當前位置:育文網>教學文檔>教案> 分式的教案

分式的教案

時間:2024-11-09 12:01:04 教案 我要投稿

分式的教案

  作為一位杰出的教職工,通常需要用到教案來輔助教學,教案有助于學生理解并掌握系統(tǒng)的知識。來參考自己需要的教案吧!以下是小編整理的分式的教案,希望對大家有所幫助。

分式的教案

分式的教案1

  教學目標

  1.通過實踐總結分式 的乘 除法,并能較熟練地進行式的乘除法 運算.

  2.理解分式乘方的原理,掌握乘方的規(guī)律,并能運用乘方規(guī)律進行分式的乘 方運算

  3.引 導學生通過分析、歸納,培養(yǎng)學生用類比的 方法探索新知識的能力

  教學重點 分式的乘除法、乘方運算

  教學難點 分式的乘除法、混合運算,分式乘法,除法 、乘方運算中符號的確定.

  教學過程

(一)復習與情境導入

  1.(1)什么叫做分式的約分?約分的根據是什么?

  (2):下列各式是否正確?為什么?

  2.(1)回憶:

  計算:

 �。�2)嘗試探究:計算:

  (1) ; (2) .

  概括 :分式的乘除法用式子表示即 搶答

  嘗試 探究用式子表示,用文字表達.培養(yǎng)學生的合情推理能力.

  (二)實踐與探索 1

  例2計算

  分析:①本題是幾個分式在進行什么運算?

  ②每個分式的分子 和分母都是什么代數式?

  ③在分式的分子、分母中的多項式是否可以分解因式,怎樣分解?

 �、茉鯓討梅质� 乘法法則得到積的.分式?

  解 原式= = .

  練習:①課本練習1.

 �、谟� 算:

  (三)實踐與探索2

  探索分式的乘方的法則1.思 考

  我們都學過了有理數的乘方,那么分式的乘 方該是怎樣運算的呢?

  先做下面的乘法:(1) = =( )3;

 �。�2) = =( )k.

  2.仔細觀察這兩題的結果,你能發(fā)現什么 規(guī)律?與同伴交流一下,然后完成下面的填 空: )(k) =___________(k是正整數)

  老師應格外強調符 號問題 自主探究,后合作交流學習探索分式的乘方的法則

 �。ㄋ模┬〗Y與作業(yè) 怎樣進 行分式 的乘除法?怎樣進行分式的乘方?

  作業(yè):

 �。ㄎ澹┌鍟O計

分式的教案2

  一、目標要求

  1.理解掌握異分母分式加減法法則。

  2.能正確熟練地進行異分母分式的加減運算。

  二、重點難點

  重點:異分母分式的加減法法則及其運用。

  難點:正確確定最簡公分母和靈活運用法則。

  1.異分母分式的加減法法則:異分母分式相加減,先通分,變?yōu)橥帜阜质�,然后再加減。用式子表示為:±=。

  2.分式通分時,要注意幾點:(1)如果各分母的系數都是整數時通分,常取它們的系數的.最小公倍數,作為最簡公分母的系數;(2)若分母的系數不是整數時,先用分式的基本性質將其化為整數,再求最小公倍數;(3)分母的系數若是負數時,應利用符號法則,把負號提取到分式前面;(4)若分母是多項式時,先按某一字母順序排列,然后再進行因式分解,再確定最簡公分母。

  三、解題方法指導

  【例1】計算:(1)++;

 �。�2)-x-1;

  (3)--。

  分析:(1)把分母的各多項式按x的降冪排列,能先分解因式的將其分解因式,找最簡公分母,轉化為同分母的分式加減法。(2)一個整式與一個分式相加減,應把這個整式看作一個分母是1的式子來進行通分,注意-x-1=,要注意負號問題。

  解:(1)原式=-+=-+====;

 �。�2)原式======;

 �。�3)原式=--===。

  【例2】計算:。+++。

  分析:此題若將4個分式同時通分,分子將是很復雜的,計算也是比較復雜的。各式的分母適用于平方差公式,所以采取分步通分的方法進行加減。

  解:原式=++=++=+=+==。

  四、激活思維訓練

  ▲知識點:異分母分式的加減

  【例】計算:-+。

  分析:此題如果直接通分,運算勢必十分復雜。當各分子的次數大于或等于分母的次數時,可利用多項式的除法,將其分離為整式部分與分式部分的和,再加減會使運算簡便。

  解:原式=[x+2-]-[x+3+]

 �。玔+1]

  =x+2--x-3-++1

  =--+=====。

  五、基礎知識檢測

  1.填空題:

分式的教案3

  教學目標

  1。知識與技能

  能應用所學的函數知識解決現實生活中的問題,會建構函數“模型”。

  2。過程與方法

  經歷探索一次函數的應用問題,發(fā)展抽象思維。

  3。情感、態(tài)度與價值觀

  培養(yǎng)變量與對應的思想,形成良好的函數觀點,體會一次函數的應用價值。

  重、難點與關鍵

  1。重點:一次函數的應用。

  2。難點:一次函數的應用。

  3。關鍵:從數形結合分析思路入手,提升應用思維。

  教學方法

  采用“講練結合”的教學方法,讓學生逐步地熟悉一次函數的應用。

  教學過程

  一、范例點擊,應用所學

  例5、小芳以200米/分的速度起跑后,先勻加速跑5分,每分提高速度20米/分,又勻速跑10分,試寫出這段時間里她的.跑步速度y(單位:米/分)隨跑步時間x(單位:分)變化的函數關系式,并畫出函數圖象。

  y=

  例6、A城有肥料200噸,B城有肥料300噸,現要把這些肥料全部運往C、D兩鄉(xiāng)。從A城往C、D兩鄉(xiāng)運肥料的費用分別為每噸20元和25元;從B城往C、D兩鄉(xiāng)運肥料的費用分別為每噸15元和24元,現C鄉(xiāng)需要肥料240噸,D鄉(xiāng)需要肥料260噸,怎樣調運總運費最少?

  解:設總運費為y元,A城往運C鄉(xiāng)的肥料量為x噸,則運往D鄉(xiāng)的肥料量為(200—x)噸。B城運往C、D鄉(xiāng)的肥料量分別為(240—x)噸與(60+x)噸。y與x的關系式為:y=20x+25(200—x)+15(240—x)+24(60+x),即y=4x+10040(0≤x≤200)。

  由圖象可看出:當x=0時,y有最小值10040,因此,從A城運往C鄉(xiāng)0噸,運往D鄉(xiāng)200噸;從B城運往C鄉(xiāng)240噸,運往D鄉(xiāng)60噸,此時總運費最少,總運費最小值為10040元。

  拓展:若A城有肥料300噸,B城有肥料200噸,其他條件不變,又應怎樣調運?

  二、隨堂練習,鞏固深化

  課本P119練習。

  三、課堂總結,發(fā)展?jié)撃?/p>

  由學生自我評價本節(jié)課的表現。

  四、布置作業(yè),專題突破

  課本P120習題14。2第9,10,11題。

分式的教案4

  學習目標:

  (一)學習知識點

  1、用分式方程的數學模型反映現實情境中的實際問題.

  2、用分式方程來解決現實情境中的問題.

  3、經歷建立分式方程模型解決實際問題的過程,體會數學模型的應用價值,從而提高學習數學的興趣.

  學習重點:

  1.審明題意,尋找等量關系,將實際問題轉化成分式方程的數學模型.

  2.根據實際意義檢驗解的合理性.

  學習難點:

  尋求實際問題中的等量關系,尋求不同的解決問題的方法.

  學習過程:

  Ⅰ.提出問題,引入新課

  前兩節(jié)課,我們認識了分式方程這樣的數學模型,并且學會了解分式方程.

  接下來,我們就用分式方程解決生活中實際問題.

  例1:某單位將沿街的一部分房屋出租.每間房屋的租金第二年比第一年多500元,所有房屋出租的租金第一年為9.6萬元,第二年為10.2萬元.

  (1)你能找出這一情境的等量關系嗎?

  (2)根據這一情境,你能提出哪些問題?

  (3)這兩年每間房屋的租金各是多少?

  解法一:設每年各有x間房屋出租,那么第一年每間房屋的租金為______元,第二年每間房屋的租金為__________元,根據題意得方程,

  解法二:設第一年每間房屋的租金為x元,第二年每間房屋的租金為_______元.第一年租出的房間為__________間,第二年租出的房間為__________間,根據題意得方程,

  例2:小芳帶了15元錢去商店買筆記本.如果買一種軟皮本,正好需付15元錢.但售貨員建議她買一種質量好的硬皮本,這種本子的價格比軟皮本高出一半,因此她只能少買一本筆記本.這種軟皮本和硬皮本的價格各是多少?

  解:設軟皮本的價格為x元,則硬皮本的價格為________元,那么15元錢可買軟皮本_________本,硬皮本___________本.根據題意得方程,

  圖3-4

  活動與探究:

  1、如圖,小明家、王老師家、學校在同一條路上.小明家到王老師家路程為3km,王老師家到學校的路程為0.5km,由于小明父母戰(zhàn)斗在抗“非典”第一線,為了使他能按時到校,王老師每天騎自行車接小明上學.已知王老師騎自行車的速度是步行速度的3倍,每天比平時步行上班多用了20分鐘,問王老師的步行速度及騎自行車的速度各是多少?(20xx年吉林省中考題)

  2、從甲地到乙地有兩條公路:一條全長600千米的普通公路,另一條是全長480千米的高速公路。某客車在高速公路上行駛的速度比在普通公路上快45千米/時,由高速公路從甲地到乙地所需時間是由普通公路從甲地到乙地所需時間的一半。求客車在高速公路上行駛的.速度。

  3、輪船順水航行40千米所用的時間與逆水航行30千米所用的時間相同,若水流的速度為3千米/時求輪船在靜水中的速度?

  積累與總結:

  1、列方程解決實際情境中的具體問題,是數學實用性最直接的體現,而解決這一問題是如何將實際問題建立方程這樣的數學模型,關鍵則在于審清題意,找出題中的等量關系,找到它就為列方程指明了方向.

  2、列分式方程解應用題的一般步驟:(1)審清題意,找出等量關系;(2)設出__________;(3)列出_________;(4)解分式方程;(5)檢驗,既要驗證是否是原方程的的根,又要驗證是否符合題意;(6)寫出答案。

分式的教案5

  教學目標:

  1.學會根據定義判別分式方程與整式方程,了解分式方程增根產生的原因,掌握驗根的方法。

  2.掌握可化為一元一次方程或一元二次方程的分式方程的解法,會用去分母求方程的解。

  教學重點:去分母法解可化為一元一次方程或一元二次方程的分式方程。驗根的`方法。

  教學難點:驗根的方法。分式方程增根產生的原因。

  教學準備:小黑板。

  教學過程:

  復習引入:下列方程中哪些分母中含有未知數?哪些分母中不含有未知數?

 �。�1);(2);(3);(4);

 �。�5);(6);(7);(8)。

  講授新課:

  1.由上述歸納出分式方程的概念:只含有分式或整式,且分母里含有未知數的方程叫做分式方程。方程兩邊都是整式的方程叫做整式方程。

  2.討論分式方程的解法:

 �。�1)復習解方程時,怎樣去分母?

 �。�2)講解例1:解方程(按課文講解)

  歸納:解分式方程的基本思想:

  分式方程整式方程

  (3)講解例2:解方程(按課文講解)

  歸納:在去分母時,有時可能產生不適合原方程的根,我們把它叫做增根。因此解分式方程必須檢驗,常把求得得根代入原方程的最簡公分母,看它的值是否為0,若為0,則為增根,必須舍去;若不為0,則為原方程的根。

  想一想:產生增根的原因是什么?

  鞏固練習:P1451t,2t。

  課堂小結:什么叫做分式方程?

  解分式方程時,為什么要檢驗?怎樣檢驗?

  布置作業(yè):見作業(yè)本。

分式的教案6

  一、教學目標

  1。使學生掌握可化為一元二次方程的分式方程的解法,能用去分母的方法或換元的方法求此類方程的解,并會驗根。

  2。通過本節(jié)課的教學,向學生滲透“轉化”的數學思想方法;

  3。通過本節(jié)的教學,繼續(xù)向學生滲透事物是相互聯系及相互轉化的辨證唯物主義觀點。

  二、重點、難點、疑點及解決辦法

  1。教學重點:可化為一元二次方程的分式方程的解法。

  2。教學難點:解分式方程,學生不容易理解為什么必須進行檢驗。

  3。教學疑點:學生容易忽視對分式方程的解進行檢驗通過對分式方程的解的剖析,進一步使學生認識解分式方程必須進行檢驗的重要性。

  4。解決辦法:(l)分式方程的解法順序是:先特殊、后一般,即能用換元法的方程應盡量用換元法解。(2)無論用去分母法解,還是換元法解分式方程,都必須進行驗根,驗根是解分式方程必不可少的一個重要步驟。(3)方程的增根具備兩個特點,①它是由分式方程所轉化成的整式方程的根②它能使原分式方程的公分母為0。

  三、教學步驟

  (一)教學過程

  1。復習提問

 �。�1)什么叫做分式方程?解可化為一元一次方程的分式方程的方法與步驟是什么?

  (2)解可化為一元一次方程的分式方程為什么要檢驗?檢驗的方法是什么?

 �。�3)解方程,并由此方程說明解方程過程中產生增根的原因。

  通過(1)、(2)、(3)的準備,可直接點出本節(jié)的內容:可化為一元二次方程的分式方程的解法相同。

  在教師點出本節(jié)內容的處理方法與以前所學的知識完全類同后,讓全體學生對照前面復習過的分式方程的解,來進一步加深對“類比”法的理解,以便學生全面地參與到教學活動中去,全面提高教學質量。

  在前面的基礎上,為了加深學生對新知識的理解,教師與學生共同分析解決例題,以提高學生分析問題和解決問題的能力。

  2。例題講解

  例1解方程。

  分析對于此方程的解法,不是教師講如何如何解,而是讓學生對已有知識的回憶,使用原來的方法,去通過試的手段來解決,在學生敘述過程中,發(fā)現問題并及時糾正。

  解:兩邊都乘以,得

  去括號,得

  整理,得

  解這個方程,得

  檢驗:把代入,所以是原方程的根。

  ∴原方程的根是。

  雖然,此種類型的方程在初二上學期已學習過,但由于相隔時間比較長,所以有一些學生容易犯的類型錯誤應加以強調,如在第一步中。需強調方程兩邊同時乘以最簡公分母。另外,在把分式方程轉化為整式方程后,所得的一元二次方程有兩個相等的實數根,由于是解分式方程,所以在下結論時,應強調取一即可,這一點,教師應給以強調。

  例2解方程

  分析:解此方程的關鍵是如何將分式方程轉化為整式方程,而轉化為整式方程的關鍵是

  正確地確定出方程中各分母的最簡公分母,由于此方程中的分母并非均按的'降冪排列,所以將方程的分母作一轉化,化為按字母終行降暴排列,并對可進行分解的分母進行分解,從而確定出最簡公分母。

  解:方程兩邊都乘以,約去分母,得

  整理后,得

  解這個方程,得

  檢驗:把代入,它不等于0,所以是原方程的根,把

  代入它等于0,所以是增根。

  ∴原方程的根是

  師生共同解決例1、例2后,教師引導學生與已學過的知識進行比較。

  例3解方程。

  分析:此題也可像前面例l、例2一樣通過去分母解決,學生可以試,但由于轉化后為一元四次方程,解起來難度很大,因此應尋求簡便方式,通過引導學生仔細觀察發(fā)現,方程中含有未知數的部分和互為倒數,由此可設,則可通過換元法來解題,通過求出y后,再求原方程的未知數的值。

  解:設,那么,于是原方程變形為

  兩邊都乘以y,得

  解得

  當時,,去分母,得

  解得;

  當時,,去分母整理,得,

  檢驗:把分別代入原方程的分母,各分母均不等于0。

  ∴原方程的根是,

  此題在解題過程中,經過兩次“轉化”,所以在檢驗中,把所得的未知數的值代入原方程中的分母進行檢驗。

  鞏固練習:教材P49中1、2引導學筆答。

 �。ǘ┛偨Y、擴展

  對于小結,教師應引導學生做出。

  本節(jié)內容的小結應從所學習的知識內容、所學知識采用了什么數學思想及教學方法兩方面進行。

  本節(jié)我們通過類比的方法,在已有的解可化為一元一次方程的分式方程的基礎上,學習了可化為一元二次方程的分式方程的解法,在具體方程的解法上,適用了“轉化”與“換元”的基本數學思想與基本數學方法。

  此小結的目的,使學生能利用“類比”的方法,使學過的知識系統(tǒng)化、網絡化,形成認知結構,便于學生掌握。

  四、布置作業(yè)

  1。教材P50中A1、2、3。

  2。教材P51中B1、2

  五、板書設計

  探究活動1

  解方程:

  分析:若去分母,則會變?yōu)楦叽畏匠�,這樣解起來,比較繁,注意到分母中都有,可用換元法降次

  設,則原方程變?yōu)?/p>

  ∴

  ∴或無解

  ∴

  經檢驗:是原方程的解

  探究活動2

  有農藥一桶,倒出8升后,用水補滿,然后又倒出4升,再用水補滿,此時農藥與水的比為18:7,求桶的容積。

  解:設桶的容積為升,第一次用水補滿后,濃度為,第二次倒出的農藥數為4。升,兩次共倒出的農藥總量(8+4· )占原來農藥,故

  整理,

  (舍去)

  答:桶的容積為40升。

分式的教案7

  一、教學目標

  1.使學生理解并掌握分式的概念,了解有理式的概念;

  2.使學生能夠求出分式有意義的條件;

  3.通過類比分數研究分式的教學,培養(yǎng)學生運用類比轉化的思想方法解決問題的能力;

  4.通過類比方法的教學,培養(yǎng)學生對事物之間是普遍聯系又是變化發(fā)展的辨證觀點的再認識.

  二、重點、難點、疑點及解決辦法

  1.教學重點和難點 明確分式的分母不為零.

  2.疑點及解決辦法 通過類比分數的意義,加強對分式意義的理解.

  三、教學過程

  【新課引入】

  前面所研究的因式分解問題是把整式分解成若干個因式的積的問題,但若有如下問題:某同學分鐘做了60個仰臥起坐,每分鐘做多少個?可表示為,問,這是不是整式?請一位同學給它試命名,并說一說怎樣想到的?(學生有過分數的經驗,可猜想到分式)

  【新課】

  1.分式的定義

  (1)由學生分組討論分式的`定義,對于“兩個整式相除叫做分式”等錯誤,由學生舉反例一一加以糾正,得到結論:

  用、表示兩個整式,就可以表示成的形式.如果中含有字母,式子就叫做分式.其中叫做分式的分子,叫做分式的分母.

  (2)由學生舉幾個分式的例子.

  (3)學生小結分式的概念中應注意的問題.

 �、俜帜钢泻凶帜�.

 �、谌缤謹狄粯樱质降姆帜覆荒転榱�.

  (4)問:何時分式的值為零?[以(2)中學生舉出的分式為例進行討論]

  2.有理式的分類

  請學生類比有理數的分類為有理式分類:

  例1 當取何值時,下列分式有意義?

  (1);

  解:由分母得.

  ∴當時,原分式有意義.

  (2);

  解:由分母得.

  ∴當時,原分式有意義.

  (3);

  解:∵恒成立,

  ∴取一切實數時,原分式都有意義.

  (4).

  解:由分母得.

  ∴當且時,原分式有意義.

  思考:若把題目要求改為:“當取何值時下列分式無意義?”該怎樣做?

  例2 當取何值時,下列分式的值為零?

  (1);

  解:由分子得.

  而當時,分母.

  ∴當時,原分式值為零.

  小結:若使分式的值為零,需滿足兩個條件:①分子值等于零;②分母值不等于零.

  (2);

  解:由分子得.

  而當時,分母,分式無意義.

  當時,分母.

  ∴當時,原分式值為零.

  (3);

  解:由分子得.

  而當時,分母.

  當時,分母.

  ∴當或時,原分式值都為零.

  (4).

  解:由分子得.

  而當時,,分式無意義.

  ∴沒有使原分式的值為零的的值,即原分式值不可能為零.

  (四)總結、擴展

  1.分式與分數的區(qū)別.

  2.分式何時有意義?

  3.分式何時值為零?

  (五)隨堂練習

  1.填空題:

  (1)當時,分式的值為零

  (2)當時,分式的值為零

  (3)當時,分式的值為零

  2.教材P55中1、2、3.

  八、布置作業(yè)

  教材P56中A組3、4;B組(1)、(2)、(3).

  九、板書設計

  課題 例1

  1.定義例2

  2.有理式分類

分式的教案8

  ●課題

  §3.4.2分式方程(二)

  ●教學目標

 �。ㄒ唬┙虒W知識點

  1.解分式方程的一般步驟.

  2.了解解分式方程驗根的必要性.

  (二)能力訓練要求

  1.通過具體例子,讓學生獨立探索方程的解法,經歷和體會解分式方程的必要步驟.

  2.使學生進一步了解數學思想中的“轉化”思想,認識到能將分式方程轉化為整式方程,從而找到解分式方程的途徑.

 �。ㄈ┣楦信c價值觀要求

  1.培養(yǎng)學生自覺反思求解過程和自覺檢驗的良好習慣,培養(yǎng)嚴謹的治學態(tài)度.

  2.運用“轉化”的思想,將分式方程轉化為整式方程,從而獲得一種成就感和學習數學的自信.

  ●教學重點

  1.解分式方程的一般步驟,熟練掌握分式方程的解決.

  2.明確解分式方程驗根的必要性.

  ●教學難點

  明確分式方程驗根的必要性.

  ●教學方法

  探索發(fā)現法

  學生在教師的引導下,探索分式方程是如何轉化為整式方程,并發(fā)現解分式方程驗根的必要性.

  ●教學過程

 �、�.提出問題,引入新課

 �。蹘煟菰谏瞎�(jié)課的幾個問題,我們根據題意將具體實際的情境,轉化成了數學模型——分式方程.但要使問題得到真正的`解決,則必須設法解出所列的分式方程.

  這節(jié)課,我們就來學習分式方程的解法.我們不妨先來回憶一下我們曾學過的一元一次方程的解法,也許你會從中得到啟示,尋找到解分式方程的方法.

  解方程+=2- [師生共解](1)去分母,方程兩邊同乘以分母的最小公倍數6,得

  3(3x-1)+2(5x+2)=6×2-(4x-2).

 �。�2)去括號,得9x-3+10x+4=12-4x+2,

  (3)移項,得9x+10x+4x=12+2+3-4,

 �。�4)合并同類項,得23x=13,

 �。�5)使x的系數化為1,兩邊同除以23,x=.

分式的教案9

  教案

  【教學目標】

  知識目標

  1.理解分式方程的意義.

  2.了解解分式方程的基本思路和解法.

  3.理解解分式方程時可能無解的原因,并掌握分式方程的驗根方法.

  能力目標

  經歷“實際問題——分式方程——整式方程”的過程,發(fā)展學生分析問題、解決問題的能力,滲透數學的轉化思想,培養(yǎng)學生的應用意識.

  情感目標

  在活動中培養(yǎng)學生樂于探究、合作學習的習慣,培養(yǎng)學生努力尋找解決問題的進取心,體會數學的應用價值.

  【教學重難點】

  重點:解分式方程的基本思路和解法.

  難點:理解解分式方程時可能無解的原因.

  【教學過程】

  一、創(chuàng)設情境,導入新課

  問題:一艘輪船在靜水中的最大航速為30 km/h,它以最大航速沿江順流航行90 km所用時間,與以最大航速逆流航行60 km所用時間相等,江水的流速為多少?

  分析:設江水的流速為v km/h,則輪船順流航行的速度為(30+v) km/h,逆流航行的速度為(30-v) km/h,順流航行90 km所用的時間為小時,逆流航行60 km所用的時間為小時.可列方程=.

  這個方程和我們以前所見過的方程不同,它的主要特點是:分母中含有未知數,這種方程就是我們今天要研究的分式方程.

  二、探究新知

  1.教師提出下列問題讓學生探究:

  (1)方程=與以前所學的整式方程有何不同?

  (2)什么叫分式方程?

  (3)如何解分式方程=呢?怎樣檢驗所求未知數的值是原方程的解?

  (4)你能結合上述探究活動歸納出解分式方程的基本思路和做法嗎?

  (學生思考、討論后在全班交流)

  2.根據學生探究結果進行歸納:

  (1)分式方程的定義(板書):

  分母里含有未知數的方程叫分式方程.以前學過的方程都是整式方程

  練習:判斷下列各式哪個是分式方程.

  (1)x+y=5; (2)=;

  (3); (4)=0

  在學生回答的基礎上指出(1)、(2)是整式方程,(3)是分式,(4)是分式方程.

  (2)解分式方程=的基本思路是:將分式方程化為整式方程.具體做法是:“去分母”,即方程兩邊同乘最簡公分母.這也是解分式方程的一般思路和做法.

  3.仿照上面解分式方程的做法,嘗試解分式方程=,并檢驗所得的解,你發(fā)現了什么?與你的同伴交流.

  4.思考:上面兩個分式方程中,為什么=①去分母后所得整式方程的解就是①的解,而=②去分母后所得整式方程的解卻不是②的解呢?學生分組討論產生上述結果的原因,并互相交流.

  5.歸納:

  (1)增根:將分式方程變?yōu)檎椒匠虝r,方程兩邊同乘以一個含有未知數的整式,并約去分母,有可能產生不適合原方程的解(或根),這種根通常稱為增根.

  (2)解分式方程必須進行檢驗:將整式方程的解代入最簡公分母,如果最簡公分母的值不為0,則整式方程的解是原分式方程的解;否則,這個解不是原分式方程的解.

  三、鞏固練習

  1.在下列方程中:

 �、�=8+; ②=x;

  ③=; ④x-=0.

  是分式方程的有( )

  A.①和② B.②和③

  C.③和④ D.④和①

  2.解分式方程:(1)=;(2)=.

  四、課堂小結

  1.通過本節(jié)課的學習,你有哪些收獲?

  2.在本節(jié)課的學習過程中,你有什么體會?與同伴交流.

  引導學生總結得出:

  解分式方程的一般步驟:

  (1)在方程的兩邊都乘以最簡公分母,約去分母,化為整式方程.

  (2)解這個整式方程.

  (3)把整式方程的根代入最簡公分母,看結果是不是零;使最簡公分母為零的根不是原方程的'解時,必須舍去.

  五、布置作業(yè)

  課本152頁練習.

  第2課時

  【教學目標】

  知識目標

  會分析題意找出相等關系,并能列出分式方程解決實際問題.

  ok3w_ads("s002");

  同步練習

  1.在某市舉行的大型商業(yè)演出活動中,對團體購買門票思想優(yōu)惠,決定在原定票價的基礎上每張降價80元,這樣按原定票價需花6000元購買的門票張數,現在只花費了4800元,求每張門票的原定價格?

  2.為豐富校園文化生活,某校舉辦了成語大賽.學校準備購買一批成語詞典獎勵獲獎學生.購買時,商家給每本詞典打了九折,用2880元錢購買的成語詞典,打折后購買的數量比打折前多10本.求打折前每本筆記本的售價是多少元?

  2.“六?一”兒童節(jié)前,某玩具商店根據市場調查,用2500元購進一批兒童玩具,上市后很快脫銷,接著又用4500元購進第二批這種玩具,所購數量是第一批數量的1.5倍,但每套進價多了10元.

  (1)求第一批玩具每套的進價是多少元?

  (2)如果這兩批玩具每套售價相同,且全部售完后總利潤不低于25%,那么每套售價至少是多少元?

  精選練習

  列方程或方程組解應用題:

  據林業(yè)專家分析,樹葉在光合作用后產生的分泌物能夠吸附空氣中的一些懸浮顆粒物,具有滯塵凈化空氣的作用.已知一片銀杏樹葉一年的平均滯塵量比一片國槐樹葉一年的平均滯塵量的2倍少4毫克,若一年滯塵1000毫克所需的銀杏樹葉的片數與一年滯塵550毫克所需的國槐樹葉的片數相同,求一片國槐樹葉一年的平均滯塵量.

分式的教案10

  教學目標

  1。使學生能分析題目中的等量關系,掌握列分式方程解應用題的方法和步驟,提高學生分析問題和解決問題的能力;

  2。通過列分式方程解應用題,滲透方程的思想方法。

  教學重點和難點

  重點:列分式方程解應用題。

  難點:根據題意,找出等量關系,正確列出方程。

  教學過程設計

  一、復習

  例 解方程:

  (1)2x+xx+3=1; (2)15x=2×15 x+12;

  (3)2(1x+1x+3)+x-2x+3=1。

  解 (1)方程兩邊都乘以x(3+3),去分母,得

  2(x+3)+x2=x2+3x,即2x-3x=-6

  所以 x=6。

  檢驗:當x=6時,x(x+3)=6(6+3)≠0,所以x=6是原分式方程的根。

 �。�2)方程兩邊都乘以x(x+12),約去分母,得

  15(x+12)=30x。

  解這個整式方程,得

  x=12。

  檢驗:當x=12時,x(x+12)=12(12+12)≠0,所以x=12是原分式方程的根。

 �。�3)整理,得

  2x+2x+3+x-2x+3=1,即2x+2+x-2 x+3=1,

  即 2x+xx+3=1。

  方程兩邊都乘以x(x+3),去分母,得

  2(x+3)+x2=x(x+3),

  即 2x+6+x2=x2+3x,

  亦即 2x-3x=-6。

  解這個整式方程,得 x=6。

  檢驗:當x=6時,x(x+3)=6(6+3)≠0,所以x=6是原分式方程的根。

  二、新課

  例1 一隊學生去校外參觀,他們出發(fā)30分鐘時,學校要把一個緊急通知傳給帶隊老師,派一名學生騎車從學校出發(fā),按原路追趕隊伍。若騎車的速度是隊伍進行速度的2倍,這名學生追上隊伍時離學校的距離是15千米,問這名學生從學校出發(fā)到追上隊伍用了多少時間?

  請同學根據題意,找出題目中的等量關系。

  答:騎車行進路程=隊伍行進路程=15(千米);

  騎車的速度=步行速度的2倍;

  騎車所用的時間=步行的時間-0。5小時。

  請同學依據上述等量關系列出方程。

  答案:

  方法1 設這名學生騎車追上隊伍需x小時,依題意列方程為

  15x=2×15 x+12。

  方法2 設步行速度為x千米/時,騎車速度為2x千米/時,依題意列方程為

  15x-15 2x=12。

  解 由方法1所列出的方程,已在復習中解出,下面解由方法2所列出的方程。

  方程兩邊都乘以2x,去分母,得

  30-15=x,

  所以 x=15。

  檢驗:當x=15時,2x=2×15≠0,所以x=15是原分式方程的根,并且符合題意。

  所以騎車追上隊伍所用的時間為15千米 30千米/時=12小時。

  答:騎車追上隊伍所用的時間為30分鐘。

  指出:在例1中我們運用了兩個關系式,即時間=距離速度,速度=距離 時間。

  如果設速度為未知量,那么按時間找等量關系列方程;如果設時間為未知量,那么按

  速度找等量關系列方程,所列出的方程都是分式方程。

  例2 某工程需在規(guī)定日期內完成,若由甲隊去做,恰好如期完成;若由乙隊去做,要超過規(guī)定日期三天完成�,F由甲、乙兩隊合做兩天,剩下的工程由乙獨做,恰好在規(guī)定日期完成,問規(guī)定日期是多少天?

  分析;這是一個工程問題,在工程問題中有三個量,工作量設為s,工作所用時間設為t,工作效率設為m,三個量之間的關系是

  s=mt,或t=sm,或m=st。

  請同學根據題中的等量關系列出方程。

  答案:

  方法1 工程規(guī)定日期就是甲單獨完成工程所需天數,設為x天,那么乙單獨完成工程所需的天數就是(x+3)天,設工程總量為1,甲的工作效率就是x1,乙的工作效率是1x+3。依題意,列方程為

  2(1x+1x3)+x2-xx+3=1。

  指出:工作效率的意義是單位時間完成的工作量。

  方法2 設規(guī)定日期為x天,乙與甲合作兩天后,剩下的工程由乙單獨做,恰好在規(guī)定日期完成,因此乙的工作時間就是x天,根據題意列方程

  2x+xx+3=1。

  方法3 根據等量關系,總工作量—甲的工作量=乙的工作量,設規(guī)定日期為x天,則可列方程

  1-2x=2x+3+x-2x+3。

  用方法1~方法3所列出的方程,我們已在新課之前解出,這里就不再解分式方程了。重點是找等量關系列方程。

  三、課堂練習

  1。甲加工180個零件所用的時間,乙可以加工240個零件,已知甲每小時比乙少加工5個零件,求兩人每小時各加工的零件個數。

  2。A,B兩地相距135千米,有大,小兩輛汽車從A地開往B地,大汽車比小汽車早出發(fā)5小時,小汽車比大汽車晚到30分鐘。已知大、小汽車速度的比為2:5,求兩輛汽車的速度。

  答案:

  1。甲每小時加工15個零件,乙每小時加工20個零件。

  2。大,小汽車的速度分別為18千米/時和45千米/時。

  四、小結

  1。列分式方程解應用題與列一元一次方程解應用題的方法與步驟基本相同,不同點是,解分式方程必須要驗根。一方面要看原方程是否有增根,另一方面還要看解出的根是否符合題意。原方程的增根和不符合題意的根都應舍去。

  2。列分式方程解應用題,一般是求什么量,就設所求的量為未知數,這種設未知數的方法,叫做設直接未知數。但有時可根據題目特點不直接設題目所求的量為未知量,而是設另外的量為未知量,這種設未知數的方法叫做設間接未知數。在列分式方程解應用題時,設間接未知數,有時可使解答變得簡捷。例如在課堂練習中的第2題,若題目的條件不變,把問題改為求大、小兩輛汽車從A地到達B地各用的時間,如果設直接未知數,即設,小汽車從A地到B地需用時間為x小時,則大汽車從A地到B地需(x+5-12)小時,依題意,列方程

  135 x+5-12:135x=2:5。

  解這個分式方程,運算較繁瑣。如果設間接未知數,即設速度為未知數,先求出大、小兩輛汽車的速度,再分別求出它們從A地到B地的時間,運算就簡便多了。

  五、作業(yè)

  1 填空:

 �。�1)一件工作甲單獨做要m小時完成,乙單獨做要n小時完成,如果兩人合做,完成這件工作的時間是______小時;

 �。�2)某食堂有米m公斤,原計劃每天用糧a公斤,現在每天節(jié)約用糧b公斤,則可以比原計劃多用天數是______;

 �。�3)把a千克的鹽溶在b千克的水中,那么在m千克這種鹽水中的含鹽量為______千克。

  2 列方程解應用題。

 �。�1)某工人師傅先后兩次加工零件各1500個,當第二次加工時,他革新了工具,改進了操作方法,結果比第一次少用了18個小時。已知他第二次加工效率是第一次的2。5倍,求他第二次加工時每小時加工多少零件?

  (2)某人騎自行車比步行每小時多走8千米,如果他步行12千米所用時間與騎車行36千米所用的時間相等,求他步行40千米用多少小時?

 �。�3)已知輪船在靜水中每小時行20千米,如果此船在某江中順流航行72千米所用的時間與逆流航行48千米所用的時間相同,那么此江水每小時的流速是多少千米?

 �。�4)A,B兩地相距135千米,兩輛汽車從A地開往B地,大汽車比小汽車早出發(fā)5小時,小汽車比大汽車晚到30分鐘。已知兩車的速度之比是5:2,求兩輛汽車各自的速度。

  答案:

  1 (1)mn m+n; (2)m a-b-ma; (3)ma a+b。

  2 (1)第二次加工時,每小時加工125個零件。

 �。�2)步行40千米所用的時間為40 4=10(時)。答步行40千米用了10小時。

  (3)江水的流速為4千米/時。

  課堂教學設計說明

  1。教學設計中,對于例

  1,引導學生依據題意,找到三個等量關系,并用兩種不同的方法列出方程;對于例

  2,引導學生依據題意,用三種不同的方法列出方程。這種安排,意在啟發(fā)學生能善于從不同的角度、不同的方向思考問題,激勵學生在解決問題中養(yǎng)成靈活的思維習慣。這就為在列分式方程解應用題教學中培養(yǎng)學生的發(fā)散思維提供了廣闊的空間。

  2。教學設計中體現了充分發(fā)揮例題的模式作用。

  例1是行程問題,其中距離是已知量,求速度(或時間);例2是工程問題,其中工作總量為已知量,求完成工作量的時間(或工作效率)。這些都是運用列分式方程求解的典型問題。教學中引導學生深入分析已知量與未知量和題目中的等量關系,以及列方程求解的思路,以促使學生加深對模式的主要特征的理解和識另?別,讓學生弄清哪些類型的問題可借助于分式方程解答,求解的思路是什么。學生完成課堂練習和作業(yè),則是識別問題類型,能把面對的問題和已掌握的模式在頭腦中建立聯系,探求解題思路。

  3。通過列分式方程解應用題數學,滲透了方程的思想方法,從中使學生認識到方程的思想方法是數學中解決問題的一個銳利武器。方程的思想方法可以用“以假當真”和“弄假成真”兩句話形容。如何通過設直接未知數或間接未知數的方法,假設所求的量為x,這時就把它作為一個實實在在的量。通過找等量關系列方程,此時是把已知量與假設的未知量平等看待,這就是“以假當真”。通過解方程求得問題的解,原先假設的未知量x就變成了確定的量,這就是“弄假成真”。

  列分式方程解應用題

  教學目標

  1。使學生能分析題目中的等量關系,掌握列分式方程解應用題的方法和步驟,提高學生分析問題和解決問題的能力;

  2。通過列分式方程解應用題,滲透方程的思想方法。

  教學重點和難點

  重點:列分式方程解應用題。

  難點:根據題意,找出等量關系,正確列出方程。

  教學過程設計

  一、復習

  例 解方程:

 �。�1)2x+xx+3=1; (2)15x=2×15 x+12;

  (3)2(1x+1x+3)+x-2x+3=1。

  解 (1)方程兩邊都乘以x(3+3),去分母,得

  2(x+3)+x2=x2+3x,即2x-3x=-6

  所以 x=6。

  檢驗:當x=6時,x(x+3)=6(6+3)≠0,所以x=6是原分式方程的`根。

  (2)方程兩邊都乘以x(x+12),約去分母,得

  15(x+12)=30x。

  解這個整式方程,得

  x=12。

  檢驗:當x=12時,x(x+12)=12(12+12)≠0,所以x=12是原分式方程的根。

 �。�3)整理,得

  2x+2x+3+x-2x+3=1,即2x+2+x-2 x+3=1,

  即 2x+xx+3=1。

  方程兩邊都乘以x(x+3),去分母,得

  2(x+3)+x2=x(x+3),

  即 2x+6+x2=x2+3x,

  亦即 2x-3x=-6。

  解這個整式方程,得 x=6。

  檢驗:當x=6時,x(x+3)=6(6+3)≠0,所以x=6是原分式方程的根。

  二、新課

  例1 一隊學生去校外參觀,他們出發(fā)30分鐘時,學校要把一個緊急通知傳給帶隊老師,派一名學生騎車從學校出發(fā),按原路追趕隊伍。若騎車的速度是隊伍進行速度的2倍,這名學生追上隊伍時離學校的距離是15千米,問這名學生從學校出發(fā)到追上隊伍用了多少時間?

  請同學根據題意,找出題目中的等量關系。

  答:騎車行進路程=隊伍行進路程=15(千米);

  騎車的速度=步行速度的2倍;

  騎車所用的時間=步行的時間-0。5小時。

  請同學依據上述等量關系列出方程。

  答案:

  方法1 設這名學生騎車追上隊伍需x小時,依題意列方程為

  15x=2×15 x+12。

  方法2 設步行速度為x千米/時,騎車速度為2x千米/時,依題意列方程為

  15x-15 2x=12。

  解 由方法1所列出的方程,已在復習中解出,下面解由方法2所列出的方程。

  方程兩邊都乘以2x,去分母,得

  30-15=x,

  所以 x=15。

  檢驗:當x=15時,2x=2×15≠0,所以x=15是原分式方程的根,并且符合題意。

  所以騎車追上隊伍所用的時間為15千米 30千米/時=12小時。

  答:騎車追上隊伍所用的時間為30分鐘。

  指出:在例1中我們運用了兩個關系式,即時間=距離速度,速度=距離 時間。

  如果設速度為未知量,那么按時間找等量關系列方程;如果設時間為未知量,那么按

  速度找等量關系列方程,所列出的方程都是分式方程。

  例2 某工程需在規(guī)定日期內完成,若由甲隊去做,恰好如期完成;若由乙隊去做,要超過規(guī)定日期三天完成。現由甲、乙兩隊合做兩天,剩下的工程由乙獨做,恰好在規(guī)定日期完成,問規(guī)定日期是多少天?

  分析;這是一個工程問題,在工程問題中有三個量,工作量設為s,工作所用時間設為t,工作效率設為m,三個量之間的關系是

  s=mt,或t=sm,或m=st。

  請同學根據題中的等量關系列出方程。

  答案:

  方法1 工程規(guī)定日期就是甲單獨完成工程所需天數,設為x天,那么乙單獨完成工程所需的天數就是(x+3)天,設工程總量為1,甲的工作效率就是x1,乙的工作效率是1x+3。依題意,列方程為

  2(1x+1x3)+x2-xx+3=1。

  指出:工作效率的意義是單位時間完成的工作量。

  方法2 設規(guī)定日期為x天,乙與甲合作兩天后,剩下的工程由乙單獨做,恰好在規(guī)定日期完成,因此乙的工作時間就是x天,根據題意列方程

  2x+xx+3=1。

  方法3 根據等量關系,總工作量—甲的工作量=乙的工作量,設規(guī)定日期為x天,則可列方程

  1-2x=2x+3+x-2x+3。

  用方法1~方法3所列出的方程,我們已在新課之前解出,這里就不再解分式方程了。重點是找等量關系列方程。

  三、課堂練習

  1。甲加工180個零件所用的時間,乙可以加工240個零件,已知甲每小時比乙少加工5個零件,求兩人每小時各加工的零件個數。

  2。A,B兩地相距135千米,有大,小兩輛汽車從A地開往B地,大汽車比小汽車早出發(fā)5小時,小汽車比大汽車晚到30分鐘。已知大、小汽車速度的比為2:5,求兩輛汽車的速度。

  答案:

  1。甲每小時加工15個零件,乙每小時加工20個零件。

  2。大,小汽車的速度分別為18千米/時和45千米/時。

  四、小結

  1。列分式方程解應用題與列一元一次方程解應用題的方法與步驟基本相同,不同點是,解分式方程必須要驗根。一方面要看原方程是否有增根,另一方面還要看解出的根是否符合題意。原方程的增根和不符合題意的根都應舍去。

  2。列分式方程解應用題,一般是求什么量,就設所求的量為未知數,這種設未知數的方法,叫做設直接未知數。但有時可根據題目特點不直接設題目所求的量為未知量,而是設另外的量為未知量,這種設未知數的方法叫做設間接未知數。在列分式方程解應用題時,設間接未知數,有時可使解答變得簡捷。例如在課堂練習中的第2題,若題目的條件不變,把問題改為求大、小兩輛汽車從A地到達B地各用的時間,如果設直接未知數,即設,小汽車從A地到B地需用時間為x小時,則大汽車從A地到B地需(x+5-12)小時,依題意,列方程

  135 x+5-12:135x=2:5。

  解這個分式方程,運算較繁瑣。如果設間接未知數,即設速度為未知數,先求出大、小兩輛汽車的速度,再分別求出它們從A地到B地的時間,運算就簡便多了。

  五、作業(yè)

  1。填空:

 �。�1)一件工作甲單獨做要m小時完成,乙單獨做要n小時完成,如果兩人合做,完成這件工作的時間是______小時;

 �。�2)某食堂有米m公斤,原計劃每天用糧a公斤,現在每天節(jié)約用糧b公斤,則可以比原計劃多用天數是______;

 �。�3)把a千克的鹽溶在b千克的水中,那么在m千克這種鹽水中的含鹽量為______千克。

  2。列方程解應用題。

 �。�1)某工人師傅先后兩次加工零件各1500個,當第二次加工時,他革新了工具,改進了操作方法,結果比第一次少用了18個小時。已知他第二次加工效率是第一次的2。5倍,求他第二次加工時每小時加工多少零件?

 �。�2)某人騎自行車比步行每小時多走8千米,如果他步行12千米所用時間與騎車行36千米所用的時間相等,求他步行40千米用多少小時?

  (3)已知輪船在靜水中每小時行20千米,如果此船在某江中順流航行72千米所用的時間與逆流航行48千米所用的時間相同,那么此江水每小時的流速是多少千米?

 �。�4)A,B兩地相距135千米,兩輛汽車從A地開往B地,大汽車比小汽車早出發(fā)5小時,小汽車比大汽車晚到30分鐘。已知兩車的速度之比是5:2,求兩輛汽車各自的速度。

  答案:

  1。(1)mn m+n; (2)m a-b-ma; (3)ma a+b。

  2。(1)第二次加工時,每小時加工125個零件。

  (2)步行40千米所用的時間為40 4=10(時)。答步行40千米用了10小時。

 �。�3)江水的流速為4千米/時。

  課堂教學設計說明

  1 教學設計中,對于例1,引導學生依據題意,找到三個等量關系,并用兩種不同的方法列出方程;對于例2,引導學生依據題意,用三種不同的方法列出方程。這種安排,意在啟發(fā)學生能善于從不同的角度、不同的方向思考問題,激勵學生在解決問題中養(yǎng)成靈活的思維習慣。這就為在列分式方程解應用題教學中培養(yǎng)學生的發(fā)散思維提供了廣闊的空間。

  2 教學設計中體現了充分發(fā)揮例題的模式作用。例1是行程問題,其中距離是已知量,求速度(或時間);例2是工程問題,其中工作總量為已知量,求完成工作量的時間(或工作效率)。這些都是運用列分式方程求解的典型問題。教學中引導學生深入分析已知量與未知量和題目中的等量關系,以及列方程求解的思路,以促使學生加深對模式的主要特征的理解和識另?別,讓學生弄清哪些類型的問題可借助于分式方程解答,求解的思路是什么。學生完成課堂練習和作業(yè),則是識別問題類型,能把面對的問題和已掌握的模式在頭腦中建立聯系,探求解題思路。

  3 通過列分式方程解應用題數學,滲透了方程的思想方法,從中使學生認識到方程的思想方法是數學中解決問題的一個銳利武器。方程的思想方法可以用“以假當真”和“弄假成真”兩句話形容。如何通過設直接未知數或間接未知數的方法,假設所求的量為x,這時就把它作為一個實實在在的量。通過找等量關系列方程,此時是把已知量與假設的未知量平等看待,這就是“以假當真”。通過解方程求得問題的解,原先假設的未知量x就變成了確定的量,這就是“弄假成真”。

分式的教案11

  教學目標:

  1.了解分式的概念,會判斷一個代數式是否是分式;

  2.能用分式表示簡單問題中數量之間的關系,能解釋簡單分式的實際背景或幾何意義;

  3.能分析出一個簡單分式有、無意義的條件;

  4.會根據已知條件求分式的值.

  教學重點、難點:

  重點是正確理解分式的意義,分式是否有意義的條件及分式的值為零的條件,也是本節(jié)的難點.

  教學過程:

  一、創(chuàng)設情境:

  京滬鐵路是我國東部沿海地區(qū)縱貫南北的交通大動脈,全長1462,是我國最繁忙的鐵路干線之一.

  如果貨運列車的速度為a/h,快速列車的速度為貨運列車2倍,那么:

  (1)貨運列車從北京到上海需要多長時間?

  (2)快速列車從北京到上海需要多長時間?

  (3)已知從北京到上�?焖倭熊嚤蓉涍\列車少用12h,你能列出一個方程嗎?

  二、探索活動:

  列出下列式子:

  (1)一塊長方形玻璃板的`面積為22,如果寬為 ,那么長是 .

  (2)小麗用 元人民幣買了 袋瓜子,那么每袋瓜子的價格是 元.

  (3)正 邊形的每個內角為 度.

  (4)兩塊面積分別為 公頃、 公頃的棉田,產棉花分別為 ㎏、 ㎏.這兩塊棉田平均每公頃產棉花 ______㎏.

  思考:1.這些式子與分數有什么相同和不同之處?

  2.上述式子有什么共同的特點?

  分式的概念:一般地,形如 的式子叫做分式,其中A和B均為整式,B中含有字母.

  下列各式哪些是分式,哪些是整式?

 �、� ;② ;③ ;④ ;⑤ ;⑥ ;⑦ ;⑧ ;⑨ .

  三、例題精選:

  1.試解釋分式 所表示的實際意義.

  2.求分式 的值:(1) ;(2) ;(3) .

  3.當 取什么值時,分式 (1)沒有意義?(2)有意義?(3)值為零.

  四、課堂練習:

  1.課本P36練習第1、2、3題.

  2.下列各式: 、 、 、 、 、 中,分式有( )

  A.1個 B.2個 C.3個 D.4個

  3. 為何值時,分式 的值為負數?

  4.當 取何值時,分式 的值為零?

  五、遷移創(chuàng)新:

  當 為何整數時,分式 的值是整數?

  六、課堂小結:

  1.分式的概念:一般地,形如 的式子叫做分式,其中A和B均為整式,B中含有字母.

  2.分式是否有意義的識別方法:當分式的分母為零時,分式無意義;當分式的分母不等于零時,分式有意義.

  3.分式的值是否為零的識別方法:當分式的分子是零而分母不等于零時,分式的值等于零.

  4.對整式、分式的正確區(qū)別:分式的分子和分母都是整式,分子可以含有字母,也可以不含有字母,而分母中必須含有字母,這是分式與整式的根本區(qū)別.

  七、課堂作業(yè):

  課本P36習題8.1第1、2、3題

  八、教學反思:

分式的教案12

  分式方程

  教學目標

  1.經歷分式方程的概念,能將實際問題中的等量關系用分式方程 表示,體會分式方程的模型作用.

  2.經歷實際問題-分式方程方程模型的過程,發(fā)展學生分析問題、解決問題的能力,滲透數學的轉化思想人體,培養(yǎng)學生的應用意識。

  3.在活動中培養(yǎng)學生樂于探究、合作學習的習慣,培養(yǎng)學 生努力尋找 解決問題的進取心,體會數學的'應用價值.

  教學重點:

  將實際問題中的等量 關系用分式方程表示

  教學難點:

  找實際問題中的等量關系

  教學過程:

  情境導入:

  有兩塊面積相同的小麥試驗田,第一塊使用原品種,第二 塊使用新品種,分別收獲小麥9000 kg和15000 kg。已知第一塊試驗田每公頃的產量比第二塊少3000 kg,分別求這兩塊試驗田每 公頃 的產量。你能找出這一問題中的所有等量關系嗎?(分組交流)

  如果設第一塊試驗田 每公頃的產量為 kg,那么第二塊試驗田每公頃的產量是________kg。

  根據題意,可得方程___________________

  二、講授新課

  從甲地到乙地有兩條公路:一條是全長600 km的普通 公路,另一條是全長480 km的高速公路。某客 車在 高速公路上行駛的平均速度比在普通公路上快45 km/h,由高速 公路從甲地到乙地所需的時間 是由普通公路從甲地到乙地所需時間的一半。求該客車由高速公路從 甲地到乙地所需的時間。

  這 一問題中有哪些等量關系?

  如果設客車由高速公路從甲地到乙地 所需的時間為 h,那么它由普通公路從甲地到乙地所需的時間為_________h。

  根據題意,可得方程_ _____________________。

  學生分組探討、交流,列出方程.

  三.做一做:

  為了幫助遭受自然災害的地區(qū)重建家園,某學校號召同學們自愿捐款。已知第一次捐款總額為4800元,第二次捐款總額為5000元,第二次捐款人數比第一次多20人,而且兩次人均捐款額恰好相等。如果設第一次捐款人數為 人,那么 滿足怎樣的方程?

  四.議一議:

  上面所得到的方程有什么共同特點?

  分母中含有未知數的方程叫做分式方程

  分式方程與整式方程有什么區(qū)別?

  五、 隨堂練習

  (1)據聯合國《20xx年全球投資 報告》指出,中國20xx年吸收外國投資額 達530億美元,比上一年增加了13%。設20xx年我國吸收外國投資額為 億美元,請你寫出 滿足的方程。你能寫出幾個方程?其中哪一個是分式方程?

  (2)輪船在順水中航行20千米與逆水航行10千米所用時間相同,水流速度為2. 5千米/小時,求輪船的靜水速度

  (3)根據分式方程 編一道應用題,然后同組交流,看誰編得好

  六、學 習小結

  本節(jié)課你學到了哪些知識?有什么感想?

  七.作業(yè)布置

分式的教案13

  【知識拓展】

  分 母里含有未知數的方程叫做分式方程.解分式方程組的基本思想是:化為整式方程.通常有兩種做法:一是去分母;二是換元.

  解分式方程一定要驗根.

  解分式方程組時整體代換的思想體現得很充分.常見的思路有:取倒數法方程迭加法,換元法等.

  列分式方程解應用題,關鍵是找到相等關系列出方程.如果方程中含有字母表示的已知數,需根據題競變換條件,實現轉化.設未知數而不求解是常見的技巧之一.

  例題求解

  一、分式方程(組)的解法舉例

  1.拆項重組解分式方程

  【例1】解方程 .

  解析 直接去分母太繁瑣,左右兩邊分別通分仍有很復雜的分子.考慮將每一項分拆:如 ,這樣可降低計算難度.經檢驗 為原方程的解.

  注 本題中用到兩個技巧:一是將分式拆成整式加另一個分式;二是交換了項,避免通分后分子出現x.這樣大大降低了運算量.本講趣題引路中的問題也屬于這種思路.

  2.用換元法解分式方程

  【例2】解方程 .

  解析 若考慮去分母,運算量過大;分拆也不行,但各分母都是二次三項式,試一試換元法.

  解 令x2+ 2x―8=y,原方程可化為

  解這個關于y的分式方程得y=9x或y=-5x.

  故當y=9x時,x2+2x―8=9x,解得x1=8,x2=―1.

  當y=-5x時,x2+2x―8=-5x,解得x3=―8,x4=1.

  經檢驗,上述四解均為原方程的解.

  注 當分式方程的結構較復雜且有相同或相近部分時,可通過換元將之簡化.

  3.形如 結構的分式方程的解法

  形如 的分式方程的解是: , .

  【例3】解方程 .

  解析 方程左邊兩項的乘積為1,可考慮化為上述類型的問題求解.

  , 均為原方程的解.

  4.運用整體代換解分式方程組

  【例4】解方程組 .

  解析 若用常規(guī)思路設法消元,難度極大.注意到每一方程左邊分子均為單項式,為什么不試一試倒過來考慮呢?

  解 顯然x=y=z=0是該方程組的一組解.

  若x、y、z均不為0,取倒數相加得x=y=z=

  故原方程組的解為x=y=z=0和x=y=z= .

  二、含字母系數分式方程根的討論

  【例5】解關于x的方程 .

  解析 去分母化簡 為含字母系數的一次方程,須分類討論.

  討論:(1)當a2-1≠0時

 �、佼攁≠0時,原方程解為x= ;

 �、诋攁=0時,此時 是增根.

  (2) 當a2-1=0時即a= ,此時方程的解為x≠ 的任意數;

  綜上,當a≠±1且a≠0時,原方程解為x= ;當a=0時,原方程無解,;當a= 時,原方程的解為x≠ 的任意數.

  三、列分式方程解應用題

  【例6】 某商場在一樓和二樓之間安裝了一自動扶梯,以均勻的速度向上行駛,一男孩和一女孩同時從自動扶梯上走到二樓(扶梯行駛,兩人也走梯).如果兩人上梯的速度都是勻速的,每次只跨1級,且男孩每分鐘走動的級數是女孩的2倍.已知男孩走了27級到達扶梯頂部,而女孩走了18級到達頂部.

 �。�1)扶梯露在外面的部分有多少級?

  (2)現扶梯近旁有一從二樓下到一樓的樓梯道,臺階的級數與 自動扶梯的級數相等,兩個孩子各自到扶梯頂部后按原 速度再下樓梯 ,到樓梯底部再乘自動扶梯上樓(不考慮扶梯與樓梯間的距離).求男孩第一次迫上女孩時走了多少級臺階?

  解析 題中有兩個等量關系,男孩走27級的時間等于扶梯走了S-27級的時間;女孩走18級的時間等于扶梯走S―18級的時間.

  解 (1)設女孩上梯速度為x級/分,自動扶梯的速度為y級/分,扶梯露在外面的部分有S級,則男孩上梯的速度為2x級/分,且有

  解得 S=54.

  所以扶梯露在外面的.部分有54級.

  (2)設男孩第一次追上女孩時走過自動扶梯rn遍,走過樓梯n遍,則女孩走過自動扶梯(m―1)遍、走過樓梯(n―1)遍.

  由于兩人所走的時間相等,所以有 .

  由(1)中可求得y=2x,代人上面方程 化簡得6n+m=16.

  無論男孩第一次追上女孩是在自動扶梯還是在下樓時,m、n中都一定有一個是正整數,且0≤m―n≤1.

  試驗知只有 m=3,n= 符合要求.

  所以男孩第一次追上女孩時走的級數為3×27+ ×54=198(級).

  注 本題求解時設的未知數x、y,只設不求,這種方法在解復雜的應用題時常用來幫助分析數量關系,便于解題.

  【例7】 (江蘇省初中數學競賽C卷)編號為1到25的25個彈珠被分放在兩個籃子A和B中.15號彈珠在籃子A中,把這個彈珠從籃子A移至籃子B中,這時籃子A中的彈珠號碼數的平均數等于原平均數加 ,籃子B中彈珠號碼數的平均數也等于原平均數加 .問原來在籃子A中有多少個彈珠?

  解析 本題涉及A中原有彈珠,A、B中號碼數的平均數,故引入三個未知數.

  解 設原來籃子A中有彈珠x個,則籃子B中有彈珠(25-x)個.又記原來A中彈珠號碼數的平均數為a,B中彈珠號碼數的平均數為b.則由題意得

  解得x=9,即原來籃子A中有9個彈珠.

  學力訓練

 �。ˋ級)

  1.解分式方程 .

  2.若關于x的方程 有增根x=1,求k的值.

  3.解分式方程 .

  4.解方程組 .

  5.丙、丁三管齊開,15分鐘可注滿全池;甲、丁兩管齊開,20分鐘注滿全池.如果四管齊開,需要多少時間可以注滿全池?

  (B級)

  1.關于x的方程 有唯一的解,字母已知數應具備的條件是( )

  A. a≠b B.c≠d C.c+d≠0 D.bc+ad≠0

  2.某隊伍長6km,以每小時5 km的速度行進,通信員騎馬從隊頭到隊尾送信,到 隊尾后退返回隊頭,共用了0.5 h,則通信員騎馬的速度為每小時 km.

  3.某項工作,甲單獨作完成的天數為乙、丙合作完成天數的m倍,乙單獨作完成的天數為甲、丙合作完成天數的n倍,丙單獨作完成的天數為甲、乙合作完成天數的k倍,則 = .

  4.m為何值時,關于x、y的方程組: 的解,滿足 , ?

  5.(天津市中考題)某工程由甲、乙兩隊合做6天完成,廠 家需付甲、乙兩隊共8700元;乙、丙兩隊合做10天完成,廠家需付乙、丙兩隊共9500元;甲、丙兩隊合做5天完成全部工程的 ,廠家需付甲、丙兩隊共5500元.

  (1)求甲、乙、丙各隊單獨完成全部工程各需多少天?

  (2)若工期要求不超過15天完成全部工程,問:由哪隊單獨完成此項 工程花錢最少?請說明理由.

  6.甲、乙二人兩次同時在同一糧店購買糧食(假設兩次購買的單價不同),甲每次購買糧食100kg,乙每次購買糧食用去100元.設甲、乙兩人第一次購買糧食的單價為x元/kg,第二次單價為y元/kg.

  (1)用含x、y的代數式表示甲兩次購買糧食共需付款 元,乙兩次共購買 kg糧食.若甲兩次購買糧食的平均單價為每千克Ql元,乙兩次購糧的平均單價為每千克Q2元則Q1= ;Q2= .

分式的教案14

  內容:分式的計算—分式的乘除P93-95

  學習目標:

  1、理解分式的乘除法則,會進行簡單的乘除運算

  2、由乘方的定義和分式乘法法則,探索出分式的乘方的運算法則

  學習重點:分式乘除法的法則

  學習難點:分式乘方的法則的.理解

  學習過程

  1.學習準備

  1.說說分數乘除法的法則

  2.完成下列計算

  (1)×(2)-×(-)

  (3)÷(-)(4)-÷

  2.合作探究

  1.仿照分數的運算,你能完成下列計算嗎?

  (1)×(2)÷

  2、結合分數的乘除法則,你能總結如何進行分式的運算嗎?

  3.教學例題例1計算

  (1)×(2)÷

  4、練習計算

  (1)(—)(2)÷

  (3)-xy(4)÷4

  5、教學例題

  例2計算:÷

  (分子、分母都是多項式可先分解因式,后約分)

  6、練習

  (1)(2)÷(x

  7、怎樣計算、、?

  我們知道:

  ====

  ====

  ==(n為正整數)

  舉例驗證你的結論:。

  結合上面的過程,可得分式的乘方。

  討論:==

  =(m為負整數)

  3.學習體會對照學習目標,通過預習,你覺得自己有哪些方面的收獲?

  4.自我測試1、練習

  (1)=(2)=

  (3)()2=(4)()2=

  2、計算

  (1)(—)(2)÷12a2b

  (3)(4)(x-y)2

  3、先化簡,在求值其中,x=5。

分式的教案15

  第一課時

  (一)教學過程

  1.分式的定義?

  2.分數的基本性質?有什么用途?

  1.類比分數的基本性質,由學生小結出分式的基本性質:

  分式的分子與分母乘以(或除以)同一個不等于零的整式,分式的值不變,即:

 �。ㄆ渲惺遣坏扔诹愕腵整式。)

  2.加深對分式基本性質的理解:

  例1 下列等式的右邊是怎樣從左邊得到的?

 �。�1);

  由學生口述分析,并反問:為什么?

  解:∵

  ∴.

 �。�2);

  學生口答,教師設疑:為什么題目未給的條件?(引導學生學會分析題目中的隱含條件.)

  解:∵

  ∴.

 �。�3)

  學生口答.

  解:∵,

  ∴.

  例2 填空:

 �。�1);

 �。�2);

 �。�3);

 �。�4).

  把學生分為四人一組開展競賽,看哪個組做得又快又準確,并能小結出填空的依據.

  例3 不改變分式的值,把下列各式的分子與分母中各項的系數都化為整數.

 �。�1);

  分析學生討論:①怎樣才能不改變公式的值?②怎樣把分子分母中各項系數都化為整數?

  解:.

 �。�2).

  解:.

  例4 判斷取何值時,等式成立?

  學生分組討論后得出結果:

  ∴.

  (二)隨堂練習

  1.當為何值時,與的值相等()

  A. B. C. D.

  2.若分式有意義,則,滿足條件為( )

  A. B. C. D.以上答案都不對

  3.下列各式不正確的是( )

  A. B.

  C. D.

  4.若把分式的和都擴大兩倍,則分式的值

  A.擴大兩倍 B.不變

  C.縮小兩倍 D.縮小四倍

  (三)總結、擴展

  1.分式的基本性質.

  2.性質中的可代表任何非零整式.

  3.注意挖掘題目中的隱含條件.

  4.利用分式的基本性質將分式的分子、分母化成整系數形式,體現了數學化繁為簡的策略,并為分式作進一步處理提供了便利條件.

  (四)布置作業(yè)

  教材P61中2、3;P62中B組的1

  (五)板書設計

【分式的教案】相關文章:

《解分式方程》教案08-29

分式說課稿12-29

《解分式方程》教案7篇05-13

《分式的加減法》教案(精選5篇)10-29

分式教學反思02-14

分式方程說課稿02-29

《認識分式》教學反思10-16

《分式加減》教學反思04-18

分式的乘除教學反思06-18