生的形象思維和抽象思維

  (2)在進行性質(zhì)探索的活動過程中,發(fā)展學(xué)生的探究能力.

  (3)在對性質(zhì)應(yīng)用的過程中,提高學(xué)生運用數(shù)學(xué)知識解決實際問題的能力,培養(yǎng)學(xué)生的推理能力和演繹能力

  3.情感、態(tài)度與價值觀目標(biāo)

  在探究討論中養(yǎng)成與他人合作交流的習(xí)慣;在性質(zhì)應(yīng)用過程中培養(yǎng)獨立思考的`習(xí)慣;在數(shù)學(xué)活動中獲得成功的體驗,提高克服困難的勇氣和信心。

  教學(xué)重點:

  (1)平行四邊形的性質(zhì)

  (2)平行四邊形的概念、性質(zhì)的應(yīng)用

  教學(xué)難點:平行四邊形的性質(zhì)的探究

  教學(xué)過程:

  一、設(shè)置疑問,導(dǎo)入新課

  教師活動:介紹四邊形與我們生活的密切聯(lián)系,指出長方形、正方形、梯形都是特殊的四邊形。提出問題(1)四邊形與平行四邊形(教材91頁章前圖)(2)四邊形與平行四邊形有怎樣的從屬關(guān)系?

  學(xué)生活動:(1)利用章前圖尋找四邊形

  (2)說說四邊形與平行四邊形的關(guān)系

  【設(shè)計意圖】指明學(xué)習(xí)任務(wù),理清四邊形與特殊的四邊形之間的關(guān)系,引出課題

  二、問題探究

  (1)教師活動:教師用多媒體展示圖片,庭院的竹籬笆,電動伸縮門,活動衣架等

  學(xué)生活動:欣賞圖片并舉例結(jié)合小學(xué)已有的知識以及對圖片的觀察和思考,歸納:兩組對邊分別平行的四邊形是平行四邊形,再動手根據(jù)定義畫出平行四邊形

  【設(shè)計意圖】由現(xiàn)實生活入手,使學(xué)生獲得平行四邊形的感性認(rèn)識,同時能調(diào)動學(xué)生的主觀能動性,激發(fā)好奇心和求知欲,發(fā)展學(xué)生的抽象思維能力

  (2)教師活動:提出問題根據(jù)定義畫一個平行四邊形,觀察這個四邊形,除了“兩組對邊分別平行以”外它的邊角之間還有其他的關(guān)系嗎?度量一下,是否和你的猜想一致?然后深入到小組中參與活動與指導(dǎo)

  學(xué)生活動動手畫圖,猜想,度量,驗證,得出

 、倨叫兴倪呅蔚膶呄嗟

 、谄叫兴倪呅蔚膶窍嗟,鄰角互補

  (3)教師活動:你能證明你發(fā)現(xiàn)的結(jié)論嗎?

  學(xué)生活動:小組內(nèi)交流,并與前面所學(xué)知識聯(lián)系,證明線段和角相等的辦法是三角形全等,而四邊形問題轉(zhuǎn)化成三角形問題是作對角線

  學(xué)生活動:獨立完成證明,一名同學(xué)板演

  【設(shè)計意圖】經(jīng)歷猜想—實踐---驗證的過程,從中體會親自動手實踐學(xué)到知識的樂趣,獲得成功得體驗在尋找證明線段和角相等的辦法---三角形全等,一方面體會知識的前后連貫性,另一方面意在培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣完成證明,培養(yǎng)學(xué)生的推理能力以及嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度

  三、講解例題,鞏固練習(xí)

  教師活動:例1.小明用一根36米長的繩子圍成一個平行四邊形場地,其中一邊長16米,其它三邊長多少?引導(dǎo)學(xué)生審題

  學(xué)生活動:弄清題意,自己嘗試

  教師活動:示范解題過程

  強調(diào)平行四邊形性質(zhì)的幾何表達

  在中

 、貯B∥CD AD∥BC

  ②AB=CD AD=BC

 、邸螦=∠C ∠B=∠D

  學(xué)生活動:生練習(xí)課后習(xí)題

  【設(shè)計意圖】引導(dǎo)學(xué)生學(xué)會審題,這是解題的關(guān)鍵,同時體會生活中處處有數(shù)學(xué)訓(xùn)練學(xué)生能清晰有條理的表達自己的思考過程,做到“言之有理,落筆有據(jù)”

  四、小結(jié)

  教師提出問題:

  1.通過學(xué)習(xí),本節(jié)課你學(xué)到了那些知識?

  2.在對平行四邊形性質(zhì)的探究過程中,你有那些認(rèn)識?

  3.在應(yīng)用平行四邊形性質(zhì)解題時,應(yīng)注意哪些問題?

  學(xué)生活動:交流獲得的知識和得到的感受

  【設(shè)計意圖】通過整理,一方面讓學(xué)生理清本節(jié)課的知識結(jié)構(gòu),另一方面感受探究過程的樂趣,體驗克服困難的勇氣樹立自信心。

  布置作業(yè):教材99頁第1題,第2題,第6題

  板書設(shè)計:

  1.平行四邊形的定義:兩組對邊分別平行的四邊形

  2.平行四邊形的表示: 3.平行四邊形的性質(zhì): ①平行四邊形的對邊相等

  ②平行四邊形的對角相等,鄰角互補

平行四邊形教案 篇3

  教材分析

  本節(jié)課既是七年級平行線的性質(zhì)、全等三角形等知識的延續(xù)和深化,也是后續(xù)學(xué)習(xí)矩形、菱形、正方形等知識的堅實基礎(chǔ)。本節(jié)課是在學(xué)生掌握了平移等知識的基礎(chǔ)上探究平行四邊形的性質(zhì),能使學(xué)生經(jīng)歷觀察、實驗、猜想、驗證、推理、交流等數(shù)學(xué)活動,對于培養(yǎng)學(xué)生的推理能力、發(fā)散思維能力以及探索、體驗數(shù)學(xué)思維規(guī)律等方面起著重要的作用。

  學(xué)情分析

  八年級學(xué)生有一定的自學(xué)、探索能力,求知欲強。并且,學(xué)生 在小學(xué)里已經(jīng)初步學(xué)習(xí)過平行四邊形,對平行四邊形有直觀的感知和認(rèn)識。在掌握平行線和相交線有關(guān)幾何事實的過程中,學(xué)生已經(jīng)初步經(jīng)歷過觀察、操作等活動過程,獲得了一定的探索圖形性質(zhì)的活動經(jīng)驗;同時,在學(xué)習(xí)數(shù)學(xué)的過程中也經(jīng)歷了很多合作過程,具有了一定的學(xué)習(xí)經(jīng)驗,具備了一定的合作和交流能力。借助于遠教資源的'優(yōu)勢,能使腦、手充分動起來,學(xué)生間相互探討,積極性也被充分調(diào)動起來。在此基礎(chǔ)上學(xué)習(xí)平行四邊形的性質(zhì),可以比較自然地得出平行四邊形的性質(zhì)。

  教學(xué)目標(biāo)

 、濉⒅R與技能:

  1、理解并掌握平行四邊形的定義;

  2、掌握平行四邊形的性質(zhì)定理;

  3、理解兩條平行線的距離的概念;

  4、培養(yǎng)學(xué)生綜合運用知識的能力;

  ㈡、過程與方法:經(jīng)歷探索平行四邊形的有關(guān)概念和性質(zhì)的過程, 發(fā)展學(xué)生的探究意識和合情推理的能力。

  ㈢、情感態(tài)度與價值觀:培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)乃季S和勇于探索的思想意識,體會幾何知識的內(nèi)涵與實際應(yīng)用價值。

  教學(xué)重點和難點

  重點:平行四邊形的定義,平行四邊形對角、對邊相等的性質(zhì)以及性質(zhì)的應(yīng)用。

  難點:運用平行四邊形的性質(zhì)進行有關(guān)的論證和計算。

平行四邊形教案 篇4

  教學(xué)目標(biāo)

  (一)教學(xué)知識點

  1、能進一步理解掌握矩形、菱形、正方形的性質(zhì)定理、判定定理。

  2、進一步體會證明的必要性以及計算與證明在解決問題中的作用。

 。ǘ┠芰τ(xùn)練要求

  1、經(jīng)歷探索、猜想、證明的過程,進一步發(fā)展推理論證能力。

  2、進一步體會證明的必要性以及計算與證明在解決問題中的作用。

  3、體會證明過程中所運用的歸納概括以及轉(zhuǎn)化等數(shù)學(xué)思想方法。

 。ㄈ┣楦信c價值觀要求

  1、通過知識的遷移、類比、轉(zhuǎn)化,激發(fā)學(xué)生探索新知識的.積極性和主動性。

  2、體會數(shù)學(xué)與生活的聯(lián)系。

  教學(xué)重點:特殊四邊形——矩形、菱形、正方形的性質(zhì)定理和判定定理的靈活應(yīng)用。

  教學(xué)難點:特殊四邊形——矩形、菱形、正方形的性質(zhì)定理和判定定理的靈活應(yīng)用。

  教學(xué)方法:啟問——交流式教學(xué)法。

  教學(xué)過程

  1、巧設(shè)現(xiàn)實情境,引入新課

  [師]通過前幾節(jié)內(nèi)容的學(xué)習(xí),我們進一步理解了平行四邊形及特殊平行四邊形的性質(zhì)定理和判定定理。

  這節(jié)課我們來應(yīng)用它們證明和計算一些題。

  2、講授新課

  [師]下面大家來猜一猜,想一想

  依次連接任意四邊形各邊的中點可以得到一個平行四邊形。那么,依次連接正方形各邊的中點。(如圖)能得到—個怎樣的圖形呢?先猜一猜,再證明。

平行四邊形教案 篇5

  教學(xué)目標(biāo)設(shè)計:

  1、激發(fā)主動探索數(shù)學(xué)問題的興趣,經(jīng)歷平行四邊形面積計算公式的推導(dǎo)過程,會運用公式求平行四邊形的面積。

  2、體會“等積變形”和“轉(zhuǎn)化”的數(shù)學(xué)思想和方法,發(fā)展空間觀念。

  3、培養(yǎng)初步的推理能力和合作意識,以及解決實際問題的能力。

  教學(xué)重點:探究平行四邊形的面積公式

  教學(xué)難點:理解平行四邊形的面積計算公式的推導(dǎo)過程

  教學(xué)過程設(shè)計:

  一、創(chuàng)設(shè)情境,激發(fā)矛盾

  拿出一個長方形框架,提問:這個框架所圍成圖形的面積你會求嗎?你是怎樣想的?根據(jù)學(xué)生的回答,適時板書:長方形面積=長×寬

  教師捏住兩角輕微拉動長方形框架,使它稍微變形成一個平行四邊形。提問:它圍成的圖形面積你會求嗎?你是怎樣想的?根據(jù)學(xué)生的回答,適時板書:平行四邊形面積=底邊長×鄰邊長

  學(xué)情預(yù)設(shè):學(xué)生充分發(fā)表自己的看法,大多數(shù)學(xué)生會受以前知識經(jīng)驗和教師剛才設(shè)問的影響,認(rèn)為平行四邊形的面積等于底邊長×鄰邊長。

  教師繼續(xù)拉動平行四邊形框架,使變形后的平行四邊形越來越扁,到最后拉成一個很扁的平行四邊形,提問:這些平行四邊形的面積也等于底

  邊長×鄰邊長嗎?

  今天這節(jié)課我們就來研究“平行四邊形的面積”。教師板書課題。

  學(xué)情預(yù)設(shè):隨著教師繼續(xù)拉動的平行四邊形越來越扁的變化,學(xué)生的原有知識經(jīng)驗體系開始坍塌。這種認(rèn)知平衡一旦被打破,學(xué)生的思維就想開了閘的洪水一樣一發(fā)不可收拾:為什么用底邊長乘鄰邊長不能解決平行四邊形面積是多少問題?問題出在哪里呢?

  二、另辟蹊徑,探究新知

  1、尋找根源,另辟蹊徑

  教師邊演示長方形漸變平行四邊形的過程,邊引導(dǎo)學(xué)生思考:平行四邊形為什么不能用長方形的長與寬演變而來的底邊長與鄰邊長相乘來求面積呢?

  引導(dǎo)學(xué)生思考:原來是平行四邊形的面積變得越來越小了,那平行四邊形的面積到底與什么有關(guān)呢?該怎樣來求平行四邊形的面積呢?

  學(xué)情預(yù)設(shè):學(xué)生在教師的引導(dǎo)下發(fā)現(xiàn),在教師的操作過程中,底邊與鄰邊的長沒有發(fā)生變化,也就是說,底邊長與鄰邊長相乘的積應(yīng)該也是不變的,但明顯的事實是學(xué)生看到了平行四邊形在越拉越扁,平行四邊形的面積在越變越小。看來此路不通,那又該在哪里找出路呢?

  2、適時引導(dǎo),自主探索

  教師結(jié)合剛才的板書引導(dǎo)學(xué)生發(fā)現(xiàn),我們已經(jīng)會計算長方形的面積了,是否能把平行四邊形轉(zhuǎn)化成長方形來求面積呢?

  (1)學(xué)生操作

  學(xué)生動手實踐,尋求方法。

  學(xué)情預(yù)設(shè):學(xué)生可能會有三種方法出現(xiàn)。

  第一種是沿著平行四邊形的頂點做的高剪開,通過平移,拼出長方形。 第二種是沿著平行四邊形中間任意一高剪開。

  第三種是沿平行四邊形兩端的兩個頂點做的高剪開,把剪下來的兩個小直角三角形拼成一個長方形,再和剪后得出的長方形拼成一個長方形。

 。2)觀察比較

  剛才同學(xué)們把平行四邊形轉(zhuǎn)化成長方形,在操作時有一個共同點,是什么呢?為什么要這樣呢?

 。3)課件演示

  是不是任意一個平行四邊形都能轉(zhuǎn)化成一個長方形呢?請同學(xué)們仔細(xì)觀察大屏幕,讓我們再來體會一下。

  3、公式推導(dǎo),形成模型

  既然我們可以把一個平行四邊形轉(zhuǎn)化成一個長方形,那么轉(zhuǎn)化前的平行四邊形究竟和轉(zhuǎn)化后的長方形有怎樣的聯(lián)系呢?怎樣能想出平行四邊形的'面積怎么計算呢?

  先獨立思考,后小組合作、討論,如小組有困難,可提供“思考提示”。

  A、拼成的長方形和原來的平行四邊形比,什么變了?什么沒有改變?

  B、拼成的長方形的長和寬與原來的平行四邊形的底和高有什么關(guān)系?

  C、你能根據(jù)長方形面積計算公式推導(dǎo)出平行四邊形的面積計算公式嗎?)

  學(xué)情預(yù)設(shè):學(xué)生通過討論很快就能得出拼成的長方形和原來的平行四邊形之間的關(guān)系,并據(jù)此推導(dǎo)出平行四邊形的面積計算公式。在此環(huán)節(jié)中,教師要引導(dǎo)學(xué)生盡量用完整、條理的語言表達其推導(dǎo)思路:“把一個平行四邊形轉(zhuǎn)化成為一個長方形,它的面積與原來的平行四邊形的面積相等。這個長方形的長與平行四邊形的底相等,這個長方形的寬與平行四邊形的高相等,因為長方形的面積等于長乘寬,所以平行四邊形的面積等于底乘高!辈⒐桨鍟缦拢

  長方形的面積 = 長 × 寬

  平行四邊形的面積 = 底 × 高

  4、變化對比,加深理解

  引導(dǎo)學(xué)生比較前后兩種變化情況,思考:第一次的長方形變成平行四邊形與第二次的平行四邊形變成長方形,這兩種情況有什么不一樣?哪種變化能說明平行四邊形的面積計算方法的來源呢?為什么?

  5、自學(xué)字母公式,體會作用

  請同學(xué)們打開課本第81頁,告訴老師,如果用字母表示平行四邊形的

  面積計算公式,應(yīng)該怎樣表示?你覺得用字母表達式比文字表達式好在哪里?

  三、實踐應(yīng)用

  1、出示課本第82頁題目,一個平行四邊形的停車位底邊長5m,高2.5m,它的面積是多少?(學(xué)生獨立列式解答,并說出列式的根據(jù))

  2、看圖口述平行四邊形的面積。

  3分米 2.5厘米

  3、這個平行四邊形的面積你會求嗎?你是怎樣想的?

  4、分別計算圖中每個平行四邊形的面積,你發(fā)現(xiàn)了什么?(單位:厘米)這樣的平行四邊形還能再畫多少個?

平行四邊形教案 篇6

  教學(xué)內(nèi)容:人教版第九冊 64 – 67頁

  說教材: 教材先給出方格上的平行四邊形和長方形,從數(shù)圖形中的方格引出平行四邊形的面積。利用數(shù)方格的方法來計算面積仍然是一種計算面積的方法。遇到圖形中邊與邊之間有不成直角的情況時,該怎樣計算面積,學(xué)生還沒有學(xué)過。,教材通過數(shù)的方法,轉(zhuǎn)化的方法,可以把新知識轉(zhuǎn)化為舊知識,從而使新問題得到解決。

  教學(xué)重點:平行四邊形面積的推導(dǎo)過程。

  本課采用的教法:自學(xué)法 、 轉(zhuǎn)化方法、小組合作法、實驗法。

  學(xué)法:1、自主學(xué)習(xí)法

  2、小組合作探究學(xué)習(xí)法。

  教學(xué)程序:

  一、創(chuàng)設(shè)問題情景, 為新課作鋪墊。

  請同學(xué)們幫李師傅的一個忙,

  求出下面的面積,你是怎樣想的?3厘米

  5厘米

  二、突出學(xué)生主體地位,發(fā)展學(xué)生的創(chuàng)新思維。

  首先采用自學(xué)課本64頁。師提出問題,通過自學(xué),同學(xué)們發(fā)現(xiàn)了什么,想到了什么?你猜到了什么?

  有的同學(xué)說:長方形面積與平行四邊形面積相等(數(shù)出來的)。 有的說:我用割補的方法把平形四邊形拼成一個長方形,長方形的面積與平行四邊形面積相等。還 有的說:我發(fā)現(xiàn)平行四邊形的底相當(dāng)與長方形的'長,平行四邊形的高相當(dāng)長方形的寬。 有的說:我猜想平行四邊形的面積等于底乘高。通過同學(xué)們發(fā)現(xiàn)與猜想

  三、小組合作,培養(yǎng)學(xué)生的合作精神。

  小組合作交流,動手操作并說出你的思考過程這樣使學(xué)生能人人參與,個個思考。匯報交流結(jié)果(小組派出代表到前邊演示操作過程邊述說)學(xué)生甲:我沿著平行四邊形的高剪下一個三角形補到平行四邊形的右邊,拼成一個長方形。長方形的長相當(dāng)與平形四邊形的底,寬相當(dāng)與平行四邊形的高。長方形面積與平行四邊形的面積相等。我想平行四邊形面積=底乘高

  學(xué)生乙(與前邊的內(nèi)容大概相同復(fù)述一遍,就是平行四邊形的高作在中間)

  學(xué)生丁我還有一種方法,我將平行四邊形沿著對角劃一條線,分成兩個面積相等三角形,雖然拼成還是一個原平行四邊形。但學(xué)生爭著說出與別人不同的方法,把自己的想法盡量展現(xiàn)在同學(xué)面前,其中不乏有閃光的思維亮點。

  四例題獨立完成,體現(xiàn)學(xué)生自己解決問題的能力。

  例題自己解決, 學(xué)生切實體驗到數(shù)學(xué)的應(yīng)用價值,提高學(xué)生學(xué)習(xí)數(shù)學(xué)信心。

  板書設(shè)計:

  長方形面積==長乘寬

  平行四邊形面積=底乘高

  s= a h

【平行四邊形教案】相關(guān)文章:

平行四邊形教案04-01

平行四邊形的面積教案04-07

《平行四邊形的認(rèn)識》教案03-15

《認(rèn)識平行四邊形》教案03-30

《平行四邊形的面積》教案06-01

《平行四邊形的判定》教案06-03

平行四邊形的特征教案02-27

平行四邊形面積教案02-09

特殊的平行四邊形教案07-29

認(rèn)識平行四邊形教案08-26