當(dāng)前位置:育文網(wǎng)>教學(xué)文檔>教案> 分式的教案

分式的教案

時(shí)間:2023-02-25 12:10:17 教案 我要投稿

分式的教案

  作為一位杰出的教職工,通常需要用到教案來輔助教學(xué),教案有助于學(xué)生理解并掌握系統(tǒng)的知識(shí)。來參考自己需要的教案吧!以下是小編整理的分式的教案,希望對(duì)大家有所幫助。

分式的教案

分式的教案1

  教學(xué)目標(biāo)

  1.通過實(shí)踐總結(jié)分式 的乘 除法,并能較熟練地進(jìn)行式的乘除法 運(yùn)算.

  2.理解分式乘方的原理,掌握乘方的規(guī)律,并能運(yùn)用乘方規(guī)律進(jìn)行分式的乘 方運(yùn)算

  3.引 導(dǎo)學(xué)生通過分析、歸納,培養(yǎng)學(xué)生用類比的 方法探索新知識(shí)的能力

  教學(xué)重點(diǎn) 分式的乘除法、乘方運(yùn)算

  教學(xué)難點(diǎn) 分式的乘除法、混合運(yùn)算,分式乘法,除法 、乘方運(yùn)算中符號(hào)的確定.

  教學(xué)過程

(一)復(fù)習(xí)與情境導(dǎo)入

  1.(1)什么叫做分式的約分?約分的根據(jù)是什么?

  (2):下列各式是否正確?為什么?

  2.(1)回憶:

  計(jì)算:

  (2)嘗試探究:計(jì)算:

 。1) ; (2) .

  概括 :分式的乘除法用式子表示即 搶答

  嘗試 探究用式子表示,用文字表達(dá).培養(yǎng)學(xué)生的'合情推理能力.

  (二)實(shí)踐與探索 1

  例2計(jì)算

  分析:①本題是幾個(gè)分式在進(jìn)行什么運(yùn)算?

  ②每個(gè)分式的分子 和分母都是什么代數(shù)式?

 、墼诜质降姆肿、分母中的多項(xiàng)式是否可以分解因式,怎樣分解?

 、茉鯓討(yīng)用分式 乘法法則得到積的分式?

  解 原式= = .

  練習(xí):①課本練習(xí)1.

 、谟(jì) 算:

  (三)實(shí)踐與探索2

  探索分式的乘方的法則1.思 考

  我們都學(xué)過了有理數(shù)的乘方,那么分式的乘 方該是怎樣運(yùn)算的呢?

  先做下面的乘法:(1) = =( )3;

  (2) = =( )k.

  2.仔細(xì)觀察這兩題的結(jié)果,你能發(fā)現(xiàn)什么 規(guī)律?與同伴交流一下,然后完成下面的填 空: )(k) =___________(k是正整數(shù))

  老師應(yīng)格外強(qiáng)調(diào)符 號(hào)問題 自主探究,后合作交流學(xué)習(xí)探索分式的乘方的法則

  (四)小結(jié)與作業(yè) 怎樣進(jìn) 行分式 的乘除法?怎樣進(jìn)行分式的乘方?

  作業(yè):

 。ㄎ澹┌鍟O(shè)計(jì)

分式的教案2

  一、目標(biāo)要求

  1.理解掌握異分母分式加減法法則。

  2.能正確熟練地進(jìn)行異分母分式的加減運(yùn)算。

  二、重點(diǎn)難點(diǎn)

  重點(diǎn):異分母分式的加減法法則及其運(yùn)用。

  難點(diǎn):正確確定最簡公分母和靈活運(yùn)用法則。

  1.異分母分式的加減法法則:異分母分式相加減,先通分,變?yōu)橥帜阜质,然后再加減。用式子表示為:±=。

  2.分式通分時(shí),要注意幾點(diǎn):(1)如果各分母的系數(shù)都是整數(shù)時(shí)通分,常取它們的系數(shù)的最小公倍數(shù),作為最簡公分母的系數(shù);(2)若分母的系數(shù)不是整數(shù)時(shí),先用分式的基本性質(zhì)將其化為整數(shù),再求最小公倍數(shù);(3)分母的系數(shù)若是負(fù)數(shù)時(shí),應(yīng)利用符號(hào)法則,把負(fù)號(hào)提取到分式前面;(4)若分母是多項(xiàng)式時(shí),先按某一字母順序排列,然后再進(jìn)行因式分解,再確定最簡公分母。

  三、解題方法指導(dǎo)

  【例1】計(jì)算:(1)++;

 。2)-x-1;

 。3)--。

  分析:(1)把分母的各多項(xiàng)式按x的降冪排列,能先分解因式的將其分解因式,找最簡公分母,轉(zhuǎn)化為同分母的分式加減法。(2)一個(gè)整式與一個(gè)分式相加減,應(yīng)把這個(gè)整式看作一個(gè)分母是1的式子來進(jìn)行通分,注意-x-1=,要注意負(fù)號(hào)問題。

  解:(1)原式=-+=-+====;

  (2)原式======;

 。3)原式=--===。

  【例2】計(jì)算:。+++。

  分析:此題若將4個(gè)分式同時(shí)通分,分子將是很復(fù)雜的`,計(jì)算也是比較復(fù)雜的。各式的分母適用于平方差公式,所以采取分步通分的方法進(jìn)行加減。

  解:原式=++=++=+=+==。

  四、激活思維訓(xùn)練

  ▲知識(shí)點(diǎn):異分母分式的加減

  【例】計(jì)算:-+。

  分析:此題如果直接通分,運(yùn)算勢必十分復(fù)雜。當(dāng)各分子的次數(shù)大于或等于分母的次數(shù)時(shí),可利用多項(xiàng)式的除法,將其分離為整式部分與分式部分的和,再加減會(huì)使運(yùn)算簡便。

  解:原式=[x+2-]-[x+3+]

 。玔+1]

  =x+2--x-3-++1

  =--+=====。

  五、基礎(chǔ)知識(shí)檢測

  1.填空題:

分式的教案3

  教學(xué)目標(biāo)

  1。知識(shí)與技能

  能應(yīng)用所學(xué)的函數(shù)知識(shí)解決現(xiàn)實(shí)生活中的問題,會(huì)建構(gòu)函數(shù)“模型”。

  2。過程與方法

  經(jīng)歷探索一次函數(shù)的應(yīng)用問題,發(fā)展抽象思維。

  3。情感、態(tài)度與價(jià)值觀

  培養(yǎng)變量與對(duì)應(yīng)的思想,形成良好的函數(shù)觀點(diǎn),體會(huì)一次函數(shù)的應(yīng)用價(jià)值。

  重、難點(diǎn)與關(guān)鍵

  1。重點(diǎn):一次函數(shù)的應(yīng)用。

  2。難點(diǎn):一次函數(shù)的應(yīng)用。

  3。關(guān)鍵:從數(shù)形結(jié)合分析思路入手,提升應(yīng)用思維。

  教學(xué)方法

  采用“講練結(jié)合”的教學(xué)方法,讓學(xué)生逐步地熟悉一次函數(shù)的`應(yīng)用。

  教學(xué)過程

  一、范例點(diǎn)擊,應(yīng)用所學(xué)

  例5、小芳以200米/分的速度起跑后,先勻加速跑5分,每分提高速度20米/分,又勻速跑10分,試寫出這段時(shí)間里她的跑步速度y(單位:米/分)隨跑步時(shí)間x(單位:分)變化的函數(shù)關(guān)系式,并畫出函數(shù)圖象。

  y=

  例6、A城有肥料200噸,B城有肥料300噸,現(xiàn)要把這些肥料全部運(yùn)往C、D兩鄉(xiāng)。從A城往C、D兩鄉(xiāng)運(yùn)肥料的費(fèi)用分別為每噸20元和25元;從B城往C、D兩鄉(xiāng)運(yùn)肥料的費(fèi)用分別為每噸15元和24元,現(xiàn)C鄉(xiāng)需要肥料240噸,D鄉(xiāng)需要肥料260噸,怎樣調(diào)運(yùn)總運(yùn)費(fèi)最少?

  解:設(shè)總運(yùn)費(fèi)為y元,A城往運(yùn)C鄉(xiāng)的肥料量為x噸,則運(yùn)往D鄉(xiāng)的肥料量為(200—x)噸。B城運(yùn)往C、D鄉(xiāng)的肥料量分別為(240—x)噸與(60+x)噸。y與x的關(guān)系式為:y=20x+25(200—x)+15(240—x)+24(60+x),即y=4x+10040(0≤x≤200)。

  由圖象可看出:當(dāng)x=0時(shí),y有最小值10040,因此,從A城運(yùn)往C鄉(xiāng)0噸,運(yùn)往D鄉(xiāng)200噸;從B城運(yùn)往C鄉(xiāng)240噸,運(yùn)往D鄉(xiāng)60噸,此時(shí)總運(yùn)費(fèi)最少,總運(yùn)費(fèi)最小值為10040元。

  拓展:若A城有肥料300噸,B城有肥料200噸,其他條件不變,又應(yīng)怎樣調(diào)運(yùn)?

  二、隨堂練習(xí),鞏固深化

  課本P119練習(xí)。

  三、課堂總結(jié),發(fā)展?jié)撃?/p>

  由學(xué)生自我評(píng)價(jià)本節(jié)課的表現(xiàn)。

  四、布置作業(yè),專題突破

  課本P120習(xí)題14。2第9,10,11題。

分式的教案4

  學(xué)習(xí)目標(biāo):

  (一)學(xué)習(xí)知識(shí)點(diǎn)

  1、用分式方程的數(shù)學(xué)模型反映現(xiàn)實(shí)情境中的實(shí)際問題.

  2、用分式方程來解決現(xiàn)實(shí)情境中的問題.

  3、經(jīng)歷建立分式方程模型解決實(shí)際問題的過程,體會(huì)數(shù)學(xué)模型的應(yīng)用價(jià)值,從而提高學(xué)習(xí)數(shù)學(xué)的興趣.

  學(xué)習(xí)重點(diǎn):

  1.審明題意,尋找等量關(guān)系,將實(shí)際問題轉(zhuǎn)化成分式方程的數(shù)學(xué)模型.

  2.根據(jù)實(shí)際意義檢驗(yàn)解的合理性.

  學(xué)習(xí)難點(diǎn):

  尋求實(shí)際問題中的等量關(guān)系,尋求不同的解決問題的方法.

  學(xué)習(xí)過程:

  Ⅰ.提出問題,引入新課

  前兩節(jié)課,我們認(rèn)識(shí)了分式方程這樣的數(shù)學(xué)模型,并且學(xué)會(huì)了解分式方程.

  接下來,我們就用分式方程解決生活中實(shí)際問題.

  例1:某單位將沿街的一部分房屋出租.每間房屋的租金第二年比第一年多500元,所有房屋出租的租金第一年為9.6萬元,第二年為10.2萬元.

  (1)你能找出這一情境的等量關(guān)系嗎?

  (2)根據(jù)這一情境,你能提出哪些問題?

  (3)這兩年每間房屋的租金各是多少?

  解法一:設(shè)每年各有x間房屋出租,那么第一年每間房屋的租金為______元,第二年每間房屋的租金為__________元,根據(jù)題意得方程,

  解法二:設(shè)第一年每間房屋的租金為x元,第二年每間房屋的.租金為_______元.第一年租出的房間為__________間,第二年租出的房間為__________間,根據(jù)題意得方程,

  例2:小芳帶了15元錢去商店買筆記本.如果買一種軟皮本,正好需付15元錢.但售貨員建議她買一種質(zhì)量好的硬皮本,這種本子的價(jià)格比軟皮本高出一半,因此她只能少買一本筆記本.這種軟皮本和硬皮本的價(jià)格各是多少?

  解:設(shè)軟皮本的價(jià)格為x元,則硬皮本的價(jià)格為________元,那么15元錢可買軟皮本_________本,硬皮本___________本.根據(jù)題意得方程,

  圖3-4

  活動(dòng)與探究:

  1、如圖,小明家、王老師家、學(xué)校在同一條路上.小明家到王老師家路程為3km,王老師家到學(xué)校的路程為0.5km,由于小明父母戰(zhàn)斗在抗“非典”第一線,為了使他能按時(shí)到校,王老師每天騎自行車接小明上學(xué).已知王老師騎自行車的速度是步行速度的3倍,每天比平時(shí)步行上班多用了20分鐘,問王老師的步行速度及騎自行車的速度各是多少?(20xx年吉林省中考題)

  2、從甲地到乙地有兩條公路:一條全長600千米的普通公路,另一條是全長480千米的高速公路。某客車在高速公路上行駛的速度比在普通公路上快45千米/時(shí),由高速公路從甲地到乙地所需時(shí)間是由普通公路從甲地到乙地所需時(shí)間的一半。求客車在高速公路上行駛的速度。

  3、輪船順?biāo)叫?0千米所用的時(shí)間與逆水航行30千米所用的時(shí)間相同,若水流的速度為3千米/時(shí)求輪船在靜水中的速度?

  積累與總結(jié):

  1、列方程解決實(shí)際情境中的具體問題,是數(shù)學(xué)實(shí)用性最直接的體現(xiàn),而解決這一問題是如何將實(shí)際問題建立方程這樣的數(shù)學(xué)模型,關(guān)鍵則在于審清題意,找出題中的等量關(guān)系,找到它就為列方程指明了方向.

  2、列分式方程解應(yīng)用題的一般步驟:(1)審清題意,找出等量關(guān)系;(2)設(shè)出__________;(3)列出_________;(4)解分式方程;(5)檢驗(yàn),既要驗(yàn)證是否是原方程的的根,又要驗(yàn)證是否符合題意;(6)寫出答案。

分式的教案5

  教學(xué)目標(biāo):

  1.學(xué)會(huì)根據(jù)定義判別分式方程與整式方程,了解分式方程增根產(chǎn)生的原因,掌握驗(yàn)根的方法。

  2.掌握可化為一元一次方程或一元二次方程的分式方程的解法,會(huì)用去分母求方程的解。

  教學(xué)重點(diǎn):去分母法解可化為一元一次方程或一元二次方程的分式方程。驗(yàn)根的方法。

  教學(xué)難點(diǎn):驗(yàn)根的方法。分式方程增根產(chǎn)生的原因。

  教學(xué)準(zhǔn)備:小黑板。

  教學(xué)過程:

  復(fù)習(xí)引入:下列方程中哪些分母中含有未知數(shù)?哪些分母中不含有未知數(shù)?

 。1);(2);(3);(4);

  (5);(6);(7);(8)。

  講授新課:

  1.由上述歸納出分式方程的概念:只含有分式或整式,且分母里含有未知數(shù)的方程叫做分式方程。方程兩邊都是整式的方程叫做整式方程。

  2.討論分式方程的解法:

  (1)復(fù)習(xí)解方程時(shí),怎樣去分母?

 。2)講解例1:解方程(按課文講解)

  歸納:解分式方程的'基本思想:

  分式方程整式方程

  (3)講解例2:解方程(按課文講解)

  歸納:在去分母時(shí),有時(shí)可能產(chǎn)生不適合原方程的根,我們把它叫做增根。因此解分式方程必須檢驗(yàn),常把求得得根代入原方程的最簡公分母,看它的值是否為0,若為0,則為增根,必須舍去;若不為0,則為原方程的根。

  想一想:產(chǎn)生增根的原因是什么?

  鞏固練習(xí):P1451t,2t。

  課堂小結(jié):什么叫做分式方程?

  解分式方程時(shí),為什么要檢驗(yàn)?怎樣檢驗(yàn)?

  布置作業(yè):見作業(yè)本。

分式的教案6

  一、教學(xué)目標(biāo)

  1。使學(xué)生掌握可化為一元二次方程的分式方程的解法,能用去分母的方法或換元的方法求此類方程的解,并會(huì)驗(yàn)根。

  2。通過本節(jié)課的教學(xué),向?qū)W生滲透“轉(zhuǎn)化”的數(shù)學(xué)思想方法;

  3。通過本節(jié)的教學(xué),繼續(xù)向?qū)W生滲透事物是相互聯(lián)系及相互轉(zhuǎn)化的辨證唯物主義觀點(diǎn)。

  二、重點(diǎn)、難點(diǎn)、疑點(diǎn)及解決辦法

  1。教學(xué)重點(diǎn):可化為一元二次方程的分式方程的解法。

  2。教學(xué)難點(diǎn):解分式方程,學(xué)生不容易理解為什么必須進(jìn)行檢驗(yàn)。

  3。教學(xué)疑點(diǎn):學(xué)生容易忽視對(duì)分式方程的解進(jìn)行檢驗(yàn)通過對(duì)分式方程的解的剖析,進(jìn)一步使學(xué)生認(rèn)識(shí)解分式方程必須進(jìn)行檢驗(yàn)的重要性。

  4。解決辦法:(l)分式方程的解法順序是:先特殊、后一般,即能用換元法的方程應(yīng)盡量用換元法解。(2)無論用去分母法解,還是換元法解分式方程,都必須進(jìn)行驗(yàn)根,驗(yàn)根是解分式方程必不可少的一個(gè)重要步驟。(3)方程的增根具備兩個(gè)特點(diǎn),①它是由分式方程所轉(zhuǎn)化成的整式方程的根②它能使原分式方程的公分母為0。

  三、教學(xué)步驟

 。ㄒ唬┙虒W(xué)過程

  1。復(fù)習(xí)提問

 。1)什么叫做分式方程?解可化為一元一次方程的分式方程的方法與步驟是什么?

  (2)解可化為一元一次方程的分式方程為什么要檢驗(yàn)?檢驗(yàn)的方法是什么?

 。3)解方程,并由此方程說明解方程過程中產(chǎn)生增根的原因。

  通過(1)、(2)、(3)的準(zhǔn)備,可直接點(diǎn)出本節(jié)的內(nèi)容:可化為一元二次方程的分式方程的解法相同。

  在教師點(diǎn)出本節(jié)內(nèi)容的處理方法與以前所學(xué)的知識(shí)完全類同后,讓全體學(xué)生對(duì)照前面復(fù)習(xí)過的分式方程的解,來進(jìn)一步加深對(duì)“類比”法的理解,以便學(xué)生全面地參與到教學(xué)活動(dòng)中去,全面提高教學(xué)質(zhì)量。

  在前面的基礎(chǔ)上,為了加深學(xué)生對(duì)新知識(shí)的理解,教師與學(xué)生共同分析解決例題,以提高學(xué)生分析問題和解決問題的能力。

  2。例題講解

  例1解方程。

  分析對(duì)于此方程的解法,不是教師講如何如何解,而是讓學(xué)生對(duì)已有知識(shí)的回憶,使用原來的方法,去通過試的手段來解決,在學(xué)生敘述過程中,發(fā)現(xiàn)問題并及時(shí)糾正。

  解:兩邊都乘以,得

  去括號(hào),得

  整理,得

  解這個(gè)方程,得

  檢驗(yàn):把代入,所以是原方程的根。

  ∴原方程的根是。

  雖然,此種類型的方程在初二上學(xué)期已學(xué)習(xí)過,但由于相隔時(shí)間比較長,所以有一些學(xué)生容易犯的類型錯(cuò)誤應(yīng)加以強(qiáng)調(diào),如在第一步中。需強(qiáng)調(diào)方程兩邊同時(shí)乘以最簡公分母。另外,在把分式方程轉(zhuǎn)化為整式方程后,所得的一元二次方程有兩個(gè)相等的實(shí)數(shù)根,由于是解分式方程,所以在下結(jié)論時(shí),應(yīng)強(qiáng)調(diào)取一即可,這一點(diǎn),教師應(yīng)給以強(qiáng)調(diào)。

  例2解方程

  分析:解此方程的關(guān)鍵是如何將分式方程轉(zhuǎn)化為整式方程,而轉(zhuǎn)化為整式方程的關(guān)鍵是

  正確地確定出方程中各分母的最簡公分母,由于此方程中的分母并非均按的降冪排列,所以將方程的分母作一轉(zhuǎn)化,化為按字母終行降暴排列,并對(duì)可進(jìn)行分解的分母進(jìn)行分解,從而確定出最簡公分母。

  解:方程兩邊都乘以,約去分母,得

  整理后,得

  解這個(gè)方程,得

  檢驗(yàn):把代入,它不等于0,所以是原方程的根,把

  代入它等于0,所以是增根。

  ∴原方程的根是

  師生共同解決例1、例2后,教師引導(dǎo)學(xué)生與已學(xué)過的知識(shí)進(jìn)行比較。

  例3解方程。

  分析:此題也可像前面例l、例2一樣通過去分母解決,學(xué)生可以試,但由于轉(zhuǎn)化后為一元四次方程,解起來難度很大,因此應(yīng)尋求簡便方式,通過引導(dǎo)學(xué)生仔細(xì)觀察發(fā)現(xiàn),方程中含有未知數(shù)的部分和互為倒數(shù),由此可設(shè),則可通過換元法來解題,通過求出y后,再求原方程的未知數(shù)的值。

  解:設(shè),那么,于是原方程變形為

  兩邊都乘以y,得

  解得

  當(dāng)時(shí),,去分母,得

  解得;

  當(dāng)時(shí),,去分母整理,得,

  檢驗(yàn):把分別代入原方程的分母,各分母均不等于0。

  ∴原方程的根是,

  此題在解題過程中,經(jīng)過兩次“轉(zhuǎn)化”,所以在檢驗(yàn)中,把所得的未知數(shù)的值代入原方程中的分母進(jìn)行檢驗(yàn)。

  鞏固練習(xí):教材P49中1、2引導(dǎo)學(xué)筆答。

  (二)總結(jié)、擴(kuò)展

  對(duì)于小結(jié),教師應(yīng)引導(dǎo)學(xué)生做出。

  本節(jié)內(nèi)容的小結(jié)應(yīng)從所學(xué)習(xí)的知識(shí)內(nèi)容、所學(xué)知識(shí)采用了什么數(shù)學(xué)思想及教學(xué)方法兩方面進(jìn)行。

  本節(jié)我們通過類比的`方法,在已有的解可化為一元一次方程的分式方程的基礎(chǔ)上,學(xué)習(xí)了可化為一元二次方程的分式方程的解法,在具體方程的解法上,適用了“轉(zhuǎn)化”與“換元”的基本數(shù)學(xué)思想與基本數(shù)學(xué)方法。

  此小結(jié)的目的,使學(xué)生能利用“類比”的方法,使學(xué)過的知識(shí)系統(tǒng)化、網(wǎng)絡(luò)化,形成認(rèn)知結(jié)構(gòu),便于學(xué)生掌握。

  四、布置作業(yè)

  1。教材P50中A1、2、3。

  2。教材P51中B1、2

  五、板書設(shè)計(jì)

  探究活動(dòng)1

  解方程:

  分析:若去分母,則會(huì)變?yōu)楦叽畏匠,這樣解起來,比較繁,注意到分母中都有,可用換元法降次

  設(shè),則原方程變?yōu)?/p>

  ∴

  ∴或無解

  ∴

  經(jīng)檢驗(yàn):是原方程的解

  探究活動(dòng)2

  有農(nóng)藥一桶,倒出8升后,用水補(bǔ)滿,然后又倒出4升,再用水補(bǔ)滿,此時(shí)農(nóng)藥與水的比為18:7,求桶的容積。

  解:設(shè)桶的容積為升,第一次用水補(bǔ)滿后,濃度為,第二次倒出的農(nóng)藥數(shù)為4。升,兩次共倒出的農(nóng)藥總量(8+4· )占原來農(nóng)藥,故

  整理,

 。ㄉ崛ィ

  答:桶的容積為40升。

分式的教案7

  一、教學(xué)目標(biāo)

  1.使學(xué)生理解并掌握分式的概念,了解有理式的概念;

  2.使學(xué)生能夠求出分式有意義的條件;

  3.通過類比分?jǐn)?shù)研究分式的教學(xué),培養(yǎng)學(xué)生運(yùn)用類比轉(zhuǎn)化的思想方法解決問題的能力;

  4.通過類比方法的教學(xué),培養(yǎng)學(xué)生對(duì)事物之間是普遍聯(lián)系又是變化發(fā)展的辨證觀點(diǎn)的再認(rèn)識(shí).

  二、重點(diǎn)、難點(diǎn)、疑點(diǎn)及解決辦法

  1.教學(xué)重點(diǎn)和難點(diǎn) 明確分式的分母不為零.

  2.疑點(diǎn)及解決辦法 通過類比分?jǐn)?shù)的意義,加強(qiáng)對(duì)分式意義的`理解.

  三、教學(xué)過程

  【新課引入】

  前面所研究的因式分解問題是把整式分解成若干個(gè)因式的積的問題,但若有如下問題:某同學(xué)分鐘做了60個(gè)仰臥起坐,每分鐘做多少個(gè)?可表示為,問,這是不是整式?請一位同學(xué)給它試命名,并說一說怎樣想到的?(學(xué)生有過分?jǐn)?shù)的經(jīng)驗(yàn),可猜想到分式)

  【新課】

  1.分式的定義

  (1)由學(xué)生分組討論分式的定義,對(duì)于“兩個(gè)整式相除叫做分式”等錯(cuò)誤,由學(xué)生舉反例一一加以糾正,得到結(jié)論:

  用、表示兩個(gè)整式,就可以表示成的形式.如果中含有字母,式子就叫做分式.其中叫做分式的分子,叫做分式的分母.

  (2)由學(xué)生舉幾個(gè)分式的例子.

  (3)學(xué)生小結(jié)分式的概念中應(yīng)注意的問題.

 、俜帜钢泻凶帜.

 、谌缤?jǐn)?shù)一樣,分式的分母不能為零.

  (4)問:何時(shí)分式的值為零?[以(2)中學(xué)生舉出的分式為例進(jìn)行討論]

  2.有理式的分類

  請學(xué)生類比有理數(shù)的分類為有理式分類:

  例1 當(dāng)取何值時(shí),下列分式有意義?

  (1);

  解:由分母得.

  ∴當(dāng)時(shí),原分式有意義.

  (2);

  解:由分母得.

  ∴當(dāng)時(shí),原分式有意義.

  (3);

  解:∵恒成立,

  ∴取一切實(shí)數(shù)時(shí),原分式都有意義.

  (4).

  解:由分母得.

  ∴當(dāng)且時(shí),原分式有意義.

  思考:若把題目要求改為:“當(dāng)取何值時(shí)下列分式無意義?”該怎樣做?

  例2 當(dāng)取何值時(shí),下列分式的值為零?

  (1);

  解:由分子得.

  而當(dāng)時(shí),分母.

  ∴當(dāng)時(shí),原分式值為零.

  小結(jié):若使分式的值為零,需滿足兩個(gè)條件:①分子值等于零;②分母值不等于零.

  (2);

  解:由分子得.

  而當(dāng)時(shí),分母,分式無意義.

  當(dāng)時(shí),分母.

  ∴當(dāng)時(shí),原分式值為零.

  (3);

  解:由分子得.

  而當(dāng)時(shí),分母.

  當(dāng)時(shí),分母.

  ∴當(dāng)或時(shí),原分式值都為零.

  (4).

  解:由分子得.

  而當(dāng)時(shí),,分式無意義.

  ∴沒有使原分式的值為零的的值,即原分式值不可能為零.

  (四)總結(jié)、擴(kuò)展

  1.分式與分?jǐn)?shù)的區(qū)別.

  2.分式何時(shí)有意義?

  3.分式何時(shí)值為零?

  (五)隨堂練習(xí)

  1.填空題:

  (1)當(dāng)時(shí),分式的值為零

  (2)當(dāng)時(shí),分式的值為零

  (3)當(dāng)時(shí),分式的值為零

  2.教材P55中1、2、3.

  八、布置作業(yè)

  教材P56中A組3、4;B組(1)、(2)、(3).

  九、板書設(shè)計(jì)

  課題 例1

  1.定義例2

  2.有理式分類

分式的教案8

  ●課題

  §3.4.2分式方程(二)

  ●教學(xué)目標(biāo)

 。ㄒ唬┙虒W(xué)知識(shí)點(diǎn)

  1.解分式方程的一般步驟.

  2.了解解分式方程驗(yàn)根的必要性.

 。ǘ┠芰τ(xùn)練要求

  1.通過具體例子,讓學(xué)生獨(dú)立探索方程的解法,經(jīng)歷和體會(huì)解分式方程的必要步驟.

  2.使學(xué)生進(jìn)一步了解數(shù)學(xué)思想中的“轉(zhuǎn)化”思想,認(rèn)識(shí)到能將分式方程轉(zhuǎn)化為整式方程,從而找到解分式方程的途徑.

 。ㄈ┣楦信c價(jià)值觀要求

  1.培養(yǎng)學(xué)生自覺反思求解過程和自覺檢驗(yàn)的良好習(xí)慣,培養(yǎng)嚴(yán)謹(jǐn)?shù)闹螌W(xué)態(tài)度.

  2.運(yùn)用“轉(zhuǎn)化”的思想,將分式方程轉(zhuǎn)化為整式方程,從而獲得一種成就感和學(xué)習(xí)數(shù)學(xué)的自信.

  ●教學(xué)重點(diǎn)

  1.解分式方程的.一般步驟,熟練掌握分式方程的解決.

  2.明確解分式方程驗(yàn)根的必要性.

  ●教學(xué)難點(diǎn)

  明確分式方程驗(yàn)根的必要性.

  ●教學(xué)方法

  探索發(fā)現(xiàn)法

  學(xué)生在教師的引導(dǎo)下,探索分式方程是如何轉(zhuǎn)化為整式方程,并發(fā)現(xiàn)解分式方程驗(yàn)根的必要性.

  ●教學(xué)過程

 、.提出問題,引入新課

 。蹘煟菰谏瞎(jié)課的幾個(gè)問題,我們根據(jù)題意將具體實(shí)際的情境,轉(zhuǎn)化成了數(shù)學(xué)模型——分式方程.但要使問題得到真正的解決,則必須設(shè)法解出所列的分式方程.

  這節(jié)課,我們就來學(xué)習(xí)分式方程的解法.我們不妨先來回憶一下我們曾學(xué)過的一元一次方程的解法,也許你會(huì)從中得到啟示,尋找到解分式方程的方法.

  解方程+=2- [師生共解](1)去分母,方程兩邊同乘以分母的最小公倍數(shù)6,得

  3(3x-1)+2(5x+2)=6×2-(4x-2).

  (2)去括號(hào),得9x-3+10x+4=12-4x+2,

  (3)移項(xiàng),得9x+10x+4x=12+2+3-4,

  (4)合并同類項(xiàng),得23x=13,

 。5)使x的系數(shù)化為1,兩邊同除以23,x=.

分式的教案9

  教案

  【教學(xué)目標(biāo)】

  知識(shí)目標(biāo)

  1.理解分式方程的意義.

  2.了解解分式方程的基本思路和解法.

  3.理解解分式方程時(shí)可能無解的原因,并掌握分式方程的驗(yàn)根方法.

  能力目標(biāo)

  經(jīng)歷“實(shí)際問題——分式方程——整式方程”的過程,發(fā)展學(xué)生分析問題、解決問題的能力,滲透數(shù)學(xué)的轉(zhuǎn)化思想,培養(yǎng)學(xué)生的應(yīng)用意識(shí).

  情感目標(biāo)

  在活動(dòng)中培養(yǎng)學(xué)生樂于探究、合作學(xué)習(xí)的習(xí)慣,培養(yǎng)學(xué)生努力尋找解決問題的進(jìn)取心,體會(huì)數(shù)學(xué)的應(yīng)用價(jià)值.

  【教學(xué)重難點(diǎn)】

  重點(diǎn):解分式方程的基本思路和解法.

  難點(diǎn):理解解分式方程時(shí)可能無解的原因.

  【教學(xué)過程】

  一、創(chuàng)設(shè)情境,導(dǎo)入新課

  問題:一艘輪船在靜水中的最大航速為30 km/h,它以最大航速沿江順流航行90 km所用時(shí)間,與以最大航速逆流航行60 km所用時(shí)間相等,江水的流速為多少?

  分析:設(shè)江水的流速為v km/h,則輪船順流航行的速度為(30+v) km/h,逆流航行的速度為(30-v) km/h,順流航行90 km所用的時(shí)間為小時(shí),逆流航行60 km所用的時(shí)間為小時(shí).可列方程=.

  這個(gè)方程和我們以前所見過的方程不同,它的主要特點(diǎn)是:分母中含有未知數(shù),這種方程就是我們今天要研究的分式方程.

  二、探究新知

  1.教師提出下列問題讓學(xué)生探究:

  (1)方程=與以前所學(xué)的整式方程有何不同?

  (2)什么叫分式方程?

  (3)如何解分式方程=呢?怎樣檢驗(yàn)所求未知數(shù)的值是原方程的`解?

  (4)你能結(jié)合上述探究活動(dòng)歸納出解分式方程的基本思路和做法嗎?

  (學(xué)生思考、討論后在全班交流)

  2.根據(jù)學(xué)生探究結(jié)果進(jìn)行歸納:

  (1)分式方程的定義(板書):

  分母里含有未知數(shù)的方程叫分式方程.以前學(xué)過的方程都是整式方程

  練習(xí):判斷下列各式哪個(gè)是分式方程.

  (1)x+y=5; (2)=;

  (3); (4)=0

  在學(xué)生回答的基礎(chǔ)上指出(1)、(2)是整式方程,(3)是分式,(4)是分式方程.

  (2)解分式方程=的基本思路是:將分式方程化為整式方程.具體做法是:“去分母”,即方程兩邊同乘最簡公分母.這也是解分式方程的一般思路和做法.

  3.仿照上面解分式方程的做法,嘗試解分式方程=,并檢驗(yàn)所得的解,你發(fā)現(xiàn)了什么?與你的同伴交流.

  4.思考:上面兩個(gè)分式方程中,為什么=①去分母后所得整式方程的解就是①的解,而=②去分母后所得整式方程的解卻不是②的解呢?學(xué)生分組討論產(chǎn)生上述結(jié)果的原因,并互相交流.

  5.歸納:

  (1)增根:將分式方程變?yōu)檎椒匠虝r(shí),方程兩邊同乘以一個(gè)含有未知數(shù)的整式,并約去分母,有可能產(chǎn)生不適合原方程的解(或根),這種根通常稱為增根.

  (2)解分式方程必須進(jìn)行檢驗(yàn):將整式方程的解代入最簡公分母,如果最簡公分母的值不為0,則整式方程的解是原分式方程的解;否則,這個(gè)解不是原分式方程的解.

  三、鞏固練習(xí)

  1.在下列方程中:

 、=8+; ②=x;

  ③=; ④x-=0.

  是分式方程的有( )

  A.①和② B.②和③

  C.③和④ D.④和①

  2.解分式方程:(1)=;(2)=.

  四、課堂小結(jié)

  1.通過本節(jié)課的學(xué)習(xí),你有哪些收獲?

  2.在本節(jié)課的學(xué)習(xí)過程中,你有什么體會(huì)?與同伴交流.

  引導(dǎo)學(xué)生總結(jié)得出:

  解分式方程的一般步驟:

  (1)在方程的兩邊都乘以最簡公分母,約去分母,化為整式方程.

  (2)解這個(gè)整式方程.

  (3)把整式方程的根代入最簡公分母,看結(jié)果是不是零;使最簡公分母為零的根不是原方程的解時(shí),必須舍去.

  五、布置作業(yè)

  課本152頁練習(xí).

  第2課時(shí)

  【教學(xué)目標(biāo)】

  知識(shí)目標(biāo)

  會(huì)分析題意找出相等關(guān)系,并能列出分式方程解決實(shí)際問題.

  ok3w_ads("s002");

  同步練習(xí)

  1.在某市舉行的大型商業(yè)演出活動(dòng)中,對(duì)團(tuán)體購買門票思想優(yōu)惠,決定在原定票價(jià)的基礎(chǔ)上每張降價(jià)80元,這樣按原定票價(jià)需花6000元購買的門票張數(shù),現(xiàn)在只花費(fèi)了4800元,求每張門票的原定價(jià)格?

  2.為豐富校園文化生活,某校舉辦了成語大賽.學(xué)校準(zhǔn)備購買一批成語詞典獎(jiǎng)勵(lì)獲獎(jiǎng)學(xué)生.購買時(shí),商家給每本詞典打了九折,用2880元錢購買的成語詞典,打折后購買的數(shù)量比打折前多10本.求打折前每本筆記本的售價(jià)是多少元?

  2.“六?一”兒童節(jié)前,某玩具商店根據(jù)市場調(diào)查,用2500元購進(jìn)一批兒童玩具,上市后很快脫銷,接著又用4500元購進(jìn)第二批這種玩具,所購數(shù)量是第一批數(shù)量的1.5倍,但每套進(jìn)價(jià)多了10元.

  (1)求第一批玩具每套的進(jìn)價(jià)是多少元?

  (2)如果這兩批玩具每套售價(jià)相同,且全部售完后總利潤不低于25%,那么每套售價(jià)至少是多少元?

  精選練習(xí)

  列方程或方程組解應(yīng)用題:

  據(jù)林業(yè)專家分析,樹葉在光合作用后產(chǎn)生的分泌物能夠吸附空氣中的一些懸浮顆粒物,具有滯塵凈化空氣的作用.已知一片銀杏樹葉一年的平均滯塵量比一片國槐樹葉一年的平均滯塵量的2倍少4毫克,若一年滯塵1000毫克所需的銀杏樹葉的片數(shù)與一年滯塵550毫克所需的國槐樹葉的片數(shù)相同,求一片國槐樹葉一年的平均滯塵量.

分式的教案10

  教學(xué)目標(biāo)

  1。使學(xué)生能分析題目中的等量關(guān)系,掌握列分式方程解應(yīng)用題的方法和步驟,提高學(xué)生分析問題和解決問題的能力;

  2。通過列分式方程解應(yīng)用題,滲透方程的思想方法。

  教學(xué)重點(diǎn)和難點(diǎn)

  重點(diǎn):列分式方程解應(yīng)用題。

  難點(diǎn):根據(jù)題意,找出等量關(guān)系,正確列出方程。

  教學(xué)過程設(shè)計(jì)

  一、復(fù)習(xí)

  例 解方程:

 。1)2x+xx+3=1; (2)15x=2×15 x+12;

 。3)2(1x+1x+3)+x-2x+3=1。

  解 (1)方程兩邊都乘以x(3+3),去分母,得

  2(x+3)+x2=x2+3x,即2x-3x=-6

  所以 x=6。

  檢驗(yàn):當(dāng)x=6時(shí),x(x+3)=6(6+3)≠0,所以x=6是原分式方程的根。

 。2)方程兩邊都乘以x(x+12),約去分母,得

  15(x+12)=30x。

  解這個(gè)整式方程,得

  x=12。

  檢驗(yàn):當(dāng)x=12時(shí),x(x+12)=12(12+12)≠0,所以x=12是原分式方程的根。

  (3)整理,得

  2x+2x+3+x-2x+3=1,即2x+2+x-2 x+3=1,

  即 2x+xx+3=1。

  方程兩邊都乘以x(x+3),去分母,得

  2(x+3)+x2=x(x+3),

  即 2x+6+x2=x2+3x,

  亦即 2x-3x=-6。

  解這個(gè)整式方程,得 x=6。

  檢驗(yàn):當(dāng)x=6時(shí),x(x+3)=6(6+3)≠0,所以x=6是原分式方程的根。

  二、新課

  例1 一隊(duì)學(xué)生去校外參觀,他們出發(fā)30分鐘時(shí),學(xué)校要把一個(gè)緊急通知傳給帶隊(duì)老師,派一名學(xué)生騎車從學(xué)校出發(fā),按原路追趕隊(duì)伍。若騎車的速度是隊(duì)伍進(jìn)行速度的2倍,這名學(xué)生追上隊(duì)伍時(shí)離學(xué)校的距離是15千米,問這名學(xué)生從學(xué)校出發(fā)到追上隊(duì)伍用了多少時(shí)間?

  請同學(xué)根據(jù)題意,找出題目中的等量關(guān)系。

  答:騎車行進(jìn)路程=隊(duì)伍行進(jìn)路程=15(千米);

  騎車的速度=步行速度的2倍;

  騎車所用的時(shí)間=步行的時(shí)間-0。5小時(shí)。

  請同學(xué)依據(jù)上述等量關(guān)系列出方程。

  答案:

  方法1 設(shè)這名學(xué)生騎車追上隊(duì)伍需x小時(shí),依題意列方程為

  15x=2×15 x+12。

  方法2 設(shè)步行速度為x千米/時(shí),騎車速度為2x千米/時(shí),依題意列方程為

  15x-15 2x=12。

  解 由方法1所列出的方程,已在復(fù)習(xí)中解出,下面解由方法2所列出的方程。

  方程兩邊都乘以2x,去分母,得

  30-15=x,

  所以 x=15。

  檢驗(yàn):當(dāng)x=15時(shí),2x=2×15≠0,所以x=15是原分式方程的根,并且符合題意。

  所以騎車追上隊(duì)伍所用的時(shí)間為15千米 30千米/時(shí)=12小時(shí)。

  答:騎車追上隊(duì)伍所用的時(shí)間為30分鐘。

  指出:在例1中我們運(yùn)用了兩個(gè)關(guān)系式,即時(shí)間=距離速度,速度=距離 時(shí)間。

  如果設(shè)速度為未知量,那么按時(shí)間找等量關(guān)系列方程;如果設(shè)時(shí)間為未知量,那么按

  速度找等量關(guān)系列方程,所列出的方程都是分式方程。

  例2 某工程需在規(guī)定日期內(nèi)完成,若由甲隊(duì)去做,恰好如期完成;若由乙隊(duì)去做,要超過規(guī)定日期三天完成,F(xiàn)由甲、乙兩隊(duì)合做兩天,剩下的工程由乙獨(dú)做,恰好在規(guī)定日期完成,問規(guī)定日期是多少天?

  分析;這是一個(gè)工程問題,在工程問題中有三個(gè)量,工作量設(shè)為s,工作所用時(shí)間設(shè)為t,工作效率設(shè)為m,三個(gè)量之間的關(guān)系是

  s=mt,或t=sm,或m=st。

  請同學(xué)根據(jù)題中的等量關(guān)系列出方程。

  答案:

  方法1 工程規(guī)定日期就是甲單獨(dú)完成工程所需天數(shù),設(shè)為x天,那么乙單獨(dú)完成工程所需的天數(shù)就是(x+3)天,設(shè)工程總量為1,甲的工作效率就是x1,乙的工作效率是1x+3。依題意,列方程為

  2(1x+1x3)+x2-xx+3=1。

  指出:工作效率的意義是單位時(shí)間完成的工作量。

  方法2 設(shè)規(guī)定日期為x天,乙與甲合作兩天后,剩下的工程由乙單獨(dú)做,恰好在規(guī)定日期完成,因此乙的工作時(shí)間就是x天,根據(jù)題意列方程

  2x+xx+3=1。

  方法3 根據(jù)等量關(guān)系,總工作量—甲的工作量=乙的工作量,設(shè)規(guī)定日期為x天,則可列方程

  1-2x=2x+3+x-2x+3。

  用方法1~方法3所列出的方程,我們已在新課之前解出,這里就不再解分式方程了。重點(diǎn)是找等量關(guān)系列方程。

  三、課堂練習(xí)

  1。甲加工180個(gè)零件所用的時(shí)間,乙可以加工240個(gè)零件,已知甲每小時(shí)比乙少加工5個(gè)零件,求兩人每小時(shí)各加工的零件個(gè)數(shù)。

  2。A,B兩地相距135千米,有大,小兩輛汽車從A地開往B地,大汽車比小汽車早出發(fā)5小時(shí),小汽車比大汽車晚到30分鐘。已知大、小汽車速度的比為2:5,求兩輛汽車的速度。

  答案:

  1。甲每小時(shí)加工15個(gè)零件,乙每小時(shí)加工20個(gè)零件。

  2。大,小汽車的速度分別為18千米/時(shí)和45千米/時(shí)。

  四、小結(jié)

  1。列分式方程解應(yīng)用題與列一元一次方程解應(yīng)用題的方法與步驟基本相同,不同點(diǎn)是,解分式方程必須要驗(yàn)根。一方面要看原方程是否有增根,另一方面還要看解出的根是否符合題意。原方程的'增根和不符合題意的根都應(yīng)舍去。

  2。列分式方程解應(yīng)用題,一般是求什么量,就設(shè)所求的量為未知數(shù),這種設(shè)未知數(shù)的方法,叫做設(shè)直接未知數(shù)。但有時(shí)可根據(jù)題目特點(diǎn)不直接設(shè)題目所求的量為未知量,而是設(shè)另外的量為未知量,這種設(shè)未知數(shù)的方法叫做設(shè)間接未知數(shù)。在列分式方程解應(yīng)用題時(shí),設(shè)間接未知數(shù),有時(shí)可使解答變得簡捷。例如在課堂練習(xí)中的第2題,若題目的條件不變,把問題改為求大、小兩輛汽車從A地到達(dá)B地各用的時(shí)間,如果設(shè)直接未知數(shù),即設(shè),小汽車從A地到B地需用時(shí)間為x小時(shí),則大汽車從A地到B地需(x+5-12)小時(shí),依題意,列方程

  135 x+5-12:135x=2:5。

  解這個(gè)分式方程,運(yùn)算較繁瑣。如果設(shè)間接未知數(shù),即設(shè)速度為未知數(shù),先求出大、小兩輛汽車的速度,再分別求出它們從A地到B地的時(shí)間,運(yùn)算就簡便多了。

  五、作業(yè)

  1 填空:

 。1)一件工作甲單獨(dú)做要m小時(shí)完成,乙單獨(dú)做要n小時(shí)完成,如果兩人合做,完成這件工作的時(shí)間是______小時(shí);

 。2)某食堂有米m公斤,原計(jì)劃每天用糧a公斤,現(xiàn)在每天節(jié)約用糧b公斤,則可以比原計(jì)劃多用天數(shù)是______;

 。3)把a(bǔ)千克的鹽溶在b千克的水中,那么在m千克這種鹽水中的含鹽量為______千克。

  2 列方程解應(yīng)用題。

  (1)某工人師傅先后兩次加工零件各1500個(gè),當(dāng)?shù)诙渭庸r(shí),他革新了工具,改進(jìn)了操作方法,結(jié)果比第一次少用了18個(gè)小時(shí)。已知他第二次加工效率是第一次的2。5倍,求他第二次加工時(shí)每小時(shí)加工多少零件?

  (2)某人騎自行車比步行每小時(shí)多走8千米,如果他步行12千米所用時(shí)間與騎車行36千米所用的時(shí)間相等,求他步行40千米用多少小時(shí)?

 。3)已知輪船在靜水中每小時(shí)行20千米,如果此船在某江中順流航行72千米所用的時(shí)間與逆流航行48千米所用的時(shí)間相同,那么此江水每小時(shí)的流速是多少千米?

 。4)A,B兩地相距135千米,兩輛汽車從A地開往B地,大汽車比小汽車早出發(fā)5小時(shí),小汽車比大汽車晚到30分鐘。已知兩車的速度之比是5:2,求兩輛汽車各自的速度。

  答案:

  1 (1)mn m+n; (2)m a-b-ma; (3)ma a+b。

  2 (1)第二次加工時(shí),每小時(shí)加工125個(gè)零件。

  (2)步行40千米所用的時(shí)間為40 4=10(時(shí))。答步行40千米用了10小時(shí)。

 。3)江水的流速為4千米/時(shí)。

  課堂教學(xué)設(shè)計(jì)說明

  1。教學(xué)設(shè)計(jì)中,對(duì)于例

  1,引導(dǎo)學(xué)生依據(jù)題意,找到三個(gè)等量關(guān)系,并用兩種不同的方法列出方程;對(duì)于例

  2,引導(dǎo)學(xué)生依據(jù)題意,用三種不同的方法列出方程。這種安排,意在啟發(fā)學(xué)生能善于從不同的角度、不同的方向思考問題,激勵(lì)學(xué)生在解決問題中養(yǎng)成靈活的思維習(xí)慣。這就為在列分式方程解應(yīng)用題教學(xué)中培養(yǎng)學(xué)生的發(fā)散思維提供了廣闊的空間。

  2。教學(xué)設(shè)計(jì)中體現(xiàn)了充分發(fā)揮例題的模式作用。

  例1是行程問題,其中距離是已知量,求速度(或時(shí)間);例2是工程問題,其中工作總量為已知量,求完成工作量的時(shí)間(或工作效率)。這些都是運(yùn)用列分式方程求解的典型問題。教學(xué)中引導(dǎo)學(xué)生深入分析已知量與未知量和題目中的等量關(guān)系,以及列方程求解的思路,以促使學(xué)生加深對(duì)模式的主要特征的理解和識(shí)另?別,讓學(xué)生弄清哪些類型的問題可借助于分式方程解答,求解的思路是什么。學(xué)生完成課堂練習(xí)和作業(yè),則是識(shí)別問題類型,能把面對(duì)的問題和已掌握的模式在頭腦中建立聯(lián)系,探求解題思路。

  3。通過列分式方程解應(yīng)用題數(shù)學(xué),滲透了方程的思想方法,從中使學(xué)生認(rèn)識(shí)到方程的思想方法是數(shù)學(xué)中解決問題的一個(gè)銳利武器。方程的思想方法可以用“以假當(dāng)真”和“弄假成真”兩句話形容。如何通過設(shè)直接未知數(shù)或間接未知數(shù)的方法,假設(shè)所求的量為x,這時(shí)就把它作為一個(gè)實(shí)實(shí)在在的量。通過找等量關(guān)系列方程,此時(shí)是把已知量與假設(shè)的未知量平等看待,這就是“以假當(dāng)真”。通過解方程求得問題的解,原先假設(shè)的未知量x就變成了確定的量,這就是“弄假成真”。

  列分式方程解應(yīng)用題

  教學(xué)目標(biāo)

  1。使學(xué)生能分析題目中的等量關(guān)系,掌握列分式方程解應(yīng)用題的方法和步驟,提高學(xué)生分析問題和解決問題的能力;

  2。通過列分式方程解應(yīng)用題,滲透方程的思想方法。

  教學(xué)重點(diǎn)和難點(diǎn)

  重點(diǎn):列分式方程解應(yīng)用題。

  難點(diǎn):根據(jù)題意,找出等量關(guān)系,正確列出方程。

  教學(xué)過程設(shè)計(jì)

  一、復(fù)習(xí)

  例 解方程:

 。1)2x+xx+3=1; (2)15x=2×15 x+12;

  (3)2(1x+1x+3)+x-2x+3=1。

  解 (1)方程兩邊都乘以x(3+3),去分母,得

  2(x+3)+x2=x2+3x,即2x-3x=-6

  所以 x=6。

  檢驗(yàn):當(dāng)x=6時(shí),x(x+3)=6(6+3)≠0,所以x=6是原分式方程的根。

 。2)方程兩邊都乘以x(x+12),約去分母,得

  15(x+12)=30x。

  解這個(gè)整式方程,得

  x=12。

  檢驗(yàn):當(dāng)x=12時(shí),x(x+12)=12(12+12)≠0,所以x=12是原分式方程的根。

 。3)整理,得

  2x+2x+3+x-2x+3=1,即2x+2+x-2 x+3=1,

  即 2x+xx+3=1。

  方程兩邊都乘以x(x+3),去分母,得

  2(x+3)+x2=x(x+3),

  即 2x+6+x2=x2+3x,

  亦即 2x-3x=-6。

  解這個(gè)整式方程,得 x=6。

  檢驗(yàn):當(dāng)x=6時(shí),x(x+3)=6(6+3)≠0,所以x=6是原分式方程的根。

  二、新課

  例1 一隊(duì)學(xué)生去校外參觀,他們出發(fā)30分鐘時(shí),學(xué)校要把一個(gè)緊急通知傳給帶隊(duì)老師,派一名學(xué)生騎車從學(xué)校出發(fā),按原路追趕隊(duì)伍。若騎車的速度是隊(duì)伍進(jìn)行速度的2倍,這名學(xué)生追上隊(duì)伍時(shí)離學(xué)校的距離是15千米,問這名學(xué)生從學(xué)校出發(fā)到追上隊(duì)伍用了多少時(shí)間?

  請同學(xué)根據(jù)題意,找出題目中的等量關(guān)系。

  答:騎車行進(jìn)路程=隊(duì)伍行進(jìn)路程=15(千米);

  騎車的速度=步行速度的2倍;

  騎車所用的時(shí)間=步行的時(shí)間-0。5小時(shí)。

  請同學(xué)依據(jù)上述等量關(guān)系列出方程。

  答案:

  方法1 設(shè)這名學(xué)生騎車追上隊(duì)伍需x小時(shí),依題意列方程為

  15x=2×15 x+12。

  方法2 設(shè)步行速度為x千米/時(shí),騎車速度為2x千米/時(shí),依題意列方程為

  15x-15 2x=12。

  解 由方法1所列出的方程,已在復(fù)習(xí)中解出,下面解由方法2所列出的方程。

  方程兩邊都乘以2x,去分母,得

  30-15=x,

  所以 x=15。

  檢驗(yàn):當(dāng)x=15時(shí),2x=2×15≠0,所以x=15是原分式方程的根,并且符合題意。

  所以騎車追上隊(duì)伍所用的時(shí)間為15千米 30千米/時(shí)=12小時(shí)。

  答:騎車追上隊(duì)伍所用的時(shí)間為30分鐘。

  指出:在例1中我們運(yùn)用了兩個(gè)關(guān)系式,即時(shí)間=距離速度,速度=距離 時(shí)間。

  如果設(shè)速度為未知量,那么按時(shí)間找等量關(guān)系列方程;如果設(shè)時(shí)間為未知量,那么按

  速度找等量關(guān)系列方程,所列出的方程都是分式方程。

  例2 某工程需在規(guī)定日期內(nèi)完成,若由甲隊(duì)去做,恰好如期完成;若由乙隊(duì)去做,要超過規(guī)定日期三天完成。現(xiàn)由甲、乙兩隊(duì)合做兩天,剩下的工程由乙獨(dú)做,恰好在規(guī)定日期完成,問規(guī)定日期是多少天?

  分析;這是一個(gè)工程問題,在工程問題中有三個(gè)量,工作量設(shè)為s,工作所用時(shí)間設(shè)為t,工作效率設(shè)為m,三個(gè)量之間的關(guān)系是

  s=mt,或t=sm,或m=st。

  請同學(xué)根據(jù)題中的等量關(guān)系列出方程。

  答案:

  方法1 工程規(guī)定日期就是甲單獨(dú)完成工程所需天數(shù),設(shè)為x天,那么乙單獨(dú)完成工程所需的天數(shù)就是(x+3)天,設(shè)工程總量為1,甲的工作效率就是x1,乙的工作效率是1x+3。依題意,列方程為

  2(1x+1x3)+x2-xx+3=1。

  指出:工作效率的意義是單位時(shí)間完成的工作量。

  方法2 設(shè)規(guī)定日期為x天,乙與甲合作兩天后,剩下的工程由乙單獨(dú)做,恰好在規(guī)定日期完成,因此乙的工作時(shí)間就是x天,根據(jù)題意列方程

  2x+xx+3=1。

  方法3 根據(jù)等量關(guān)系,總工作量—甲的工作量=乙的工作量,設(shè)規(guī)定日期為x天,則可列方程

  1-2x=2x+3+x-2x+3。

  用方法1~方法3所列出的方程,我們已在新課之前解出,這里就不再解分式方程了。重點(diǎn)是找等量關(guān)系列方程。

  三、課堂練習(xí)

  1。甲加工180個(gè)零件所用的時(shí)間,乙可以加工240個(gè)零件,已知甲每小時(shí)比乙少加工5個(gè)零件,求兩人每小時(shí)各加工的零件個(gè)數(shù)。

  2。A,B兩地相距135千米,有大,小兩輛汽車從A地開往B地,大汽車比小汽車早出發(fā)5小時(shí),小汽車比大汽車晚到30分鐘。已知大、小汽車速度的比為2:5,求兩輛汽車的速度。

  答案:

  1。甲每小時(shí)加工15個(gè)零件,乙每小時(shí)加工20個(gè)零件。

  2。大,小汽車的速度分別為18千米/時(shí)和45千米/時(shí)。

  四、小結(jié)

  1。列分式方程解應(yīng)用題與列一元一次方程解應(yīng)用題的方法與步驟基本相同,不同點(diǎn)是,解分式方程必須要驗(yàn)根。一方面要看原方程是否有增根,另一方面還要看解出的根是否符合題意。原方程的增根和不符合題意的根都應(yīng)舍去。

  2。列分式方程解應(yīng)用題,一般是求什么量,就設(shè)所求的量為未知數(shù),這種設(shè)未知數(shù)的方法,叫做設(shè)直接未知數(shù)。但有時(shí)可根據(jù)題目特點(diǎn)不直接設(shè)題目所求的量為未知量,而是設(shè)另外的量為未知量,這種設(shè)未知數(shù)的方法叫做設(shè)間接未知數(shù)。在列分式方程解應(yīng)用題時(shí),設(shè)間接未知數(shù),有時(shí)可使解答變得簡捷。例如在課堂練習(xí)中的第2題,若題目的條件不變,把問題改為求大、小兩輛汽車從A地到達(dá)B地各用的時(shí)間,如果設(shè)直接未知數(shù),即設(shè),小汽車從A地到B地需用時(shí)間為x小時(shí),則大汽車從A地到B地需(x+5-12)小時(shí),依題意,列方程

  135 x+5-12:135x=2:5。

  解這個(gè)分式方程,運(yùn)算較繁瑣。如果設(shè)間接未知數(shù),即設(shè)速度為未知數(shù),先求出大、小兩輛汽車的速度,再分別求出它們從A地到B地的時(shí)間,運(yùn)算就簡便多了。

  五、作業(yè)

  1。填空:

 。1)一件工作甲單獨(dú)做要m小時(shí)完成,乙單獨(dú)做要n小時(shí)完成,如果兩人合做,完成這件工作的時(shí)間是______小時(shí);

 。2)某食堂有米m公斤,原計(jì)劃每天用糧a公斤,現(xiàn)在每天節(jié)約用糧b公斤,則可以比原計(jì)劃多用天數(shù)是______;

 。3)把a(bǔ)千克的鹽溶在b千克的水中,那么在m千克這種鹽水中的含鹽量為______千克。

  2。列方程解應(yīng)用題。

  (1)某工人師傅先后兩次加工零件各1500個(gè),當(dāng)?shù)诙渭庸r(shí),他革新了工具,改進(jìn)了操作方法,結(jié)果比第一次少用了18個(gè)小時(shí)。已知他第二次加工效率是第一次的2。5倍,求他第二次加工時(shí)每小時(shí)加工多少零件?

 。2)某人騎自行車比步行每小時(shí)多走8千米,如果他步行12千米所用時(shí)間與騎車行36千米所用的時(shí)間相等,求他步行40千米用多少小時(shí)?

 。3)已知輪船在靜水中每小時(shí)行20千米,如果此船在某江中順流航行72千米所用的時(shí)間與逆流航行48千米所用的時(shí)間相同,那么此江水每小時(shí)的流速是多少千米?

 。4)A,B兩地相距135千米,兩輛汽車從A地開往B地,大汽車比小汽車早出發(fā)5小時(shí),小汽車比大汽車晚到30分鐘。已知兩車的速度之比是5:2,求兩輛汽車各自的速度。

  答案:

  1。(1)mn m+n; (2)m a-b-ma; (3)ma a+b。

  2。(1)第二次加工時(shí),每小時(shí)加工125個(gè)零件。

  (2)步行40千米所用的時(shí)間為40 4=10(時(shí))。答步行40千米用了10小時(shí)。

 。3)江水的流速為4千米/時(shí)。

  課堂教學(xué)設(shè)計(jì)說明

  1 教學(xué)設(shè)計(jì)中,對(duì)于例1,引導(dǎo)學(xué)生依據(jù)題意,找到三個(gè)等量關(guān)系,并用兩種不同的方法列出方程;對(duì)于例2,引導(dǎo)學(xué)生依據(jù)題意,用三種不同的方法列出方程。這種安排,意在啟發(fā)學(xué)生能善于從不同的角度、不同的方向思考問題,激勵(lì)學(xué)生在解決問題中養(yǎng)成靈活的思維習(xí)慣。這就為在列分式方程解應(yīng)用題教學(xué)中培養(yǎng)學(xué)生的發(fā)散思維提供了廣闊的空間。

  2 教學(xué)設(shè)計(jì)中體現(xiàn)了充分發(fā)揮例題的模式作用。例1是行程問題,其中距離是已知量,求速度(或時(shí)間);例2是工程問題,其中工作總量為已知量,求完成工作量的時(shí)間(或工作效率)。這些都是運(yùn)用列分式方程求解的典型問題。教學(xué)中引導(dǎo)學(xué)生深入分析已知量與未知量和題目中的等量關(guān)系,以及列方程求解的思路,以促使學(xué)生加深對(duì)模式的主要特征的理解和識(shí)另?別,讓學(xué)生弄清哪些類型的問題可借助于分式方程解答,求解的思路是什么。學(xué)生完成課堂練習(xí)和作業(yè),則是識(shí)別問題類型,能把面對(duì)的問題和已掌握的模式在頭腦中建立聯(lián)系,探求解題思路。

  3 通過列分式方程解應(yīng)用題數(shù)學(xué),滲透了方程的思想方法,從中使學(xué)生認(rèn)識(shí)到方程的思想方法是數(shù)學(xué)中解決問題的一個(gè)銳利武器。方程的思想方法可以用“以假當(dāng)真”和“弄假成真”兩句話形容。如何通過設(shè)直接未知數(shù)或間接未知數(shù)的方法,假設(shè)所求的量為x,這時(shí)就把它作為一個(gè)實(shí)實(shí)在在的量。通過找等量關(guān)系列方程,此時(shí)是把已知量與假設(shè)的未知量平等看待,這就是“以假當(dāng)真”。通過解方程求得問題的解,原先假設(shè)的未知量x就變成了確定的量,這就是“弄假成真”。

分式的教案11

  教學(xué)目標(biāo):

  1.了解分式的概念,會(huì)判斷一個(gè)代數(shù)式是否是分式;

  2.能用分式表示簡單問題中數(shù)量之間的關(guān)系,能解釋簡單分式的實(shí)際背景或幾何意義;

  3.能分析出一個(gè)簡單分式有、無意義的條件;

  4.會(huì)根據(jù)已知條件求分式的值.

  教學(xué)重點(diǎn)、難點(diǎn):

  重點(diǎn)是正確理解分式的意義,分式是否有意義的條件及分式的值為零的條件,也是本節(jié)的難點(diǎn).

  教學(xué)過程:

  一、創(chuàng)設(shè)情境:

  京滬鐵路是我國東部沿海地區(qū)縱貫?zāi)媳钡慕煌ù髣?dòng)脈,全長1462,是我國最繁忙的鐵路干線之一.

  如果貨運(yùn)列車的速度為a/h,快速列車的速度為貨運(yùn)列車2倍,那么:

  (1)貨運(yùn)列車從北京到上海需要多長時(shí)間?

  (2)快速列車從北京到上海需要多長時(shí)間?

  (3)已知從北京到上海快速列車比貨運(yùn)列車少用12h,你能列出一個(gè)方程嗎?

  二、探索活動(dòng):

  列出下列式子:

  (1)一塊長方形玻璃板的面積為22,如果寬為 ,那么長是 .

  (2)小麗用 元人民幣買了 袋瓜子,那么每袋瓜子的價(jià)格是 元.

  (3)正 邊形的每個(gè)內(nèi)角為 度.

  (4)兩塊面積分別為 公頃、 公頃的棉田,產(chǎn)棉花分別為 ㎏、 ㎏.這兩塊棉田平均每公頃產(chǎn)棉花 ______㎏.

  思考:1.這些式子與分?jǐn)?shù)有什么相同和不同之處?

  2.上述式子有什么共同的特點(diǎn)?

  分式的概念:一般地,形如 的式子叫做分式,其中A和B均為整式,B中含有字母.

  下列各式哪些是分式,哪些是整式?

 、 ;② ;③ ;④ ;⑤ ;⑥ ;⑦ ;⑧ ;⑨ .

  三、例題精選:

  1.試解釋分式 所表示的實(shí)際意義.

  2.求分式 的值:(1) ;(2) ;(3) .

  3.當(dāng) 取什么值時(shí),分式 (1)沒有意義?(2)有意義?(3)值為零.

  四、課堂練習(xí):

  1.課本P36練習(xí)第1、2、3題.

  2.下列各式: 、 、 、 、 、 中,分式有( )

  A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)

  3. 為何值時(shí),分式 的值為負(fù)數(shù)?

  4.當(dāng) 取何值時(shí),分式 的值為零?

  五、遷移創(chuàng)新:

  當(dāng) 為何整數(shù)時(shí),分式 的值是整數(shù)?

  六、課堂小結(jié):

  1.分式的.概念:一般地,形如 的式子叫做分式,其中A和B均為整式,B中含有字母.

  2.分式是否有意義的識(shí)別方法:當(dāng)分式的分母為零時(shí),分式無意義;當(dāng)分式的分母不等于零時(shí),分式有意義.

  3.分式的值是否為零的識(shí)別方法:當(dāng)分式的分子是零而分母不等于零時(shí),分式的值等于零.

  4.對(duì)整式、分式的正確區(qū)別:分式的分子和分母都是整式,分子可以含有字母,也可以不含有字母,而分母中必須含有字母,這是分式與整式的根本區(qū)別.

  七、課堂作業(yè):

  課本P36習(xí)題8.1第1、2、3題

  八、教學(xué)反思:

分式的教案12

  分式方程

  教學(xué)目標(biāo)

  1.經(jīng)歷分式方程的概念,能將實(shí)際問題中的等量關(guān)系用分式方程 表示,體會(huì)分式方程的模型作用.

  2.經(jīng)歷實(shí)際問題-分式方程方程模型的過程,發(fā)展學(xué)生分析問題、解決問題的能力,滲透數(shù)學(xué)的轉(zhuǎn)化思想人體,培養(yǎng)學(xué)生的應(yīng)用意識(shí)。

  3.在活動(dòng)中培養(yǎng)學(xué)生樂于探究、合作學(xué)習(xí)的習(xí)慣,培養(yǎng)學(xué) 生努力尋找 解決問題的進(jìn)取心,體會(huì)數(shù)學(xué)的應(yīng)用價(jià)值.

  教學(xué)重點(diǎn):

  將實(shí)際問題中的等量 關(guān)系用分式方程表示

  教學(xué)難點(diǎn):

  找實(shí)際問題中的等量關(guān)系

  教學(xué)過程:

  情境導(dǎo)入:

  有兩塊面積相同的小麥試驗(yàn)田,第一塊使用原品種,第二 塊使用新品種,分別收獲小麥9000 kg和15000 kg。已知第一塊試驗(yàn)田每公頃的產(chǎn)量比第二塊少3000 kg,分別求這兩塊試驗(yàn)田每 公頃 的產(chǎn)量。你能找出這一問題中的所有等量關(guān)系嗎?(分組交流)

  如果設(shè)第一塊試驗(yàn)田 每公頃的產(chǎn)量為 kg,那么第二塊試驗(yàn)田每公頃的產(chǎn)量是________kg。

  根據(jù)題意,可得方程___________________

  二、講授新課

  從甲地到乙地有兩條公路:一條是全長600 km的普通 公路,另一條是全長480 km的高速公路。某客 車在 高速公路上行駛的平均速度比在普通公路上快45 km/h,由高速 公路從甲地到乙地所需的時(shí)間 是由普通公路從甲地到乙地所需時(shí)間的一半。求該客車由高速公路從 甲地到乙地所需的時(shí)間。

  這 一問題中有哪些等量關(guān)系?

  如果設(shè)客車由高速公路從甲地到乙地 所需的時(shí)間為 h,那么它由普通公路從甲地到乙地所需的'時(shí)間為_________h。

  根據(jù)題意,可得方程_ _____________________。

  學(xué)生分組探討、交流,列出方程.

  三.做一做:

  為了幫助遭受自然災(zāi)害的地區(qū)重建家園,某學(xué)校號(hào)召同學(xué)們自愿捐款。已知第一次捐款總額為4800元,第二次捐款總額為5000元,第二次捐款人數(shù)比第一次多20人,而且兩次人均捐款額恰好相等。如果設(shè)第一次捐款人數(shù)為 人,那么 滿足怎樣的方程?

  四.議一議:

  上面所得到的方程有什么共同特點(diǎn)?

  分母中含有未知數(shù)的方程叫做分式方程

  分式方程與整式方程有什么區(qū)別?

  五、 隨堂練習(xí)

  (1)據(jù)聯(lián)合國《20xx年全球投資 報(bào)告》指出,中國20xx年吸收外國投資額 達(dá)530億美元,比上一年增加了13%。設(shè)20xx年我國吸收外國投資額為 億美元,請你寫出 滿足的方程。你能寫出幾個(gè)方程?其中哪一個(gè)是分式方程?

  (2)輪船在順?biāo)泻叫?0千米與逆水航行10千米所用時(shí)間相同,水流速度為2. 5千米/小時(shí),求輪船的靜水速度

  (3)根據(jù)分式方程 編一道應(yīng)用題,然后同組交流,看誰編得好

  六、學(xué) 習(xí)小結(jié)

  本節(jié)課你學(xué)到了哪些知識(shí)?有什么感想?

  七.作業(yè)布置

分式的教案13

  【知識(shí)拓展】

  分 母里含有未知數(shù)的方程叫做分式方程.解分式方程組的基本思想是:化為整式方程.通常有兩種做法:一是去分母;二是換元.

  解分式方程一定要驗(yàn)根.

  解分式方程組時(shí)整體代換的思想體現(xiàn)得很充分.常見的思路有:取倒數(shù)法方程迭加法,換元法等.

  列分式方程解應(yīng)用題,關(guān)鍵是找到相等關(guān)系列出方程.如果方程中含有字母表示的已知數(shù),需根據(jù)題競變換條件,實(shí)現(xiàn)轉(zhuǎn)化.設(shè)未知數(shù)而不求解是常見的技巧之一.

  例題求解

  一、分式方程(組)的解法舉例

  1.拆項(xiàng)重組解分式方程

  【例1】解方程 .

  解析 直接去分母太繁瑣,左右兩邊分別通分仍有很復(fù)雜的分子.考慮將每一項(xiàng)分拆:如 ,這樣可降低計(jì)算難度.經(jīng)檢驗(yàn) 為原方程的解.

  注 本題中用到兩個(gè)技巧:一是將分式拆成整式加另一個(gè)分式;二是交換了項(xiàng),避免通分后分子出現(xiàn)x.這樣大大降低了運(yùn)算量.本講趣題引路中的問題也屬于這種思路.

  2.用換元法解分式方程

  【例2】解方程 .

  解析 若考慮去分母,運(yùn)算量過大;分拆也不行,但各分母都是二次三項(xiàng)式,試一試換元法.

  解 令x2+ 2x―8=y,原方程可化為

  解這個(gè)關(guān)于y的分式方程得y=9x或y=-5x.

  故當(dāng)y=9x時(shí),x2+2x―8=9x,解得x1=8,x2=―1.

  當(dāng)y=-5x時(shí),x2+2x―8=-5x,解得x3=―8,x4=1.

  經(jīng)檢驗(yàn),上述四解均為原方程的解.

  注 當(dāng)分式方程的結(jié)構(gòu)較復(fù)雜且有相同或相近部分時(shí),可通過換元將之簡化.

  3.形如 結(jié)構(gòu)的分式方程的解法

  形如 的.分式方程的解是: , .

  【例3】解方程 .

  解析 方程左邊兩項(xiàng)的乘積為1,可考慮化為上述類型的問題求解.

  , 均為原方程的解.

  4.運(yùn)用整體代換解分式方程組

  【例4】解方程組 .

  解析 若用常規(guī)思路設(shè)法消元,難度極大.注意到每一方程左邊分子均為單項(xiàng)式,為什么不試一試倒過來考慮呢?

  解 顯然x=y=z=0是該方程組的一組解.

  若x、y、z均不為0,取倒數(shù)相加得x=y=z=

  故原方程組的解為x=y=z=0和x=y=z= .

  二、含字母系數(shù)分式方程根的討論

  【例5】解關(guān)于x的方程 .

  解析 去分母化簡 為含字母系數(shù)的一次方程,須分類討論.

  討論:(1)當(dāng)a2-1≠0時(shí)

 、佼(dāng)a≠0時(shí),原方程解為x= ;

  ②當(dāng)a=0時(shí),此時(shí) 是增根.

  (2) 當(dāng)a2-1=0時(shí)即a= ,此時(shí)方程的解為x≠ 的任意數(shù);

  綜上,當(dāng)a≠±1且a≠0時(shí),原方程解為x= ;當(dāng)a=0時(shí),原方程無解,;當(dāng)a= 時(shí),原方程的解為x≠ 的任意數(shù).

  三、列分式方程解應(yīng)用題

  【例6】 某商場在一樓和二樓之間安裝了一自動(dòng)扶梯,以均勻的速度向上行駛,一男孩和一女孩同時(shí)從自動(dòng)扶梯上走到二樓(扶梯行駛,兩人也走梯).如果兩人上梯的速度都是勻速的,每次只跨1級(jí),且男孩每分鐘走動(dòng)的級(jí)數(shù)是女孩的2倍.已知男孩走了27級(jí)到達(dá)扶梯頂部,而女孩走了18級(jí)到達(dá)頂部.

 。1)扶梯露在外面的部分有多少級(jí)?

  (2)現(xiàn)扶梯近旁有一從二樓下到一樓的樓梯道,臺(tái)階的級(jí)數(shù)與 自動(dòng)扶梯的級(jí)數(shù)相等,兩個(gè)孩子各自到扶梯頂部后按原 速度再下樓梯 ,到樓梯底部再乘自動(dòng)扶梯上樓(不考慮扶梯與樓梯間的距離).求男孩第一次迫上女孩時(shí)走了多少級(jí)臺(tái)階?

  解析 題中有兩個(gè)等量關(guān)系,男孩走27級(jí)的時(shí)間等于扶梯走了S-27級(jí)的時(shí)間;女孩走18級(jí)的時(shí)間等于扶梯走S―18級(jí)的時(shí)間.

  解 (1)設(shè)女孩上梯速度為x級(jí)/分,自動(dòng)扶梯的速度為y級(jí)/分,扶梯露在外面的部分有S級(jí),則男孩上梯的速度為2x級(jí)/分,且有

  解得 S=54.

  所以扶梯露在外面的部分有54級(jí).

  (2)設(shè)男孩第一次追上女孩時(shí)走過自動(dòng)扶梯rn遍,走過樓梯n遍,則女孩走過自動(dòng)扶梯(m―1)遍、走過樓梯(n―1)遍.

  由于兩人所走的時(shí)間相等,所以有 .

  由(1)中可求得y=2x,代人上面方程 化簡得6n+m=16.

  無論男孩第一次追上女孩是在自動(dòng)扶梯還是在下樓時(shí),m、n中都一定有一個(gè)是正整數(shù),且0≤m―n≤1.

  試驗(yàn)知只有 m=3,n= 符合要求.

  所以男孩第一次追上女孩時(shí)走的級(jí)數(shù)為3×27+ ×54=198(級(jí)).

  注 本題求解時(shí)設(shè)的未知數(shù)x、y,只設(shè)不求,這種方法在解復(fù)雜的應(yīng)用題時(shí)常用來幫助分析數(shù)量關(guān)系,便于解題.

  【例7】 (江蘇省初中數(shù)學(xué)競賽C卷)編號(hào)為1到25的25個(gè)彈珠被分放在兩個(gè)籃子A和B中.15號(hào)彈珠在籃子A中,把這個(gè)彈珠從籃子A移至籃子B中,這時(shí)籃子A中的彈珠號(hào)碼數(shù)的平均數(shù)等于原平均數(shù)加 ,籃子B中彈珠號(hào)碼數(shù)的平均數(shù)也等于原平均數(shù)加 .問原來在籃子A中有多少個(gè)彈珠?

  解析 本題涉及A中原有彈珠,A、B中號(hào)碼數(shù)的平均數(shù),故引入三個(gè)未知數(shù).

  解 設(shè)原來籃子A中有彈珠x個(gè),則籃子B中有彈珠(25-x)個(gè).又記原來A中彈珠號(hào)碼數(shù)的平均數(shù)為a,B中彈珠號(hào)碼數(shù)的平均數(shù)為b.則由題意得

  解得x=9,即原來籃子A中有9個(gè)彈珠.

  學(xué)力訓(xùn)練

 。ˋ級(jí))

  1.解分式方程 .

  2.若關(guān)于x的方程 有增根x=1,求k的值.

  3.解分式方程 .

  4.解方程組 .

  5.丙、丁三管齊開,15分鐘可注滿全池;甲、丁兩管齊開,20分鐘注滿全池.如果四管齊開,需要多少時(shí)間可以注滿全池?

  (B級(jí))

  1.關(guān)于x的方程 有唯一的解,字母已知數(shù)應(yīng)具備的條件是( )

  A. a≠b B.c≠d C.c+d≠0 D.bc+ad≠0

  2.某隊(duì)伍長6km,以每小時(shí)5 km的速度行進(jìn),通信員騎馬從隊(duì)頭到隊(duì)尾送信,到 隊(duì)尾后退返回隊(duì)頭,共用了0.5 h,則通信員騎馬的速度為每小時(shí) km.

  3.某項(xiàng)工作,甲單獨(dú)作完成的天數(shù)為乙、丙合作完成天數(shù)的m倍,乙單獨(dú)作完成的天數(shù)為甲、丙合作完成天數(shù)的n倍,丙單獨(dú)作完成的天數(shù)為甲、乙合作完成天數(shù)的k倍,則 = .

  4.m為何值時(shí),關(guān)于x、y的方程組: 的解,滿足 , ?

  5.(天津市中考題)某工程由甲、乙兩隊(duì)合做6天完成,廠 家需付甲、乙兩隊(duì)共8700元;乙、丙兩隊(duì)合做10天完成,廠家需付乙、丙兩隊(duì)共9500元;甲、丙兩隊(duì)合做5天完成全部工程的 ,廠家需付甲、丙兩隊(duì)共5500元.

  (1)求甲、乙、丙各隊(duì)單獨(dú)完成全部工程各需多少天?

  (2)若工期要求不超過15天完成全部工程,問:由哪隊(duì)單獨(dú)完成此項(xiàng) 工程花錢最少?請說明理由.

  6.甲、乙二人兩次同時(shí)在同一糧店購買糧食(假設(shè)兩次購買的單價(jià)不同),甲每次購買糧食100kg,乙每次購買糧食用去100元.設(shè)甲、乙兩人第一次購買糧食的單價(jià)為x元/kg,第二次單價(jià)為y元/kg.

  (1)用含x、y的代數(shù)式表示甲兩次購買糧食共需付款 元,乙兩次共購買 kg糧食.若甲兩次購買糧食的平均單價(jià)為每千克Ql元,乙兩次購糧的平均單價(jià)為每千克Q2元?jiǎng)tQ1= ;Q2= .

分式的教案14

  內(nèi)容:分式的計(jì)算—分式的乘除P93-95

  學(xué)習(xí)目標(biāo):

  1、理解分式的乘除法則,會(huì)進(jìn)行簡單的'乘除運(yùn)算

  2、由乘方的定義和分式乘法法則,探索出分式的乘方的運(yùn)算法則

  學(xué)習(xí)重點(diǎn):分式乘除法的法則

  學(xué)習(xí)難點(diǎn):分式乘方的法則的理解

  學(xué)習(xí)過程

  1.學(xué)習(xí)準(zhǔn)備

  1.說說分?jǐn)?shù)乘除法的法則

  2.完成下列計(jì)算

  (1)×(2)-×(-)

  (3)÷(-)(4)-÷

  2.合作探究

  1.仿照分?jǐn)?shù)的運(yùn)算,你能完成下列計(jì)算嗎?

  (1)×(2)÷

  2、結(jié)合分?jǐn)?shù)的乘除法則,你能總結(jié)如何進(jìn)行分式的運(yùn)算嗎?

  3.教學(xué)例題例1計(jì)算

  (1)×(2)÷

  4、練習(xí)計(jì)算

  (1)(—)(2)÷

  (3)-xy(4)÷4

  5、教學(xué)例題

  例2計(jì)算:÷

  (分子、分母都是多項(xiàng)式可先分解因式,后約分)

  6、練習(xí)

  (1)(2)÷(x

  7、怎樣計(jì)算、、?

  我們知道:

  ====

  ====

  ==(n為正整數(shù))

  舉例驗(yàn)證你的結(jié)論:。

  結(jié)合上面的過程,可得分式的乘方。

  討論:==

  =(m為負(fù)整數(shù))

  3.學(xué)習(xí)體會(huì)對(duì)照學(xué)習(xí)目標(biāo),通過預(yù)習(xí),你覺得自己有哪些方面的收獲?

  4.自我測試1、練習(xí)

  (1)=(2)=

  (3)()2=(4)()2=

  2、計(jì)算

  (1)(—)(2)÷12a2b

  (3)(4)(x-y)2

  3、先化簡,在求值其中,x=5。

分式的教案15

  第一課時(shí)

 。ㄒ唬教學(xué)過程

  1.分式的定義?

  2.分?jǐn)?shù)的基本性質(zhì)?有什么用途?

  1.類比分?jǐn)?shù)的基本性質(zhì),由學(xué)生小結(jié)出分式的基本性質(zhì):

  分式的分子與分母乘以(或除以)同一個(gè)不等于零的整式,分式的值不變,即:

  (其中是不等于零的整式。)

  2.加深對(duì)分式基本性質(zhì)的理解:

  例1 下列等式的右邊是怎樣從左邊得到的?

 。1);

  由學(xué)生口述分析,并反問:為什么?

  解:∵

  ∴.

  (2);

  學(xué)生口答,教師設(shè)疑:為什么題目未給的條件?(引導(dǎo)學(xué)生學(xué)會(huì)分析題目中的隱含條件.)

  解:∵

  ∴.

 。3)

  學(xué)生口答.

  解:∵,

  ∴.

  例2 填空:

 。1);

 。2);

 。3);

  (4).

  把學(xué)生分為四人一組開展競賽,看哪個(gè)組做得又快又準(zhǔn)確,并能小結(jié)出填空的依據(jù).

  例3 不改變分式的值,把下列各式的分子與分母中各項(xiàng)的系數(shù)都化為整數(shù).

 。1);

  分析學(xué)生討論:①怎樣才能不改變公式的值?②怎樣把分子分母中各項(xiàng)系數(shù)都化為整數(shù)?

  解:.

  (2).

  解:.

  例4 判斷取何值時(shí),等式成立?

  學(xué)生分組討論后得出結(jié)果:

  ∴.

  (二)隨堂練習(xí)

  1.當(dāng)為何值時(shí),與的'值相等()

  A. B. C. D.

  2.若分式有意義,則,滿足條件為( )

  A. B. C. D.以上答案都不對(duì)

  3.下列各式不正確的是( )

  A. B.

  C. D.

  4.若把分式的和都擴(kuò)大兩倍,則分式的值

  A.?dāng)U大兩倍 B.不變

  C.縮小兩倍 D.縮小四倍

  (三)總結(jié)、擴(kuò)展

  1.分式的基本性質(zhì).

  2.性質(zhì)中的可代表任何非零整式.

  3.注意挖掘題目中的隱含條件.

  4.利用分式的基本性質(zhì)將分式的分子、分母化成整系數(shù)形式,體現(xiàn)了數(shù)學(xué)化繁為簡的策略,并為分式作進(jìn)一步處理提供了便利條件.

  (四)布置作業(yè)

  教材P61中2、3;P62中B組的1

  (五)板書設(shè)計(jì)

【分式的教案】相關(guān)文章:

《解分式方程》教案03-13

《分式的加減法》教案08-27

分式方程二教案04-27

分式說課稿12-29

分式說課稿11-06

《解分式方程》教案7篇03-13

分式方程二教案2篇04-27

分式教學(xué)反思02-14

分式的運(yùn)算說課稿11-03